xref: /openbmc/linux/arch/ia64/kernel/mca.c (revision 6a108a14)
1 /*
2  * File:	mca.c
3  * Purpose:	Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25  *
26  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27  *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  *	      added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31  *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  *	      errors, completed code for logging of corrected & uncorrected
33  *	      machine check errors, and updated for conformance with Nov. 2000
34  *	      revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37  *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  *	      set SAL default return values, changed error record structure to
39  *	      linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42  *	      GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45  *	      Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <kaos@sgi.com>
48  *	      smp_call_function() must not be called from interrupt context
49  *	      (can deadlock on tasklist_lock).
50  *	      Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <kaos@sgi.com>
53  *	      Avoid deadlock when using printk() for MCA and INIT records.
54  *	      Delete all record printing code, moved to salinfo_decode in user
55  *	      space.  Mark variables and functions static where possible.
56  *	      Delete dead variables and functions.  Reorder to remove the need
57  *	      for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <kaos@sgi.com>
60  *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  *	      state.
62  *
63  * 2005-10-07 Keith Owens <kaos@sgi.com>
64  *	      Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67  *	      Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <rja@sgi.com>
70  *	      Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88 #include <linux/gfp.h>
89 
90 #include <asm/delay.h>
91 #include <asm/machvec.h>
92 #include <asm/meminit.h>
93 #include <asm/page.h>
94 #include <asm/ptrace.h>
95 #include <asm/system.h>
96 #include <asm/sal.h>
97 #include <asm/mca.h>
98 #include <asm/kexec.h>
99 
100 #include <asm/irq.h>
101 #include <asm/hw_irq.h>
102 #include <asm/tlb.h>
103 
104 #include "mca_drv.h"
105 #include "entry.h"
106 
107 #if defined(IA64_MCA_DEBUG_INFO)
108 # define IA64_MCA_DEBUG(fmt...)	printk(fmt)
109 #else
110 # define IA64_MCA_DEBUG(fmt...)
111 #endif
112 
113 #define NOTIFY_INIT(event, regs, arg, spin)				\
114 do {									\
115 	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
116 			== NOTIFY_STOP) && ((spin) == 1))		\
117 		ia64_mca_spin(__func__);				\
118 } while (0)
119 
120 #define NOTIFY_MCA(event, regs, arg, spin)				\
121 do {									\
122 	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
123 			== NOTIFY_STOP) && ((spin) == 1))		\
124 		ia64_mca_spin(__func__);				\
125 } while (0)
126 
127 /* Used by mca_asm.S */
128 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
129 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
131 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
132 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
133 
134 unsigned long __per_cpu_mca[NR_CPUS];
135 
136 /* In mca_asm.S */
137 extern void			ia64_os_init_dispatch_monarch (void);
138 extern void			ia64_os_init_dispatch_slave (void);
139 
140 static int monarch_cpu = -1;
141 
142 static ia64_mc_info_t		ia64_mc_info;
143 
144 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
145 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
146 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
147 #define CPE_HISTORY_LENGTH    5
148 #define CMC_HISTORY_LENGTH    5
149 
150 #ifdef CONFIG_ACPI
151 static struct timer_list cpe_poll_timer;
152 #endif
153 static struct timer_list cmc_poll_timer;
154 /*
155  * This variable tells whether we are currently in polling mode.
156  * Start with this in the wrong state so we won't play w/ timers
157  * before the system is ready.
158  */
159 static int cmc_polling_enabled = 1;
160 
161 /*
162  * Clearing this variable prevents CPE polling from getting activated
163  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
164  * but encounters problems retrieving CPE logs.  This should only be
165  * necessary for debugging.
166  */
167 static int cpe_poll_enabled = 1;
168 
169 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170 
171 static int mca_init __initdata;
172 
173 /*
174  * limited & delayed printing support for MCA/INIT handler
175  */
176 
177 #define mprintk(fmt...) ia64_mca_printk(fmt)
178 
179 #define MLOGBUF_SIZE (512+256*NR_CPUS)
180 #define MLOGBUF_MSGMAX 256
181 static char mlogbuf[MLOGBUF_SIZE];
182 static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
183 static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
184 static unsigned long mlogbuf_start;
185 static unsigned long mlogbuf_end;
186 static unsigned int mlogbuf_finished = 0;
187 static unsigned long mlogbuf_timestamp = 0;
188 
189 static int loglevel_save = -1;
190 #define BREAK_LOGLEVEL(__console_loglevel)		\
191 	oops_in_progress = 1;				\
192 	if (loglevel_save < 0)				\
193 		loglevel_save = __console_loglevel;	\
194 	__console_loglevel = 15;
195 
196 #define RESTORE_LOGLEVEL(__console_loglevel)		\
197 	if (loglevel_save >= 0) {			\
198 		__console_loglevel = loglevel_save;	\
199 		loglevel_save = -1;			\
200 	}						\
201 	mlogbuf_finished = 0;				\
202 	oops_in_progress = 0;
203 
204 /*
205  * Push messages into buffer, print them later if not urgent.
206  */
207 void ia64_mca_printk(const char *fmt, ...)
208 {
209 	va_list args;
210 	int printed_len;
211 	char temp_buf[MLOGBUF_MSGMAX];
212 	char *p;
213 
214 	va_start(args, fmt);
215 	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216 	va_end(args);
217 
218 	/* Copy the output into mlogbuf */
219 	if (oops_in_progress) {
220 		/* mlogbuf was abandoned, use printk directly instead. */
221 		printk(temp_buf);
222 	} else {
223 		spin_lock(&mlogbuf_wlock);
224 		for (p = temp_buf; *p; p++) {
225 			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226 			if (next != mlogbuf_start) {
227 				mlogbuf[mlogbuf_end] = *p;
228 				mlogbuf_end = next;
229 			} else {
230 				/* buffer full */
231 				break;
232 			}
233 		}
234 		mlogbuf[mlogbuf_end] = '\0';
235 		spin_unlock(&mlogbuf_wlock);
236 	}
237 }
238 EXPORT_SYMBOL(ia64_mca_printk);
239 
240 /*
241  * Print buffered messages.
242  *  NOTE: call this after returning normal context. (ex. from salinfod)
243  */
244 void ia64_mlogbuf_dump(void)
245 {
246 	char temp_buf[MLOGBUF_MSGMAX];
247 	char *p;
248 	unsigned long index;
249 	unsigned long flags;
250 	unsigned int printed_len;
251 
252 	/* Get output from mlogbuf */
253 	while (mlogbuf_start != mlogbuf_end) {
254 		temp_buf[0] = '\0';
255 		p = temp_buf;
256 		printed_len = 0;
257 
258 		spin_lock_irqsave(&mlogbuf_rlock, flags);
259 
260 		index = mlogbuf_start;
261 		while (index != mlogbuf_end) {
262 			*p = mlogbuf[index];
263 			index = (index + 1) % MLOGBUF_SIZE;
264 			if (!*p)
265 				break;
266 			p++;
267 			if (++printed_len >= MLOGBUF_MSGMAX - 1)
268 				break;
269 		}
270 		*p = '\0';
271 		if (temp_buf[0])
272 			printk(temp_buf);
273 		mlogbuf_start = index;
274 
275 		mlogbuf_timestamp = 0;
276 		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277 	}
278 }
279 EXPORT_SYMBOL(ia64_mlogbuf_dump);
280 
281 /*
282  * Call this if system is going to down or if immediate flushing messages to
283  * console is required. (ex. recovery was failed, crash dump is going to be
284  * invoked, long-wait rendezvous etc.)
285  *  NOTE: this should be called from monarch.
286  */
287 static void ia64_mlogbuf_finish(int wait)
288 {
289 	BREAK_LOGLEVEL(console_loglevel);
290 
291 	spin_lock_init(&mlogbuf_rlock);
292 	ia64_mlogbuf_dump();
293 	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294 		"MCA/INIT might be dodgy or fail.\n");
295 
296 	if (!wait)
297 		return;
298 
299 	/* wait for console */
300 	printk("Delaying for 5 seconds...\n");
301 	udelay(5*1000000);
302 
303 	mlogbuf_finished = 1;
304 }
305 
306 /*
307  * Print buffered messages from INIT context.
