1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * File: mca.c 4 * Purpose: Generic MCA handling layer 5 * 6 * Copyright (C) 2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * 9 * Copyright (C) 2002 Dell Inc. 10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> 11 * 12 * Copyright (C) 2002 Intel 13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> 14 * 15 * Copyright (C) 2001 Intel 16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> 17 * 18 * Copyright (C) 2000 Intel 19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> 20 * 21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. 22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com> 23 * 24 * Copyright (C) 2006 FUJITSU LIMITED 25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 26 * 27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> 28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 29 * added min save state dump, added INIT handler. 30 * 31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> 32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform 33 * errors, completed code for logging of corrected & uncorrected 34 * machine check errors, and updated for conformance with Nov. 2000 35 * revision of the SAL 3.0 spec. 36 * 37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> 38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, 39 * set SAL default return values, changed error record structure to 40 * linked list, added init call to sal_get_state_info_size(). 41 * 42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> 43 * GUID cleanups. 44 * 45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> 46 * Added INIT backtrace support. 47 * 48 * 2003-12-08 Keith Owens <kaos@sgi.com> 49 * smp_call_function() must not be called from interrupt context 50 * (can deadlock on tasklist_lock). 51 * Use keventd to call smp_call_function(). 52 * 53 * 2004-02-01 Keith Owens <kaos@sgi.com> 54 * Avoid deadlock when using printk() for MCA and INIT records. 55 * Delete all record printing code, moved to salinfo_decode in user 56 * space. Mark variables and functions static where possible. 57 * Delete dead variables and functions. Reorder to remove the need 58 * for forward declarations and to consolidate related code. 59 * 60 * 2005-08-12 Keith Owens <kaos@sgi.com> 61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS 62 * state. 63 * 64 * 2005-10-07 Keith Owens <kaos@sgi.com> 65 * Add notify_die() hooks. 66 * 67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 68 * Add printing support for MCA/INIT. 69 * 70 * 2007-04-27 Russ Anderson <rja@sgi.com> 71 * Support multiple cpus going through OS_MCA in the same event. 72 */ 73 #include <linux/jiffies.h> 74 #include <linux/types.h> 75 #include <linux/init.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/debug.h> 78 #include <linux/sched/task.h> 79 #include <linux/interrupt.h> 80 #include <linux/irq.h> 81 #include <linux/memblock.h> 82 #include <linux/acpi.h> 83 #include <linux/timer.h> 84 #include <linux/module.h> 85 #include <linux/kernel.h> 86 #include <linux/smp.h> 87 #include <linux/workqueue.h> 88 #include <linux/cpumask.h> 89 #include <linux/kdebug.h> 90 #include <linux/cpu.h> 91 #include <linux/gfp.h> 92 93 #include <asm/delay.h> 94 #include <asm/machvec.h> 95 #include <asm/meminit.h> 96 #include <asm/page.h> 97 #include <asm/ptrace.h> 98 #include <asm/sal.h> 99 #include <asm/mca.h> 100 #include <asm/kexec.h> 101 102 #include <asm/irq.h> 103 #include <asm/hw_irq.h> 104 #include <asm/tlb.h> 105 106 #include "mca_drv.h" 107 #include "entry.h" 108 109 #if defined(IA64_MCA_DEBUG_INFO) 110 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 111 #else 112 # define IA64_MCA_DEBUG(fmt...) 113 #endif 114 115 #define NOTIFY_INIT(event, regs, arg, spin) \ 116 do { \ 117 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ 118 == NOTIFY_STOP) && ((spin) == 1)) \ 119 ia64_mca_spin(__func__); \ 120 } while (0) 121 122 #define NOTIFY_MCA(event, regs, arg, spin) \ 123 do { \ 124 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ 125 == NOTIFY_STOP) && ((spin) == 1)) \ 126 ia64_mca_spin(__func__); \ 127 } while (0) 128 129 /* Used by mca_asm.S */ 130 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 131 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 132 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 133 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 134 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ 135 136 unsigned long __per_cpu_mca[NR_CPUS]; 137 138 /* In mca_asm.S */ 139 extern void ia64_os_init_dispatch_monarch (void); 140 extern void ia64_os_init_dispatch_slave (void); 141 142 static int monarch_cpu = -1; 143 144 static ia64_mc_info_t ia64_mc_info; 145 146 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 147 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 148 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 149 #define CPE_HISTORY_LENGTH 5 150 #define CMC_HISTORY_LENGTH 5 151 152 #ifdef CONFIG_ACPI 153 static struct timer_list cpe_poll_timer; 154 #endif 155 static struct timer_list cmc_poll_timer; 156 /* 157 * This variable tells whether we are currently in polling mode. 158 * Start with this in the wrong state so we won't play w/ timers 159 * before the system is ready. 160 */ 161 static int cmc_polling_enabled = 1; 162 163 /* 164 * Clearing this variable prevents CPE polling from getting activated 165 * in mca_late_init. Use it if your system doesn't provide a CPEI, 166 * but encounters problems retrieving CPE logs. This should only be 167 * necessary for debugging. 168 */ 169 static int cpe_poll_enabled = 1; 170 171 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 172 173 static int mca_init __initdata; 174 175 /* 176 * limited & delayed printing support for MCA/INIT handler 177 */ 178 179 #define mprintk(fmt...) ia64_mca_printk(fmt) 180 181 #define MLOGBUF_SIZE (512+256*NR_CPUS) 182 #define MLOGBUF_MSGMAX 256 183 static char mlogbuf[MLOGBUF_SIZE]; 184 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ 185 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ 186 static unsigned long mlogbuf_start; 187 static unsigned long mlogbuf_end; 188 static unsigned int mlogbuf_finished = 0; 189 static unsigned long mlogbuf_timestamp = 0; 190 191 static int loglevel_save = -1; 192 #define BREAK_LOGLEVEL(__console_loglevel) \ 193 oops_in_progress = 1; \ 194 if (loglevel_save < 0) \ 195 loglevel_save = __console_loglevel; \ 196 __console_loglevel = 15; 197 198 #define RESTORE_LOGLEVEL(__console_loglevel) \ 199 if (loglevel_save >= 0) { \ 200 __console_loglevel = loglevel_save; \ 201 loglevel_save = -1; \ 202 } \ 203 mlogbuf_finished = 0; \ 204 oops_in_progress = 0; 205 206 /* 207 * Push messages into buffer, print them later if not urgent. 208 */ 209 void ia64_mca_printk(const char *fmt, ...) 210 { 211 va_list args; 212 int printed_len; 213 char temp_buf[MLOGBUF_MSGMAX]; 214 char *p; 215 216 va_start(args, fmt); 217 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); 218 va_end(args); 219 220 /* Copy the output into mlogbuf */ 221 if (oops_in_progress) { 222 /* mlogbuf was abandoned, use printk directly instead. */ 223 printk("%s", temp_buf); 224 } else { 225 spin_lock(&mlogbuf_wlock); 226 for (p = temp_buf; *p; p++) { 227 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; 228 if (next != mlogbuf_start) { 229 mlogbuf[mlogbuf_end] = *p; 230 mlogbuf_end = next; 231 } else { 232 /* buffer full */ 233 break; 234 } 235 } 236 mlogbuf[mlogbuf_end] = '\0'; 237 spin_unlock(&mlogbuf_wlock); 238 } 239 } 240 EXPORT_SYMBOL(ia64_mca_printk); 241 242 /* 243 * Print buffered messages. 244 * NOTE: call this after returning normal context. (ex. from salinfod) 245 */ 246 void ia64_mlogbuf_dump(void) 247 { 248 char temp_buf[MLOGBUF_MSGMAX]; 249 char *p; 250 unsigned long index; 251 unsigned long flags; 252 unsigned int printed_len; 253 254 /* Get output from mlogbuf */ 255 while (mlogbuf_start != mlogbuf_end) { 256 temp_buf[0] = '\0'; 257 p = temp_buf; 258 printed_len = 0; 259 260 spin_lock_irqsave(&mlogbuf_rlock, flags); 261 262 index = mlogbuf_start; 263 while (index != mlogbuf_end) { 264 *p = mlogbuf[index]; 265 index = (index + 1) % MLOGBUF_SIZE; 266 if (!