308  */
309 static void ia64_mlogbuf_dump_from_init(void)
310 {
311 	if (mlogbuf_finished)
312 		return;
313 
314 	if (mlogbuf_timestamp &&
315 			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316 		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317 			" and the system seems to be messed up.\n");
318 		ia64_mlogbuf_finish(0);
319 		return;
320 	}
321 
322 	if (!spin_trylock(&mlogbuf_rlock)) {
323 		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324 			"Generated messages other than stack dump will be "
325 			"buffered to mlogbuf and will be printed later.\n");
326 		printk(KERN_ERR "INIT: If messages would not printed after "
327 			"this INIT, wait 30sec and assert INIT again.\n");
328 		if (!mlogbuf_timestamp)
329 			mlogbuf_timestamp = jiffies;
330 		return;
331 	}
332 	spin_unlock(&mlogbuf_rlock);
333 	ia64_mlogbuf_dump();
334 }
335 
336 static void inline
337 ia64_mca_spin(const char *func)
338 {
339 	if (monarch_cpu == smp_processor_id())
340 		ia64_mlogbuf_finish(0);
341 	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342 	while (1)
343 		cpu_relax();
344 }
345 /*
346  * IA64_MCA log support
347  */
348 #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
349 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
350 
351 typedef struct ia64_state_log_s
352 {
353 	spinlock_t	isl_lock;
354 	int		isl_index;
355 	unsigned long	isl_count;
356 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357 } ia64_state_log_t;
358 
359 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360 
361 #define IA64_LOG_ALLOCATE(it, size) \
362 	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
363 		(ia64_err_rec_t *)alloc_bootmem(size); \
364 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
365 		(ia64_err_rec_t *)alloc_bootmem(size);}
366 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
367 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
368 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
369 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
370 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
371 #define IA64_LOG_INDEX_INC(it) \
372     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
373     ia64_state_log[it].isl_count++;}
374 #define IA64_LOG_INDEX_DEC(it) \
375     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
376 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
377 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
378 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
379 
380 /*
381  * ia64_log_init
382  *	Reset the OS ia64 log buffer
383  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384  * Outputs	:	None
385  */
386 static void __init
387 ia64_log_init(int sal_info_type)
388 {
389 	u64	max_size = 0;
390 
391 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
392 	IA64_LOG_LOCK_INIT(sal_info_type);
393 
394 	// SAL will tell us the maximum size of any error record of this type
395 	max_size = ia64_sal_get_state_info_size(sal_info_type);
396 	if (!max_size)
397 		/* alloc_bootmem() doesn't like zero-sized allocations! */
398 		return;
399 
400 	// set up OS data structures to hold error info
401 	IA64_LOG_ALLOCATE(sal_info_type, max_size);
402 	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
403 	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
404 }
405 
406 /*
407  * ia64_log_get
408  *
409  *	Get the current MCA log from SAL and copy it into the OS log buffer.
410  *
411  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
412  *              irq_safe    whether you can use printk at this point
413  *  Outputs :   size        (total record length)
414  *              *buffer     (ptr to error record)
415  *
416  */
417 static u64
418 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
419 {
420 	sal_log_record_header_t     *log_buffer;
421 	u64                         total_len = 0;
422 	unsigned long               s;
423 
424 	IA64_LOG_LOCK(sal_info_type);
425 
426 	/* Get the process state information */
427 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
428 
429 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
430 
431 	if (total_len) {
432 		IA64_LOG_INDEX_INC(sal_info_type);
433 		IA64_LOG_UNLOCK(sal_info_type);
434 		if (irq_safe) {
435 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
436 				       __func__, sal_info_type, total_len);
437 		}
438 		*buffer = (u8 *) log_buffer;
439 		return total_len;
440 	} else {
441 		IA64_LOG_UNLOCK(sal_info_type);
442 		return 0;
443 	}
444 }
445 
446 /*
447  *  ia64_mca_log_sal_error_record
448  *
449  *  This function retrieves a specified error record type from SAL
450  *  and wakes up any processes waiting for error records.
451  *
452  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
453  *              FIXME: remove MCA and irq_safe.
454  */
455 static void
456 ia64_mca_log_sal_error_record(int sal_info_type)
457 {
458 	u8 *buffer;
459 	sal_log_record_header_t *rh;
460 	u64 size;
461 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
462 #ifdef IA64_MCA_DEBUG_INFO
463 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
464 #endif
465 
466 	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
467 	if (!size)
468 		return;
469 
470 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
471 
472 	if (irq_safe)
473 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
474 			smp_processor_id(),
475 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
476 
477 	/* Clear logs from corrected errors in case there's no user-level logger */
478 	rh = (sal_log_record_header_t *)buffer;
479 	if (rh->severity == sal_log_severity_corrected)
480 		ia64_sal_clear_state_info(sal_info_type);
481 }
482 
483 /*
484  * search_mca_table
485  *  See if the MCA surfaced in an instruction range
486  *  that has been tagged as recoverable.
487  *
488  *  Inputs
489  *	first	First address range to check
490  *	last	Last address range to check
491  *	ip	Instruction pointer, address we are looking for
492  *
493  * Return value:
494  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
495  */
496 int
497 search_mca_table (const struct mca_table_entry *first,
498                 const struct mca_table_entry *last,
499                 unsigned long ip)
500 {
501         const struct mca_table_entry *curr;
502         u64 curr_start, curr_end;
503 
504         curr = first;
505         while (curr <= last) {
506                 curr_start = (u64) &curr->start_addr + curr->start_addr;
507                 curr_end = (u64) &curr->end_addr + curr->end_addr;
508 
509                 if ((ip >= curr_start) && (ip <= curr_end)) {
510                         return 1;
511                 }
512                 curr++;
513         }
514         return 0;
515 }
516 
517 /* Given an address, look for it in the mca tables. */
518 int mca_recover_range(unsigned long addr)
519 {
520 	extern struct mca_table_entry __start___mca_table[];
521 	extern struct mca_table_entry __stop___mca_table[];
522 
523 	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
524 }
525 EXPORT_SYMBOL_GPL(mca_recover_range);
526 
527 #ifdef CONFIG_ACPI
528 
529 int cpe_vector = -1;
530 int ia64_cpe_irq = -1;
531 
532 static irqreturn_t
533 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
534 {
535 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
536 	static int		index;
537 	static DEFINE_SPINLOCK(cpe_history_lock);
538 
539 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
540 		       __func__, cpe_irq, smp_processor_id());
541 
542 	/* SAL spec states this should run w/ interrupts enabled */
543 	local_irq_enable();
544 
545 	spin_lock(&cpe_history_lock);
546 	if (!cpe_poll_enabled && cpe_vector >= 0) {
547 
548 		int i, count = 1; /* we know 1 happened now */
549 		unsigned long now = jiffies;
550 
551 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
552 			if (now - cpe_history[i] <= HZ)
553 				count++;
554 		}
555 
556 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
557 		if (count >= CPE_HISTORY_LENGTH) {
558 
559 			cpe_poll_enabled = 1;
560 			spin_unlock(&cpe_history_lock);
561 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
562 
563 			/*
564 			 * Corrected errors will still be corrected, but
565 			 * make sure there's a log somewhere that indicates
566 			 * something is generating more than we can handle.
567 			 */
568 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
569 
570 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
571 
572 			/* lock already released, get out now */
573 			goto out;
574 		} else {
575 			cpe_history[index++] = now;
576 			if (index == CPE_HISTORY_LENGTH)
577 				index = 0;
578 		}
579 	}
580 	spin_unlock(&cpe_history_lock);
581 out:
582 	/* Get the CPE error record and log it */
583 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
584 
585 	return IRQ_HANDLED;
586 }
587 
588 #endif /* CONFIG_ACPI */
589 
590 #ifdef CONFIG_ACPI
591 /*
592  * ia64_mca_register_cpev
593  *
594  *  Register the corrected platform error vector with SAL.