*p) 267 break; 268 p++; 269 if (++printed_len >= MLOGBUF_MSGMAX - 1) 270 break; 271 } 272 *p = '\0'; 273 if (temp_buf[0]) 274 printk("%s", temp_buf); 275 mlogbuf_start = index; 276 277 mlogbuf_timestamp = 0; 278 spin_unlock_irqrestore(&mlogbuf_rlock, flags); 279 } 280 } 281 EXPORT_SYMBOL(ia64_mlogbuf_dump); 282 283 /* 284 * Call this if system is going to down or if immediate flushing messages to 285 * console is required. (ex. recovery was failed, crash dump is going to be 286 * invoked, long-wait rendezvous etc.) 287 * NOTE: this should be called from monarch. 288 */ 289 static void ia64_mlogbuf_finish(int wait) 290 { 291 BREAK_LOGLEVEL(console_loglevel); 292 293 spin_lock_init(&mlogbuf_rlock); 294 ia64_mlogbuf_dump(); 295 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " 296 "MCA/INIT might be dodgy or fail.\n"); 297 298 if (!wait) 299 return; 300 301 /* wait for console */ 302 printk("Delaying for 5 seconds...\n"); 303 udelay(5*1000000); 304 305 mlogbuf_finished = 1; 306 } 307 308 /* 309 * Print buffered messages from INIT context. 310 */ 311 static void ia64_mlogbuf_dump_from_init(void) 312 { 313 if (mlogbuf_finished) 314 return; 315 316 if (mlogbuf_timestamp && 317 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { 318 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " 319 " and the system seems to be messed up.\n"); 320 ia64_mlogbuf_finish(0); 321 return; 322 } 323 324 if (!spin_trylock(&mlogbuf_rlock)) { 325 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " 326 "Generated messages other than stack dump will be " 327 "buffered to mlogbuf and will be printed later.\n"); 328 printk(KERN_ERR "INIT: If messages would not printed after " 329 "this INIT, wait 30sec and assert INIT again.\n"); 330 if (!mlogbuf_timestamp) 331 mlogbuf_timestamp = jiffies; 332 return; 333 } 334 spin_unlock(&mlogbuf_rlock); 335 ia64_mlogbuf_dump(); 336 } 337 338 static inline void 339 ia64_mca_spin(const char *func) 340 { 341 if (monarch_cpu == smp_processor_id()) 342 ia64_mlogbuf_finish(0); 343 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 344 while (1) 345 cpu_relax(); 346 } 347 /* 348 * IA64_MCA log support 349 */ 350 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 351 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 352 353 typedef struct ia64_state_log_s 354 { 355 spinlock_t isl_lock; 356 int isl_index; 357 unsigned long isl_count; 358 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 359 } ia64_state_log_t; 360 361 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 362 363 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 364 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 365 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 366 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 367 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 368 #define IA64_LOG_INDEX_INC(it) \ 369 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 370 ia64_state_log[it].isl_count++;} 371 #define IA64_LOG_INDEX_DEC(it) \ 372 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 373 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 374 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 375 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 376 377 static inline void ia64_log_allocate(int it, u64 size) 378 { 379 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = 380 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 381 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]) 382 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 383 384 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = 385 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 386 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]) 387 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 388 } 389 390 /* 391 * ia64_log_init 392 * Reset the OS ia64 log buffer 393 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 394 * Outputs : None 395 */ 396 static void __init 397 ia64_log_init(int sal_info_type) 398 { 399 u64 max_size = 0; 400 401 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 402 IA64_LOG_LOCK_INIT(sal_info_type); 403 404 // SAL will tell us the maximum size of any error record of this type 405 max_size = ia64_sal_get_state_info_size(sal_info_type); 406 if (!max_size) 407 /* alloc_bootmem() doesn't like zero-sized allocations! */ 408 return; 409 410 // set up OS data structures to hold error info 411 ia64_log_allocate(sal_info_type, max_size); 412 } 413 414 /* 415 * ia64_log_get 416 * 417 * Get the current MCA log from SAL and copy it into the OS log buffer. 