595  *
596  *  Inputs
597  *      cpev        Corrected Platform Error Vector number
598  *
599  *  Outputs
600  *      None
601  */
602 void
603 ia64_mca_register_cpev (int cpev)
604 {
605 	/* Register the CPE interrupt vector with SAL */
606 	struct ia64_sal_retval isrv;
607 
608 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
609 	if (isrv.status) {
610 		printk(KERN_ERR "Failed to register Corrected Platform "
611 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
612 		return;
613 	}
614 
615 	IA64_MCA_DEBUG("%s: corrected platform error "
616 		       "vector %#x registered\n", __func__, cpev);
617 }
618 #endif /* CONFIG_ACPI */
619 
620 /*
621  * ia64_mca_cmc_vector_setup
622  *
623  *  Setup the corrected machine check vector register in the processor.
624  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
625  *  This function is invoked on a per-processor basis.
626  *
627  * Inputs
628  *      None
629  *
630  * Outputs
631  *	None
632  */
633 void __cpuinit
634 ia64_mca_cmc_vector_setup (void)
635 {
636 	cmcv_reg_t	cmcv;
637 
638 	cmcv.cmcv_regval	= 0;
639 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
640 	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
641 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
642 
643 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
644 		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
645 
646 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
647 		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
648 }
649 
650 /*
651  * ia64_mca_cmc_vector_disable
652  *
653  *  Mask the corrected machine check vector register in the processor.
654  *  This function is invoked on a per-processor basis.
655  *
656  * Inputs
657  *      dummy(unused)
658  *
659  * Outputs
660  *	None
661  */
662 static void
663 ia64_mca_cmc_vector_disable (void *dummy)
664 {
665 	cmcv_reg_t	cmcv;
666 
667 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
668 
669 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
670 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
671 
672 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
673 		       __func__, smp_processor_id(), cmcv.cmcv_vector);
674 }
675 
676 /*
677  * ia64_mca_cmc_vector_enable
678  *
679  *  Unmask the corrected machine check vector register in the processor.
680  *  This function is invoked on a per-processor basis.
681  *
682  * Inputs
683  *      dummy(unused)
684  *
685  * Outputs
686  *	None
687  */
688 static void
689 ia64_mca_cmc_vector_enable (void *dummy)
690 {
691 	cmcv_reg_t	cmcv;
692 
693 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
694 
695 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
696 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
697 
698 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
699 		       __func__, smp_processor_id(), cmcv.cmcv_vector);
700 }
701 
702 /*
703  * ia64_mca_cmc_vector_disable_keventd
704  *
705  * Called via keventd (smp_call_function() is not safe in interrupt context) to
706  * disable the cmc interrupt vector.
707  */
708 static void
709 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
710 {
711 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
712 }
713 
714 /*
715  * ia64_mca_cmc_vector_enable_keventd
716  *
717  * Called via keventd (smp_call_function() is not safe in interrupt context) to
718  * enable the cmc interrupt vector.
719  */
720 static void
721 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
722 {
723 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
724 }
725 
726 /*
727  * ia64_mca_wakeup
728  *
729  *	Send an inter-cpu interrupt to wake-up a particular cpu.
730  *
731  *  Inputs  :   cpuid
732  *  Outputs :   None
733  */
734 static void
735 ia64_mca_wakeup(int cpu)
736 {
737 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
738 }
739 
740 /*
741  * ia64_mca_wakeup_all
742  *
743  *	Wakeup all the slave cpus which have rendez'ed previously.
744  *
745  *  Inputs  :   None
746  *  Outputs :   None
747  */
748 static void
749 ia64_mca_wakeup_all(void)
750 {
751 	int cpu;
752 
753 	/* Clear the Rendez checkin flag for all cpus */
754 	for_each_online_cpu(cpu) {
755 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
756 			ia64_mca_wakeup(cpu);
757 	}
758 
759 }
760 
761 /*
762  * ia64_mca_rendez_interrupt_handler
763  *
764  *	This is handler used to put slave processors into spinloop
765  *	while the monarch processor does the mca handling and later
766  *	wake each slave up once the monarch is done.  The state
767  *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
768  *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
769  *	the cpu has come out of OS rendezvous.
770  *
771  *  Inputs  :   None
772  *  Outputs :   None
773  */
774 static irqreturn_t
775 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
776 {
777 	unsigned long flags;
778 	int cpu = smp_processor_id();
779 	struct ia64_mca_notify_die nd =
780 		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
781 
782 	/* Mask all interrupts */
783 	local_irq_save(flags);
784 
785 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
786 
787 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
788 	/* Register with the SAL monarch that the slave has
789 	 * reached SAL
790 	 */
791 	ia64_sal_mc_rendez();
792 
793 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
794 
795 	/* Wait for the monarch cpu to exit. */
796 	while (monarch_cpu != -1)
797 	       cpu_relax();	/* spin until monarch leaves */
798 
799 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
800 
801 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
802 	/* Enable all interrupts */
803 	local_irq_restore(flags);
804 	return IRQ_HANDLED;
805 }
806 
807 /*
808  * ia64_mca_wakeup_int_handler
809  *
810  *	The interrupt handler for processing the inter-cpu interrupt to the
811  *	slave cpu which was spinning in the rendez loop.
812  *	Since this spinning is done by turning off the interrupts and
813  *	polling on the wakeup-interrupt bit in the IRR, there is
814  *	nothing useful to be done in the handler.
815  *
816  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
817  *	arg		(Interrupt handler specific argument)
818  *  Outputs :   None
819  *
820  */
821 static irqreturn_t
822 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
823 {
824 	return IRQ_HANDLED;
825 }
826 
827 /* Function pointer for extra MCA recovery */
828 int (*ia64_mca_ucmc_extension)
829 	(void*,struct ia64_sal_os_state*)
830 	= NULL;
831 
832 int
833 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
834 {
835 	if (ia64_mca_ucmc_extension)
836 		return 1;
837 
838 	ia64_mca_ucmc_extension = fn;
839 	return 0;
840 }
841 
842 void
843 ia64_unreg_MCA_extension(void)
844 {
845 	if (ia64_mca_ucmc_extension)
846 		ia64_mca_ucmc_extension = NULL;
847 }
848 
849 EXPORT_SYMBOL(ia64_reg_MCA_extension);
850 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
851 
852 
853 static inline void
854 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
855 {
856 	u64 fslot, tslot, nat;
857 	*tr = *fr;
858 	fslot = ((unsigned long)fr >> 3) & 63;
859 	tslot = ((unsigned long)tr >> 3) & 63;
860 	*tnat &= ~(1UL << tslot);
861 	nat = (fnat >> fslot) & 1;
862 	*tnat |= (nat << tslot);
863 }
864 
865 /* Change the comm field on the MCA/INT task to include the pid that
866  * was interrupted, it makes for easier debugging.  If that pid was 0
867  * (swapper or nested MCA/INIT) then use the start of the previous comm
868  * field suffixed with its cpu.
869  */
870 
871 static void
872 ia64_mca_modify_comm(const struct task_struct *previous_current)
873 {
874 	char *p, comm[sizeof(current->comm)];
875 	if (previous_current->pid)
876 		snprintf(comm, sizeof(comm), "%s %d",
877 			current->comm, previous_current->pid);
878 	else {
879 		int l;
880 		if ((p = strchr(previous_current->comm, ' ')))
881 			l = p - previous_current->comm;
882 		else
883 			l = strlen(previous_current->comm);
884 		snprintf(comm, sizeof(comm), "%s %*s %d",
885 			current->comm, l, previous_current->comm,
886 			task_thread_info(previous_current)->cpu);
887 	}
888 	memcpy(current->comm, comm, sizeof(current->comm));
889 }
890 
891 static void
892 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
893 		unsigned long *nat)
894 {
895 	const pal_min_state_area_t *ms = sos->pal_min_state;
896 	const u64 *bank;
897 
898 	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
899 	 * pmsa_{xip,xpsr,xfs}
900 	 */
901 	if (ia64_psr(regs)->ic) {
902 		regs->cr_iip = ms->pmsa_iip;
903 		regs->cr_ipsr = ms->pmsa_ipsr;
904 		regs->cr_ifs = ms->pmsa_ifs;
905 	} else {
906 		regs->cr_iip = ms->pmsa_xip;
907 		regs->cr_ipsr = ms->pmsa_xpsr;
908 		regs->cr_ifs = ms->pmsa_xfs;
909 
910 		sos->iip = ms->pmsa_iip;
911 		sos->ipsr = ms->pmsa_ipsr;
912 		sos->ifs = ms->pmsa_ifs;
913 	}
914 	regs->pr = ms->pmsa_pr;
915 	regs->b0 = ms->pmsa_br0;
916 	regs->ar_rsc = ms->pmsa_rsc;
917 	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
918 	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
919 	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
920 	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
921 	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
922 	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
923 	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
924 	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
925 	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
926 	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
927 	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
928 	if (ia64_psr(regs)->bn)
929 		bank = ms->pmsa_bank1_gr;
930 	else
931 		bank = ms->pmsa_bank0_gr;
932 	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
933 	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
934 	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
935 	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
936 	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
937 	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
938 	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
939 	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
940 	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
941 	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
942 	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
943 	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
944 	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
945 	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
946 	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
947 	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
948 }
949 
950 /* On entry to this routine, we are running on the per cpu stack, see
951  * mca_asm.h.  The original stack has not been touched by this event.  Some of
952  * the original stack's registers will be in the RBS on this stack.  This stack
953  * also contains a partial pt_regs and switch_stack, the rest of the data is in
954  * PAL minstate.
955  *
956  * The first thing to do is modify the original stack to look like a blocked
957  * task so we can run backtrace on the original task.  Also mark the per cpu
958  * stack as current to ensure that we use the correct task state, it also means
959  * that we can do backtrace on the MCA/INIT handler code itself.
960  */
961 
962 static struct task_struct *
963 ia64_mca_modify_original_stack(struct pt_regs *regs,
964 		const struct switch_stack *sw,
965 		struct ia64_sal_os_state *sos,
966 		const char *type)
967 {
968 	char *p;
969 	ia64_va va;
970 	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
971 	const pal_min_state_area_t *ms = sos->pal_min_state;
972 	struct task_struct *previous_current;
973 	struct pt_regs *old_regs;
974 	struct switch_stack *old_sw;
975 	unsigned size = sizeof(struct pt_regs) +
976 			sizeof(struct switch_stack) + 16;
977 	unsigned long *old_bspstore, *old_bsp;
978 	unsigned long *new_bspstore, *new_bsp;
979 	unsigned long old_unat, old_rnat, new_rnat, nat;
980 	u64 slots, loadrs = regs->loadrs;
981 	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
982 	u64 ar_bspstore = regs->ar_bspstore;
983 	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
984 	const char *msg;
985 	int cpu = smp_processor_id();
986 
987 	previous_current = curr_task(cpu);
988 	set_curr_task(cpu, current);
989 	if ((p = strchr(current->comm, ' ')))
990 		*p = '\0';
991 
992 	/* Best effort attempt to cope with MCA/INIT delivered while in
993 	 * physical mode.
994 	 */
995 	regs->cr_ipsr = ms->pmsa_ipsr;
996 	if (ia64_psr(regs)->dt == 0) {
997 		va.l = r12;
998 		if (va.f.reg == 0) {
999 			va.f.reg = 7;
1000 			r12 = va.l;
1001 		}
1002 		va.l = r13;
1003 		if (va.f.reg == 0) {
1004 			va.f.reg = 7;
1005 			r13 = va.l;
1006 		}
1007 	}
1008 	if (ia64_psr(regs)->rt == 0) {
1009 		va.l = ar_bspstore;
1010 		if (va.f.reg == 0) {
1011 			va.f.reg = 7;
1012 			ar_bspstore = va.l;
1013 		}
1014 		va.l = ar_bsp;
1015 		if (va.f.reg == 0) {
1016 			va.f.reg = 7;
1017 			ar_bsp = va.l;
1018 		}
1019 	}
1020 
1021 	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1022 	 * have been copied to the old stack, the old stack may fail the
1023 	 * validation tests below.  So ia64_old_stack() must restore the dirty
1024 	 * registers from the new stack.  The old and new bspstore probably
1025 	 * have different alignments, so loadrs calculated on the old bsp
1026 	 * cannot be used to restore from the new bsp.  Calculate a suitable
1027 	 * loadrs for the new stack and save it in the new pt_regs, where
1028 	 * ia64_old_stack() can get it.
1029 	 */
1030 	old_bspstore = (unsigned long *)ar_bspstore;
1031 	old_bsp = (unsigned long *)ar_bsp;
1032 	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1033 	new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1034 	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1035 	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1036 
1037 	/* Verify the previous stack state before we change it */
1038 	if (user_mode(regs)) {
1039 		msg = "occurred in user space";
1040 		/* previous_current is guaranteed to be valid when the task was
1041 		 * in user space, so ...
1042 		 */
1043 		ia64_mca_modify_comm(previous_current);
1044 		goto no_mod;
1045 	}
1046 
1047 	if (r13 != sos->prev_IA64_KR_CURRENT) {
1048 		msg = "inconsistent previous current and r13";
1049 		goto no_mod;
1050 	}
1051 
1052 	if (!mca_recover_range(ms->pmsa_iip)) {
1053 		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1054 			msg = "inconsistent r12 and r13";
1055 			goto no_mod;
1056 		}
1057 		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1058 			msg = "inconsistent ar.bspstore and r13";
1059 			goto no_mod;
1060 		}
1061 		va.p = old_bspstore;
1062 		if (va.f.reg < 5) {
1063 			msg = "old_bspstore is in the wrong region";
1064 			goto no_mod;
1065 		}
1066 		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1067 			msg = "inconsistent ar.bsp and r13";
1068 			goto no_mod;
1069 		}
1070 		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1071 		if (ar_bspstore + size > r12) {
1072 			msg = "no room for blocked state";
1073 			goto no_mod;
1074 		}
1075 	}
1076 
1077 	ia64_mca_modify_comm(previous_current);
1078 
1079 	/* Make the original task look blocked.  First stack a struct pt_regs,
1080 	 * describing the state at the time of interrupt.  mca_asm.S built a
1081 	 * partial pt_regs, copy it and fill in the blanks using minstate.
1082 	 */
1083 	p = (char *)r12 - sizeof(*regs);
1084 	old_regs = (struct pt_regs *)p;
1085 	memcpy(old_regs, regs, sizeof(*regs));
1086 	old_regs->loadrs = loadrs;
1087 	old_unat = old_regs->ar_unat;
1088 	finish_pt_regs(old_regs, sos, &old_unat);
1089 
1090 	/* Next stack a struct switch_stack.  mca_asm.S built a partial
1091 	 * switch_stack, copy it and fill in the blanks using pt_regs and
1092 	 * minstate.
1093 	 *
1094 	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1095 	 * ar.pfs is set to 0.
1096 	 *
1097 	 * unwind.c::unw_unwind() does special processing for interrupt frames.
1098 	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1099 	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1100 	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1101 	 * switch_stack on the original stack so it will unwind correctly when
1102 	 * unwind.c reads pt_regs.
1103 	 *
1104 	 * thread.ksp is updated to point to the synthesized switch_stack.
1105 	 */
1106 	p -= sizeof(struct switch_stack);
1107 	old_sw = (struct switch_stack *)p;
1108 	memcpy(old_sw, sw, sizeof(*sw));
1109 	old_sw->caller_unat = old_unat;
1110 	old_sw->ar_fpsr = old_regs->ar_fpsr;
1111 	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1112 	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1113 	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1114 	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1115 	old_sw->b0 = (u64)ia64_leave_kernel;
1116 	old_sw->b1 = ms->pmsa_br1;
1117 	old_sw->ar_pfs = 0;
1118 	old_sw->ar_unat = old_unat;
1119 	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1120 	previous_current->thread.ksp = (u64)p - 16;
1121 
1122 	/* Finally copy the original stack's registers back to its RBS.
1123 	 * Registers from ar.bspstore through ar.bsp at the time of the event
1124 	 * are in the current RBS, copy them back to the original stack.  The
1125 	 * copy must be done register by register because the original bspstore
1126 	 * and the current one have different alignments, so the saved RNAT
1127 	 * data occurs at different places.