418 * 419 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 420 * irq_safe whether you can use printk at this point 421 * Outputs : size (total record length) 422 * *buffer (ptr to error record) 423 * 424 */ 425 static u64 426 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 427 { 428 sal_log_record_header_t *log_buffer; 429 u64 total_len = 0; 430 unsigned long s; 431 432 IA64_LOG_LOCK(sal_info_type); 433 434 /* Get the process state information */ 435 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 436 437 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 438 439 if (total_len) { 440 IA64_LOG_INDEX_INC(sal_info_type); 441 IA64_LOG_UNLOCK(sal_info_type); 442 if (irq_safe) { 443 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", 444 __func__, sal_info_type, total_len); 445 } 446 *buffer = (u8 *) log_buffer; 447 return total_len; 448 } else { 449 IA64_LOG_UNLOCK(sal_info_type); 450 return 0; 451 } 452 } 453 454 /* 455 * ia64_mca_log_sal_error_record 456 * 457 * This function retrieves a specified error record type from SAL 458 * and wakes up any processes waiting for error records. 459 * 460 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 461 * FIXME: remove MCA and irq_safe. 462 */ 463 static void 464 ia64_mca_log_sal_error_record(int sal_info_type) 465 { 466 u8 *buffer; 467 sal_log_record_header_t *rh; 468 u64 size; 469 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 470 #ifdef IA64_MCA_DEBUG_INFO 471 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 472 #endif 473 474 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 475 if (!size) 476 return; 477 478 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 479 480 if (irq_safe) 481 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 482 smp_processor_id(), 483 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 484 485 /* Clear logs from corrected errors in case there's no user-level logger */ 486 rh = (sal_log_record_header_t *)buffer; 487 if (rh->severity == sal_log_severity_corrected) 488 ia64_sal_clear_state_info(sal_info_type); 489 } 490 491 /* 492 * search_mca_table 493 * See if the MCA surfaced in an instruction range 494 * that has been tagged as recoverable. 495 * 496 * Inputs 497 * first First address range to check 498 * last Last address range to check 499 * ip Instruction pointer, address we are looking for 500 * 501 * Return value: 502 * 1 on Success (in the table)/ 0 on Failure (not in the table) 503 */ 504 int 505 search_mca_table (const struct mca_table_entry *first, 506 const struct mca_table_entry *last, 507 unsigned long ip) 508 { 509 const struct mca_table_entry *curr; 510 u64 curr_start, curr_end; 511 512 curr = first; 513 while (curr <= last) { 514 curr_start = (u64) &curr->start_addr + curr->start_addr; 515 curr_end = (u64) &curr->end_addr + curr->end_addr; 516 517 if ((ip >= curr_start) && (ip <= curr_end)) { 518 return 1; 519 } 520 curr++; 521 } 522 return 0; 523 } 524 525 /* Given an address, look for it in the mca tables. */ 526 int mca_recover_range(unsigned long addr) 527 { 528 extern struct mca_table_entry __start___mca_table[]; 529 extern struct mca_table_entry __stop___mca_table[]; 530 531 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); 532 } 533 EXPORT_SYMBOL_GPL(mca_recover_range); 534 535 #ifdef CONFIG_ACPI 536 537 int cpe_vector = -1; 538 int ia64_cpe_irq = -1; 539 540 static irqreturn_t 541 ia64_mca_cpe_int_handler (int cpe_irq, void *arg) 542 { 543 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 544 static int index; 545 static DEFINE_SPINLOCK(cpe_history_lock); 546 547 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 548 __func__, cpe_irq, smp_processor_id()); 549 550 /* SAL spec states this should run w/ interrupts enabled */ 551 local_irq_enable(); 552 553 spin_lock(&cpe_history_lock); 554 if (!cpe_poll_enabled && cpe_vector >= 0) { 555 556 int i, count = 1; /* we know 1 happened now */ 557 unsigned long now = jiffies; 558 559 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 560 if (now - cpe_history[i] <= HZ) 561 count++; 562 } 563 564 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 565 if (count >= CPE_HISTORY_LENGTH) { 566 567 cpe_poll_enabled = 1; 568 spin_unlock(&cpe_history_lock); 569 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 570 571 /* 572 * Corrected errors will still be corrected, but 573 * make sure there's a log somewhere that indicates 574 * something is generating more than we can handle. 575 */ 576 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 577 578 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 579 580 /* lock already released, get out now */ 581 goto out; 582 } else { 583 cpe_history[index++] = now; 584 if (index == CPE_HISTORY_LENGTH) 585 index = 0; 586 } 587 } 588 spin_unlock(&cpe_history_lock); 589 out: 590 /* Get the CPE error record and log it */ 591 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 592 593 local_irq_disable(); 594 595 return IRQ_HANDLED; 596 } 597 598 #endif /* CONFIG_ACPI */ 599 600 #ifdef CONFIG_ACPI 601 /* 602 * ia64_mca_register_cpev 603 * 604 * Register the corrected platform error vector with SAL. 605 * 606 * Inputs 607 * cpev Corrected Platform Error Vector number 608 * 609 * Outputs 610 * None 611 */ 612 void 613 ia64_mca_register_cpev (int cpev) 614 { 615 /* Register the CPE interrupt vector with SAL */ 616 struct ia64_sal_retval isrv; 617 618 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 619 if (isrv.status) { 620 printk(KERN_ERR "Failed to register Corrected Platform " 621 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 622 return; 623 } 624 625 IA64_MCA_DEBUG("%s: corrected platform error " 626 "vector %#x registered\n", __func__, cpev); 627 } 628 #endif /* CONFIG_ACPI */ 629 630 /* 631 * ia64_mca_cmc_vector_setup 632 * 633 * Setup the corrected machine check vector register in the processor. 634 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 635 * This function is invoked on a per-processor basis. 636 * 637 * Inputs 638 * None 639 * 640 * Outputs 641 * None 642 */ 643 void 644 ia64_mca_cmc_vector_setup (void) 645 { 646 cmcv_reg_t cmcv; 647 648 cmcv.cmcv_regval = 0; 649 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 650 cmcv.cmcv_vector = IA64_CMC_VECTOR; 651 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 652 653 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", 654 __func__, smp_processor_id(), IA64_CMC_VECTOR); 655 656 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 657 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 658 } 659 660 /* 661 * ia64_mca_cmc_vector_disable 662 * 663 * Mask the corrected machine check vector register in the processor. 664 * This function is invoked on a per-processor basis. 665 * 666 * Inputs 667 * dummy(unused) 668 * 669 * Outputs 670 * None 671 */ 672 static void 673 ia64_mca_cmc_vector_disable (void *dummy) 674 { 675 cmcv_reg_t cmcv; 676 677 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 678 679 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 680 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 681 682 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", 683 __func__, smp_processor_id(), cmcv.cmcv_vector); 684 } 685 686 /* 687 * ia64_mca_cmc_vector_enable 688 * 689 * Unmask the corrected machine check vector register in the processor. 690 * This function is invoked on a per-processor basis. 691 * 692 * Inputs 693 * dummy(unused) 694 * 695 * Outputs 696 * None 697 */ 698 static void 699 ia64_mca_cmc_vector_enable (void *dummy) 700 { 701 cmcv_reg_t cmcv; 702 703 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 704 705 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 706 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 707 708 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", 709 __func__, smp_processor_id(), cmcv.cmcv_vector); 710 } 711 712 /* 713 * ia64_mca_cmc_vector_disable_keventd 714 * 715 * Called via keventd (smp_call_function() is not safe in interrupt context) to 716 * disable the cmc interrupt vector. 