1128 	 *
1129 	 * mca_asm does cover, so the old_bsp already includes all registers at
1130 	 * the time of MCA/INIT.  It also does flushrs, so all registers before
1131 	 * this function have been written to backing store on the MCA/INIT
1132 	 * stack.
1133 	 */
1134 	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1135 	old_rnat = regs->ar_rnat;
1136 	while (slots--) {
1137 		if (ia64_rse_is_rnat_slot(new_bspstore)) {
1138 			new_rnat = ia64_get_rnat(new_bspstore++);
1139 		}
1140 		if (ia64_rse_is_rnat_slot(old_bspstore)) {
1141 			*old_bspstore++ = old_rnat;
1142 			old_rnat = 0;
1143 		}
1144 		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1145 		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1146 		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1147 		*old_bspstore++ = *new_bspstore++;
1148 	}
1149 	old_sw->ar_bspstore = (unsigned long)old_bspstore;
1150 	old_sw->ar_rnat = old_rnat;
1151 
1152 	sos->prev_task = previous_current;
1153 	return previous_current;
1154 
1155 no_mod:
1156 	mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1157 			smp_processor_id(), type, msg);
1158 	old_unat = regs->ar_unat;
1159 	finish_pt_regs(regs, sos, &old_unat);
1160 	return previous_current;
1161 }
1162 
1163 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1164  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1165  * not entered rendezvous yet then wait a bit.  The assumption is that any
1166  * slave that has not rendezvoused after a reasonable time is never going to do
1167  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1168  * interrupt, as well as cpus that receive the INIT slave event.
1169  */
1170 
1171 static void
1172 ia64_wait_for_slaves(int monarch, const char *type)
1173 {
1174 	int c, i , wait;
1175 
1176 	/*
1177 	 * wait 5 seconds total for slaves (arbitrary)
1178 	 */
1179 	for (i = 0; i < 5000; i++) {
1180 		wait = 0;
1181 		for_each_online_cpu(c) {
1182 			if (c == monarch)
1183 				continue;
1184 			if (ia64_mc_info.imi_rendez_checkin[c]
1185 					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1186 				udelay(1000);		/* short wait */
1187 				wait = 1;
1188 				break;
1189 			}
1190 		}
1191 		if (!wait)
1192 			goto all_in;
1193 	}
1194 
1195 	/*
1196 	 * Maybe slave(s) dead. Print buffered messages immediately.
1197 	 */
1198 	ia64_mlogbuf_finish(0);
1199 	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1200 	for_each_online_cpu(c) {
1201 		if (c == monarch)
1202 			continue;
1203 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1204 			mprintk(" %d", c);
1205 	}
1206 	mprintk("\n");
1207 	return;
1208 
1209 all_in:
1210 	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1211 	return;
1212 }
1213 
1214 /*  mca_insert_tr
1215  *
1216  *  Switch rid when TR reload and needed!
1217  *  iord: 1: itr, 2: itr;
1218  *
1219 */
1220 static void mca_insert_tr(u64 iord)
1221 {
1222 
1223 	int i;
1224 	u64 old_rr;
1225 	struct ia64_tr_entry *p;
1226 	unsigned long psr;
1227 	int cpu = smp_processor_id();
1228 
1229 	if (!ia64_idtrs[cpu])
1230 		return;
1231 
1232 	psr = ia64_clear_ic();
1233 	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1234 		p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1235 		if (p->pte & 0x1) {
1236 			old_rr = ia64_get_rr(p->ifa);
1237 			if (old_rr != p->rr) {
1238 				ia64_set_rr(p->ifa, p->rr);
1239 				ia64_srlz_d();
1240 			}
1241 			ia64_ptr(iord, p->ifa, p->itir >> 2);
1242 			ia64_srlz_i();
1243 			if (iord & 0x1) {
1244 				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1245 				ia64_srlz_i();
1246 			}
1247 			if (iord & 0x2) {
1248 				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1249 				ia64_srlz_i();
1250 			}
1251 			if (old_rr != p->rr) {
1252 				ia64_set_rr(p->ifa, old_rr);
1253 				ia64_srlz_d();
1254 			}
1255 		}
1256 	}
1257 	ia64_set_psr(psr);
1258 }
1259 
1260 /*
1261  * ia64_mca_handler
1262  *
1263  *	This is uncorrectable machine check handler called from OS_MCA
1264  *	dispatch code which is in turn called from SAL_CHECK().
1265  *	This is the place where the core of OS MCA handling is done.
1266  *	Right now the logs are extracted and displayed in a well-defined
1267  *	format. This handler code is supposed to be run only on the
1268  *	monarch processor. Once the monarch is done with MCA handling
1269  *	further MCA logging is enabled by clearing logs.
1270  *	Monarch also has the duty of sending wakeup-IPIs to pull the
1271  *	slave processors out of rendezvous spinloop.
1272  *
1273  *	If multiple processors call into OS_MCA, the first will become
1274  *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
1275  *	bitmask.  After the first monarch has processed its MCA, it
1276  *	will wake up the next cpu in the mca_cpu bitmask and then go
1277  *	into the rendezvous loop.  When all processors have serviced
1278  *	their MCA, the last monarch frees up the rest of the processors.
1279  */
1280 void
1281 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1282 		 struct ia64_sal_os_state *sos)
1283 {
1284 	int recover, cpu = smp_processor_id();
1285 	struct task_struct *previous_current;
1286 	struct ia64_mca_notify_die nd =
1287 		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1288 	static atomic_t mca_count;
1289 	static cpumask_t mca_cpu;
1290 
1291 	if (atomic_add_return(1, &mca_count) == 1) {
1292 		monarch_cpu = cpu;
1293 		sos->monarch = 1;
1294 	} else {
1295 		cpu_set(cpu, mca_cpu);
1296 		sos->monarch = 0;
1297 	}
1298 	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1299 		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1300 
1301 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1302 
1303 	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1304 
1305 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1306 	if (sos->monarch) {
1307 		ia64_wait_for_slaves(cpu, "MCA");
1308 
1309 		/* Wakeup all the processors which are spinning in the
1310 		 * rendezvous loop.  They will leave SAL, then spin in the OS
1311 		 * with interrupts disabled until this monarch cpu leaves the
1312 		 * MCA handler.  That gets control back to the OS so we can
1313 		 * backtrace the other cpus, backtrace when spinning in SAL
1314 		 * does not work.
1315 		 */
1316 		ia64_mca_wakeup_all();
1317 	} else {
1318 		while (cpu_isset(cpu, mca_cpu))
1319 			cpu_relax();	/* spin until monarch wakes us */
1320 	}
1321 
1322 	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1323 
1324 	/* Get the MCA error record and log it */
1325 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1326 
1327 	/* MCA error recovery */
1328 	recover = (ia64_mca_ucmc_extension
1329 		&& ia64_mca_ucmc_extension(
1330 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1331 			sos));
1332 
1333 	if (recover) {
1334 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1335 		rh->severity = sal_log_severity_corrected;
1336 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1337 		sos->os_status = IA64_MCA_CORRECTED;
1338 	} else {
1339 		/* Dump buffered message to console */
1340 		ia64_mlogbuf_finish(1);
1341 	}
1342 
1343 	if (__get_cpu_var(ia64_mca_tr_reload)) {
1344 		mca_insert_tr(0x1); /*Reload dynamic itrs*/
1345 		mca_insert_tr(0x2); /*Reload dynamic itrs*/
1346 	}
1347 
1348 	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1349 
1350 	if (atomic_dec_return(&mca_count) > 0) {
1351 		int i;
1352 
1353 		/* wake up the next monarch cpu,
1354 		 * and put this cpu in the rendez loop.
1355 		 */
1356 		for_each_online_cpu(i) {
1357 			if (cpu_isset(i, mca_cpu)) {
1358 				monarch_cpu = i;
1359 				cpu_clear(i, mca_cpu);	/* wake next cpu */
1360 				while (monarch_cpu != -1)
1361 					cpu_relax();	/* spin until last cpu leaves */
1362 				set_curr_task(cpu, previous_current);
1363 				ia64_mc_info.imi_rendez_checkin[cpu]
1364 						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1365 				return;
1366 			}
1367 		}
1368 	}
1369 	set_curr_task(cpu, previous_current);
1370 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1371 	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
1372 }
1373 
1374 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1375 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1376 
1377 /*
1378  * ia64_mca_cmc_int_handler
1379  *
1380  *  This is corrected machine check interrupt handler.