717 */ 718 static void 719 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) 720 { 721 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); 722 } 723 724 /* 725 * ia64_mca_cmc_vector_enable_keventd 726 * 727 * Called via keventd (smp_call_function() is not safe in interrupt context) to 728 * enable the cmc interrupt vector. 729 */ 730 static void 731 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) 732 { 733 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); 734 } 735 736 /* 737 * ia64_mca_wakeup 738 * 739 * Send an inter-cpu interrupt to wake-up a particular cpu. 740 * 741 * Inputs : cpuid 742 * Outputs : None 743 */ 744 static void 745 ia64_mca_wakeup(int cpu) 746 { 747 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 748 } 749 750 /* 751 * ia64_mca_wakeup_all 752 * 753 * Wakeup all the slave cpus which have rendez'ed previously. 754 * 755 * Inputs : None 756 * Outputs : None 757 */ 758 static void 759 ia64_mca_wakeup_all(void) 760 { 761 int cpu; 762 763 /* Clear the Rendez checkin flag for all cpus */ 764 for_each_online_cpu(cpu) { 765 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 766 ia64_mca_wakeup(cpu); 767 } 768 769 } 770 771 /* 772 * ia64_mca_rendez_interrupt_handler 773 * 774 * This is handler used to put slave processors into spinloop 775 * while the monarch processor does the mca handling and later 776 * wake each slave up once the monarch is done. The state 777 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed 778 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates 779 * the cpu has come out of OS rendezvous. 780 * 781 * Inputs : None 782 * Outputs : None 783 */ 784 static irqreturn_t 785 ia64_mca_rendez_int_handler(int rendez_irq, void *arg) 786 { 787 unsigned long flags; 788 int cpu = smp_processor_id(); 789 struct ia64_mca_notify_die nd = 790 { .sos = NULL, .monarch_cpu = &monarch_cpu }; 791 792 /* Mask all interrupts */ 793 local_irq_save(flags); 794 795 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); 796 797 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 798 /* Register with the SAL monarch that the slave has 799 * reached SAL 800 */ 801 ia64_sal_mc_rendez(); 802 803 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); 804 805 /* Wait for the monarch cpu to exit. */ 806 while (monarch_cpu != -1) 807 cpu_relax(); /* spin until monarch leaves */ 808 809 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); 810 811 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 812 /* Enable all interrupts */ 813 local_irq_restore(flags); 814 return IRQ_HANDLED; 815 } 816 817 /* 818 * ia64_mca_wakeup_int_handler 819 * 820 * The interrupt handler for processing the inter-cpu interrupt to the 821 * slave cpu which was spinning in the rendez loop. 822 * Since this spinning is done by turning off the interrupts and 823 * polling on the wakeup-interrupt bit in the IRR, there is 824 * nothing useful to be done in the handler. 825 * 826 * Inputs : wakeup_irq (Wakeup-interrupt bit) 827 * arg (Interrupt handler specific argument) 828 * Outputs : None 829 * 830 */ 831 static irqreturn_t 832 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) 833 { 834 return IRQ_HANDLED; 835 } 836 837 /* Function pointer for extra MCA recovery */ 838 int (*ia64_mca_ucmc_extension) 839 (void*,struct ia64_sal_os_state*) 840 = NULL; 841 842 int 843 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 844 { 845 if (ia64_mca_ucmc_extension) 846 return 1; 847 848 ia64_mca_ucmc_extension = fn; 849 return 0; 850 } 851 852 void 853 ia64_unreg_MCA_extension(void) 854 { 855 if (ia64_mca_ucmc_extension) 856 ia64_mca_ucmc_extension = NULL; 857 } 858 859 EXPORT_SYMBOL(ia64_reg_MCA_extension); 860 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 861 862 863 static inline void 864 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) 865 { 866 u64 fslot, tslot, nat; 867 *tr = *fr; 868 fslot = ((unsigned long)fr >> 3) & 63; 869 tslot = ((unsigned long)tr >> 3) & 63; 870 *tnat &= ~(1UL << tslot); 871 nat = (fnat >> fslot) & 1; 872 *tnat |= (nat << tslot); 873 } 874 875 /* Change the comm field on the MCA/INT task to include the pid that 876 * was interrupted, it makes for easier