1381  *	Right now the logs are extracted and displayed in a well-defined
1382  *	format.
1383  *
1384  * Inputs
1385  *      interrupt number
1386  *      client data arg ptr
1387  *
1388  * Outputs
1389  *	None
1390  */
1391 static irqreturn_t
1392 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1393 {
1394 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1395 	static int		index;
1396 	static DEFINE_SPINLOCK(cmc_history_lock);
1397 
1398 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1399 		       __func__, cmc_irq, smp_processor_id());
1400 
1401 	/* SAL spec states this should run w/ interrupts enabled */
1402 	local_irq_enable();
1403 
1404 	spin_lock(&cmc_history_lock);
1405 	if (!cmc_polling_enabled) {
1406 		int i, count = 1; /* we know 1 happened now */
1407 		unsigned long now = jiffies;
1408 
1409 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1410 			if (now - cmc_history[i] <= HZ)
1411 				count++;
1412 		}
1413 
1414 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1415 		if (count >= CMC_HISTORY_LENGTH) {
1416 
1417 			cmc_polling_enabled = 1;
1418 			spin_unlock(&cmc_history_lock);
1419 			/* If we're being hit with CMC interrupts, we won't
1420 			 * ever execute the schedule_work() below.  Need to
1421 			 * disable CMC interrupts on this processor now.
1422 			 */
1423 			ia64_mca_cmc_vector_disable(NULL);
1424 			schedule_work(&cmc_disable_work);
1425 
1426 			/*
1427 			 * Corrected errors will still be corrected, but
1428 			 * make sure there's a log somewhere that indicates
1429 			 * something is generating more than we can handle.
1430 			 */
1431 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1432 
1433 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1434 
1435 			/* lock already released, get out now */
1436 			goto out;
1437 		} else {
1438 			cmc_history[index++] = now;
1439 			if (index == CMC_HISTORY_LENGTH)
1440 				index = 0;
1441 		}
1442 	}
1443 	spin_unlock(&cmc_history_lock);
1444 out:
1445 	/* Get the CMC error record and log it */
1446 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1447 
1448 	return IRQ_HANDLED;
1449 }
1450 
1451 /*
1452  *  ia64_mca_cmc_int_caller
1453  *
1454  * 	Triggered by sw interrupt from CMC polling routine.  Calls
1455  * 	real interrupt handler and either triggers a sw interrupt
1456  * 	on the next cpu or does cleanup at the end.
1457  *
1458  * Inputs
1459  *	interrupt number
1460  *	client data arg ptr
1461  * Outputs
1462  * 	handled
1463  */
1464 static irqreturn_t
1465 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1466 {
1467 	static int start_count = -1;
1468 	unsigned int cpuid;
1469 
1470 	cpuid = smp_processor_id();
1471 
1472 	/* If first cpu, update count */
1473 	if (start_count == -1)
1474 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1475 
1476 	ia64_mca_cmc_int_handler(cmc_irq, arg);
1477 
1478 	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1479 
1480 	if (cpuid < nr_cpu_ids) {
1481 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1482 	} else {
1483 		/* If no log record, switch out of polling mode */
1484 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1485 
1486 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1487 			schedule_work(&cmc_enable_work);
1488 			cmc_polling_enabled = 0;
1489 
1490 		} else {
1491 
1492 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1493 		}
1494 
1495 		start_count = -1;
1496 	}
1497 
1498 	return IRQ_HANDLED;
1499 }
1500 
1501 /*
1502  *  ia64_mca_cmc_poll
1503  *
1504  *	Poll for Corrected Machine Checks (CMCs)
1505  *
1506  * Inputs   :   dummy(unused)
1507  * Outputs  :   None
1508  *
1509  */
1510 static void
1511 ia64_mca_cmc_poll (unsigned long dummy)
1512 {
1513 	/* Trigger a CMC interrupt cascade  */
1514 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1515 }
1516 
1517 /*
1518  *  ia64_mca_cpe_int_caller
1519  *
1520  * 	Triggered by sw interrupt from CPE polling routine.  Calls
1521  * 	real interrupt handler and either triggers a sw interrupt
1522  * 	on the next cpu or does cleanup at the end.
1523  *
1524  * Inputs
1525  *	interrupt number
1526  *	client data arg ptr
1527  * Outputs
1528  * 	handled
1529  */
1530 #ifdef CONFIG_ACPI
1531 
1532 static irqreturn_t
1533 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1534 {
1535 	static int start_count = -1;
1536 	static int poll_time = MIN_CPE_POLL_INTERVAL;
1537 	unsigned int cpuid;
1538 
1539 	cpuid = smp_processor_id();
1540 
1541 	/* If first cpu, update count */
1542 	if (start_count == -1)
1543 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1544 
1545 	ia64_mca_cpe_int_handler(cpe_irq, arg);
1546 
1547 	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1548 
1549 	if (cpuid < NR_CPUS) {
1550 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1551 	} else {
1552 		/*
1553 		 * If a log was recorded, increase our polling frequency,
1554 		 * otherwise, backoff or return to interrupt mode.
1555 		 */
1556 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1557 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1558 		} else if (cpe_vector < 0) {
1559 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1560 		} else {
1561 			poll_time = MIN_CPE_POLL_INTERVAL;
1562 
1563 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1564 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1565 			cpe_poll_enabled = 0;
1566 		}
1567 
1568 		if (cpe_poll_enabled)
1569 			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1570 		start_count = -1;
1571 	}
1572 
1573 	return IRQ_HANDLED;
1574 }
1575 
1576 /*
1577  *  ia64_mca_cpe_poll
1578  *
1579  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1580  *	on first cpu, from there it will trickle through all the cpus.
1581  *
1582  * Inputs   :   dummy(unused)
1583  * Outputs  :   None
1584  *
1585  */
1586 static void
1587 ia64_mca_cpe_poll (unsigned long dummy)
1588 {
1589 	/* Trigger a CPE interrupt cascade  */
1590 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1591 }
1592 
1593 #endif /* CONFIG_ACPI */
1594 
1595 static int
1596 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1597 {
1598 	int c;
1599 	struct task_struct *g, *t;
1600 	if (val != DIE_INIT_MONARCH_PROCESS)
1601 		return NOTIFY_DONE;
1602 #ifdef CONFIG_KEXEC
1603 	if (atomic_read(&kdump_in_progress))
1604 		return NOTIFY_DONE;
1605 #endif
1606 
1607 	/*
1608 	 * FIXME: mlogbuf will brim over with INIT stack dumps.
1609 	 * To enable show_stack from INIT, we use oops_in_progress which should
1610 	 * be used in real oops. This would cause something wrong after INIT.
1611 	 */
1612 	BREAK_LOGLEVEL(console_loglevel);
1613 	ia64_mlogbuf_dump_from_init();
1614 
1615 	printk(KERN_ERR "Processes interrupted by INIT -");
1616 	for_each_online_cpu(c) {
1617 		struct ia64_sal_os_state *s;
1618 		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1619 		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1620 		g = s->prev_task;
1621 		if (g) {
1622 			if (g->pid)
1623 				printk(" %d", g->pid);
1624 			else
1625 				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1626 		}
1627 	}
1628 	printk("\n\n");
1629 	if (read_trylock(&tasklist_lock)) {
1630 		do_each_thread (g, t) {
1631 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1632 			show_stack(t, NULL);
1633 		} while_each_thread (g, t);
1634 		read_unlock(&tasklist_lock);
1635 	}
1636 	/* FIXME: This will not restore zapped printk locks. */
1637 	RESTORE_LOGLEVEL(console_loglevel);
1638 	return NOTIFY_DONE;
1639 }
1640 
1641 /*
1642  * C portion of the OS INIT handler
1643  *
1644  * Called from ia64_os_init_dispatch
1645  *
1646  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1647  * this event.  This code is used for both monarch and slave INIT events, see
1648  * sos->monarch.