debugging. If that pid was 0 877 * (swapper or nested MCA/INIT) then use the start of the previous comm 878 * field suffixed with its cpu. 879 */ 880 881 static void 882 ia64_mca_modify_comm(const struct task_struct *previous_current) 883 { 884 char *p, comm[sizeof(current->comm)]; 885 if (previous_current->pid) 886 snprintf(comm, sizeof(comm), "%s %d", 887 current->comm, previous_current->pid); 888 else { 889 int l; 890 if ((p = strchr(previous_current->comm, ' '))) 891 l = p - previous_current->comm; 892 else 893 l = strlen(previous_current->comm); 894 snprintf(comm, sizeof(comm), "%s %*s %d", 895 current->comm, l, previous_current->comm, 896 task_thread_info(previous_current)->cpu); 897 } 898 memcpy(current->comm, comm, sizeof(current->comm)); 899 } 900 901 static void 902 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, 903 unsigned long *nat) 904 { 905 const pal_min_state_area_t *ms = sos->pal_min_state; 906 const u64 *bank; 907 908 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 909 * pmsa_{xip,xpsr,xfs} 910 */ 911 if (ia64_psr(regs)->ic) { 912 regs->cr_iip = ms->pmsa_iip; 913 regs->cr_ipsr = ms->pmsa_ipsr; 914 regs->cr_ifs = ms->pmsa_ifs; 915 } else { 916 regs->cr_iip = ms->pmsa_xip; 917 regs->cr_ipsr = ms->pmsa_xpsr; 918 regs->cr_ifs = ms->pmsa_xfs; 919 920 sos->iip = ms->pmsa_iip; 921 sos->ipsr = ms->pmsa_ipsr; 922 sos->ifs = ms->pmsa_ifs; 923 } 924 regs->pr = ms->pmsa_pr; 925 regs->b0 = ms->pmsa_br0; 926 regs->ar_rsc = ms->pmsa_rsc; 927 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); 928 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); 929 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); 930 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); 931 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); 932 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); 933 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); 934 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); 935 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); 936 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); 937 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); 938 if (ia64_psr(regs)->bn) 939 bank = ms->pmsa_bank1_gr; 940 else 941 bank = ms->pmsa_bank0_gr; 942 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); 943 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); 944 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); 945 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); 946 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); 947 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); 948 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); 949 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); 950 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); 951 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); 952 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); 953 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); 954 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); 955 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); 956 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); 957 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); 958 } 959 960 /* On entry to this routine, we are running on the per cpu stack, see 961 * mca_asm.h. The original stack has not been touched by this event. Some of 962 * the original stack's registers will be in the RBS on this stack. This stack 963 * also contains a partial pt_regs and switch_stack, the rest of the data is in 964 * PAL minstate. 965 * 966 * The first thing to do is modify the original stack to look like a blocked 967 * task so we can run backtrace on the original task. Also mark the per cpu 968 * stack as current to ensure that we use the correct task state, it also means 969 * that we can do backtrace on the MCA/INIT handler code itself. 