1649  *
1650  * All INIT events switch to the INIT stack and change the previous process to
1651  * blocked status.  If one of the INIT events is the monarch then we are
1652  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1653  * the processes.  The slave INIT events all spin until the monarch cpu
1654  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1655  * process is the monarch.
1656  */
1657 
1658 void
1659 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1660 		  struct ia64_sal_os_state *sos)
1661 {
1662 	static atomic_t slaves;
1663 	static atomic_t monarchs;
1664 	struct task_struct *previous_current;
1665 	int cpu = smp_processor_id();
1666 	struct ia64_mca_notify_die nd =
1667 		{ .sos = sos, .monarch_cpu = &monarch_cpu };
1668 
1669 	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1670 
1671 	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1672 		sos->proc_state_param, cpu, sos->monarch);
1673 	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1674 
1675 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1676 	sos->os_status = IA64_INIT_RESUME;
1677 
1678 	/* FIXME: Workaround for broken proms that drive all INIT events as
1679 	 * slaves.  The last slave that enters is promoted to be a monarch.
1680 	 * Remove this code in September 2006, that gives platforms a year to
1681 	 * fix their proms and get their customers updated.
1682 	 */
1683 	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1684 		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1685 		        __func__, cpu);
1686 		atomic_dec(&slaves);
1687 		sos->monarch = 1;
1688 	}
1689 
1690 	/* FIXME: Workaround for broken proms that drive all INIT events as
1691 	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1692 	 * Remove this code in September 2006, that gives platforms a year to
1693 	 * fix their proms and get their customers updated.
1694 	 */
1695 	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1696 		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1697 			       __func__, cpu);
1698 		atomic_dec(&monarchs);
1699 		sos->monarch = 0;
1700 	}
1701 
1702 	if (!sos->monarch) {
1703 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1704 
1705 #ifdef CONFIG_KEXEC
1706 		while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1707 			udelay(1000);
1708 #else
1709 		while (monarch_cpu == -1)
1710 			cpu_relax();	/* spin until monarch enters */
1711 #endif
1712 
1713 		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1714 		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1715 
1716 #ifdef CONFIG_KEXEC
1717 		while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1718 			udelay(1000);
1719 #else
1720 		while (monarch_cpu != -1)
1721 			cpu_relax();	/* spin until monarch leaves */
1722 #endif
1723 
1724 		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1725 
1726 		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1727 		set_curr_task(cpu, previous_current);
1728 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1729 		atomic_dec(&slaves);
1730 		return;
1731 	}
1732 
1733 	monarch_cpu = cpu;
1734 	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1735 
1736 	/*
1737 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1738 	 * generated via the BMC's command-line interface, but since the console is on the
1739 	 * same serial line, the user will need some time to switch out of the BMC before
1740 	 * the dump begins.
1741 	 */
1742 	mprintk("Delaying for 5 seconds...\n");
1743 	udelay(5*1000000);
1744 	ia64_wait_for_slaves(cpu, "INIT");
1745 	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1746 	 * to default_monarch_init_process() above and just print all the
1747 	 * tasks.
1748 	 */
1749 	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1750 	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1751 
1752 	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1753 	atomic_dec(&monarchs);
1754 	set_curr_task(cpu, previous_current);
1755 	monarch_cpu = -1;
1756 	return;
1757 }
1758 
1759 static int __init
1760 ia64_mca_disable_cpe_polling(char *str)
1761 {
1762 	cpe_poll_enabled = 0;
1763 	return 1;
1764 }
1765 
1766 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1767 
1768 static struct irqaction cmci_irqaction = {
1769 	.handler =	ia64_mca_cmc_int_handler,
1770 	.flags =	IRQF_DISABLED,
1771 	.name =		"cmc_hndlr"
1772 };
1773 
1774 static struct irqaction cmcp_irqaction = {
1775 	.handler =	ia64_mca_cmc_int_caller,
1776 	.flags =	IRQF_DISABLED,
1777 	.name =		"cmc_poll"
1778 };
1779 
1780 static struct irqaction mca_rdzv_irqaction = {
1781 	.handler =	ia64_mca_rendez_int_handler,
1782 	.flags =	IRQF_DISABLED,
1783 	.name =		"mca_rdzv"
1784 };
1785 
1786 static struct irqaction mca_wkup_irqaction = {
1787 	.handler =	ia64_mca_wakeup_int_handler,
1788 	.flags =	IRQF_DISABLED,
1789 	.name =		"mca_wkup"
1790 };
1791 
1792 #ifdef CONFIG_ACPI
1793 static struct irqaction mca_cpe_irqaction = {
1794 	.handler =	ia64_mca_cpe_int_handler,
1795 	.flags =	IRQF_DISABLED,
1796 	.name =		"cpe_hndlr"
1797 };
1798 
1799 static struct irqaction mca_cpep_irqaction = {
1800 	.handler =	ia64_mca_cpe_int_caller,
1801 	.flags =	IRQF_DISABLED,
1802 	.name =		"cpe_poll"
1803 };
1804 #endif /* CONFIG_ACPI */
1805 
1806 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1807  * these stacks can never sleep, they cannot return from the kernel to user
1808  * space, they do not appear in a normal ps listing.  So there is no need to
1809  * format most of the fields.
1810  */
1811 
1812 static void __cpuinit
1813 format_mca_init_stack(void *mca_data, unsigned long offset,
1814 		const char *type, int cpu)
1815 {
1816 	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1817 	struct thread_info *ti;
1818 	memset(p, 0, KERNEL_STACK_SIZE);
1819 	ti = task_thread_info(p);
1820 	ti->flags = _TIF_MCA_INIT;
1821 	ti->preempt_count = 1;
1822 	ti->task = p;
1823 	ti->cpu = cpu;
1824 	p->stack = ti;
1825 	p->state = TASK_UNINTERRUPTIBLE;
1826 	cpu_set(cpu, p->cpus_allowed);
1827 	INIT_LIST_HEAD(&p->tasks);
1828 	p->parent = p->real_parent = p->group_leader = p;
1829 	INIT_LIST_HEAD(&p->children);
1830 	INIT_LIST_HEAD(&p->sibling);
1831 	strncpy(p->comm, type, sizeof(p->comm)-1);
1832 }
1833 
1834 /* Caller prevents this from being called after init */
1835 static void * __init_refok mca_bootmem(void)
1836 {
1837 	return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1838 	                    KERNEL_STACK_SIZE, 0);
1839 }
1840 
1841 /* Do per-CPU MCA-related initialization.  */
1842 void __cpuinit
1843 ia64_mca_cpu_init(void *cpu_data)
1844 {
1845 	void *pal_vaddr;
1846 	void *data;
1847 	long sz = sizeof(struct ia64_mca_cpu);
1848 	int cpu = smp_processor_id();
1849 	static int first_time = 1;
1850 
1851 	/*
1852 	 * Structure will already be allocated if cpu has been online,
1853 	 * then offlined.
1854 	 */
1855 	if (__per_cpu_mca[cpu]) {
1856 		data = __va(__per_cpu_mca[cpu]);
1857 	} else {
1858 		if (first_time) {
1859 			data = mca_bootmem();
1860 			first_time = 0;
1861 		} else
1862 			data = __get_free_pages(GFP_KERNEL, get_order(sz));
1863 		if (!data)
1864 			panic("Could not allocate MCA memory for cpu %d\n",
1865 					cpu);
1866 	}
1867 	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1868 		"MCA", cpu);
1869 	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1870 		"INIT", cpu);
1871 	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1872 
1873 	/*
1874 	 * Stash away a copy of the PTE needed to map the per-CPU page.
1875 	 * We may need it during MCA recovery.
1876 	 */
1877 	__get_cpu_var(ia64_mca_per_cpu_pte) =
1878 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1879 
1880 	/*
1881 	 * Also, stash away a copy of the PAL address and the PTE
1882 	 * needed to map it.
1883 	 */
1884 	pal_vaddr = efi_get_pal_addr();
1885 	if (!pal_vaddr)
1886 		return;
1887 	__get_cpu_var(ia64_mca_pal_base) =
1888 		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1889 	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1890 							      PAGE_KERNEL));
1891 }
1892 
1893 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1894 {
1895 	unsigned long flags;
1896 
1897 	local_irq_save(flags);
1898 	if (!cmc_polling_enabled)
1899 		ia64_mca_cmc_vector_enable(NULL);
1900 	local_irq_restore(flags);
1901 }
1902 
1903 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1904 				      unsigned long action,
1905 				      void *hcpu)
1906 {
1907 	int hotcpu = (unsigned long) hcpu;
1908 
1909 	switch (action) {
1910 	case CPU_ONLINE:
1911 	case CPU_ONLINE_FROZEN:
1912 		smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1913 					 NULL, 0);
1914 		break;
1915 	}
1916 	return NOTIFY_OK;
1917 }
1918 
1919 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1920 	.notifier_call = mca_cpu_callback
1921 };
1922 
1923 /*
1924  * ia64_mca_init
1925  *
1926  *  Do all the system level mca specific initialization.
1927  *
1928  *	1. Register spinloop and wakeup request interrupt vectors
1929  *
1930  *	2. Register OS_MCA handler entry point
1931  *
1932  *	3. Register OS_INIT handler entry point
1933  *
1934  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1935  *
1936  *  Note that this initialization is done very early before some kernel
1937  *  services are available.
1938  *
1939  *  Inputs  :   None
1940  *
1941  *  Outputs :   None
1942  */
1943 void __init
1944 ia64_mca_init(void)
1945 {
1946 	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1947 	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1948 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1949 	int i;
1950 	long rc;
1951 	struct ia64_sal_retval isrv;
1952 	unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1953 	static struct notifier_block default_init_monarch_nb = {
1954 		.notifier_call = default_monarch_init_process,
1955 		.priority = 0/* we need to notified last */
1956 	};
1957 
1958 	IA64_MCA_DEBUG("%s: begin\n", __func__);
1959 
1960 	/* Clear the Rendez checkin flag for all cpus */
1961 	for(i = 0 ; i < NR_CPUS; i++)
1962 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1963 
1964 	/*
1965 	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1966 	 */
1967 
1968 	/* Register the rendezvous interrupt vector with SAL */
1969 	while (1) {
1970 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1971 					      SAL_MC_PARAM_MECHANISM_INT,
1972 					      IA64_MCA_RENDEZ_VECTOR,
1973 					      timeout,
1974 					      SAL_MC_PARAM_RZ_ALWAYS);
1975 		rc = isrv.status;
1976 		if (rc == 0)
1977 			break;
1978 		if (rc == -2) {
1979 			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1980 				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1981 			timeout = isrv.v0;
1982 			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1983 			continue;
1984 		}
1985 		printk(KERN_ERR "Failed to register rendezvous interrupt "
1986 		       "with SAL (status %ld)\n", rc);
1987 		return;
1988 	}
1989 
1990 	/* Register the wakeup interrupt vector with SAL */
1991 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1992 				      SAL_MC_PARAM_MECHANISM_INT,
1993 				      IA64_MCA_WAKEUP_VECTOR,
1994 				      0, 0);
1995 	rc = isrv.status;
1996 	if (rc) {
1997 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1998 		       "(status %ld)\n", rc);
1999 		return;
2000 	}
2001 
2002 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2003 
2004 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
2005 	/*
2006 	 * XXX - disable SAL checksum by setting size to 0; should be
2007 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2008 	 */
2009 	ia64_mc_info.imi_mca_handler_size	= 0;
2010 
2011 	/* Register the os mca handler with SAL */
2012 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2013 				       ia64_mc_info.imi_mca_handler,
2014 				       ia64_tpa(mca_hldlr_ptr->gp),
2015 				       ia64_mc_info.imi_mca_handler_size,
2016 				       0, 0, 0)))
2017 	{
2018 		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2019 		       "(status %ld)\n", rc);
2020 		return;
2021 	}
2022 
2023 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2024 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2025 
2026 	/*
2027 	 * XXX - disable SAL checksum by setting size to 0, should be
2028 	 * size of the actual init handler in mca_asm.S.
2029 	 */
2030 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
2031 	ia64_mc_info.imi_monarch_init_handler_size	= 0;
2032 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
2033 	ia64_mc_info.imi_slave_init_handler_size	= 0;
2034 
2035 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2036 		       ia64_mc_info.imi_monarch_init_handler);
2037 
2038 	/* Register the os init handler with SAL */
2039 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2040 				       ia64_mc_info.imi_monarch_init_handler,
2041 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2042 				       ia64_mc_info.imi_monarch_init_handler_size,
2043 				       ia64_mc_info.imi_slave_init_handler,
2044 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2045 				       ia64_mc_info.imi_slave_init_handler_size)))
2046 	{
2047 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2048 		       "(status %ld)\n", rc);
2049 		return;
2050 	}
2051 	if (register_die_notifier(&default_init_monarch_nb)) {
2052 		printk(KERN_ERR "Failed to register default monarch INIT process\n");
2053 		return;
2054 	}
2055 
2056 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2057 
2058 	/* Initialize the areas set aside by the OS to buffer the
2059 	 * platform/processor error states for MCA/INIT/CMC
2060 	 * handling.
2061 	 */
2062 	ia64_log_init(SAL_INFO_TYPE_MCA);
2063 	ia64_log_init(SAL_INFO_TYPE_INIT);
2064 	ia64_log_init(SAL_INFO_TYPE_CMC);
2065 	ia64_log_init(SAL_INFO_TYPE_CPE);
2066 
2067 	mca_init = 1;
2068 	printk(KERN_INFO "MCA related initialization done\n");
2069 }
2070 
2071 /*
2072  * ia64_mca_late_init
2073  *
2074  *	Opportunity to setup things that require initialization later
2075  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
2076  *	platform doesn't support an interrupt driven mechanism.
2077  *
2078  *  Inputs  :   None
2079  *  Outputs :   Status
2080  */
2081 static int __init
2082 ia64_mca_late_init(void)
2083 {
2084 	if (!mca_init)
2085 		return 0;
2086 
2087 	/*
2088 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2089 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2090 	 */
2091 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2092 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2093 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2094 
2095 	/* Setup the MCA rendezvous interrupt vector */
2096 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2097 
2098 	/* Setup the MCA wakeup interrupt vector */
2099 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2100 
2101 #ifdef CONFIG_ACPI
2102 	/* Setup the CPEI/P handler */
2103 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2104 #endif
2105 
2106 	register_hotcpu_notifier(&mca_cpu_notifier);
2107 
2108 	/* Setup the CMCI/P vector and handler */
2109 	init_timer(&cmc_poll_timer);
2110 	cmc_poll_timer.function = ia64_mca_cmc_poll;
2111 
2112 	/* Unmask/enable the vector */
2113 	cmc_polling_enabled = 0;
2114 	schedule_work(&cmc_enable_work);
2115 
2116 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2117 
2118 #ifdef CONFIG_ACPI
2119 	/* Setup the CPEI/P vector and handler */
2120 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2121 	init_timer(&cpe_poll_timer);
2122 	cpe_poll_timer.function = ia64_mca_cpe_poll;
2123 
2124 	{
2125 		struct irq_desc *desc;
2126 		unsigned int irq;
2127 
2128 		if (cpe_vector >= 0) {
2129 			/* If platform supports CPEI, enable the irq. */
2130 			irq = local_vector_to_irq(cpe_vector);
2131 			if (irq > 0) {
2132 				cpe_poll_enabled = 0;
2133 				desc = irq_desc + irq;
2134 				desc->status |= IRQ_PER_CPU;
2135 				setup_irq(irq, &mca_cpe_irqaction);
2136 				ia64_cpe_irq = irq;
2137 				ia64_mca_register_cpev(cpe_vector);
2138 				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2139 					__func__);
2140 				return 0;
2141 			}
2142 			printk(KERN_ERR "%s: Failed to find irq for CPE "
2143 					"interrupt handler, vector %d\n",
2144 					__func__, cpe_vector);
2145 		}
2146 		/* If platform doesn't support CPEI, get the timer going. */
2147 		if (cpe_poll_enabled) {
2148 			ia64_mca_cpe_poll(0UL);
2149 			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2150 		}
2151 	}
2152 #endif
2153 
2154 	return 0;
2155 }
2156 
2157 device_initcall(ia64_mca_late_init);
2158