970 */ 971 972 static struct task_struct * 973 ia64_mca_modify_original_stack(struct pt_regs *regs, 974 const struct switch_stack *sw, 975 struct ia64_sal_os_state *sos, 976 const char *type) 977 { 978 char *p; 979 ia64_va va; 980 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 981 const pal_min_state_area_t *ms = sos->pal_min_state; 982 struct task_struct *previous_current; 983 struct pt_regs *old_regs; 984 struct switch_stack *old_sw; 985 unsigned size = sizeof(struct pt_regs) + 986 sizeof(struct switch_stack) + 16; 987 unsigned long *old_bspstore, *old_bsp; 988 unsigned long *new_bspstore, *new_bsp; 989 unsigned long old_unat, old_rnat, new_rnat, nat; 990 u64 slots, loadrs = regs->loadrs; 991 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 992 u64 ar_bspstore = regs->ar_bspstore; 993 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 994 const char *msg; 995 int cpu = smp_processor_id(); 996 997 previous_current = curr_task(cpu); 998 ia64_set_curr_task(cpu, current); 999 if ((p = strchr(current->comm, ' '))) 1000 *p = '\0'; 1001 1002 /* Best effort attempt to cope with MCA/INIT delivered while in 1003 * physical mode. 1004 */ 1005 regs->cr_ipsr = ms->pmsa_ipsr; 1006 if (ia64_psr(regs)->dt == 0) { 1007 va.l = r12; 1008 if (va.f.reg == 0) { 1009 va.f.reg = 7; 1010 r12 = va.l; 1011 } 1012 va.l = r13; 1013 if (va.f.reg == 0) { 1014 va.f.reg = 7; 1015 r13 = va.l; 1016 } 1017 } 1018 if (ia64_psr(regs)->rt == 0) { 1019 va.l = ar_bspstore; 1020 if (va.f.reg == 0) { 1021 va.f.reg = 7; 1022 ar_bspstore = va.l; 1023 } 1024 va.l = ar_bsp; 1025 if (va.f.reg == 0) { 1026 va.f.reg = 7; 1027 ar_bsp = va.l; 1028 } 1029 } 1030 1031 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 1032 * have been copied to the old stack, the old stack may fail the 1033 * validation tests below. So ia64_old_stack() must restore the dirty 1034 * registers from the new stack. The old and new bspstore probably 1035 * have different alignments, so loadrs calculated on the old bsp 1036 * cannot be used to restore from the new bsp. Calculate a suitable 1037 * loadrs for the new stack and save it in the new pt_regs, where 1038 * ia64_old_stack() can get it. 1039 */ 1040 old_bspstore = (unsigned long *)ar_bspstore; 1041 old_bsp = (unsigned long *)ar_bsp; 1042 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 1043 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); 1044 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 1045 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 1046 1047 /* Verify the previous stack state before we change it */ 1048 if (user_mode(regs)) { 1049 msg = "occurred in user space"; 1050 /* previous_current is guaranteed to be valid when the task was 1051 * in user space, so ... 1052 */ 1053 ia64_mca_modify_comm(previous_current); 1054 goto no_mod; 1055 } 1056 1057 if (r13 != sos->prev_IA64_KR_CURRENT) { 1058 msg = "inconsistent previous current and r13"; 1059 goto no_mod; 1060 } 1061 1062 if (!mca_recover_range(ms->pmsa_iip)) { 1063 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 1064 msg = "inconsistent r12 and r13"; 1065 goto no_mod; 1066 } 1067 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 1068 msg = "inconsistent ar.bspstore and r13"; 1069 goto no_mod; 1070 } 1071 va.p = old_bspstore; 1072 if (va.f.reg < 5) { 1073 msg = "old_bspstore is in the wrong region"; 1074 goto no_mod; 1075 } 1076 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 1077 msg = "inconsistent ar.bsp and r13"; 1078 goto no_mod; 1079 } 1080 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 1081 if (ar_bspstore + size > r12) { 1082 msg = "no room for blocked state"; 1083 goto no_mod; 1084 } 1085 } 1086 1087 ia64_mca_modify_comm(previous_current); 1088 1089 /* Make the original task look blocked. First stack a struct pt_regs, 1090 * describing the state at the time of interrupt. mca_asm.S built a 1091 * partial pt_regs, copy it and fill in the blanks using minstate. 1092 */ 1093 p = (char *)r12 - sizeof(*regs); 1094 old_regs = (struct pt_regs *)p; 1095 memcpy(old_regs, regs, sizeof(*regs)); 1096 old_regs->loadrs = loadrs; 1097 old_unat = old_regs->ar_unat; 1098 finish_pt_regs(old_regs, sos, &old_unat); 1099 1100 /* Next stack a struct switch_stack. mca_asm.S built a partial 1101 * switch_stack, copy it and fill in the blanks using pt_regs and 1102 * minstate. 1103 * 1104 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 1105 * ar.pfs is set to 0. 1106 * 1107 * unwind.c::unw_unwind() does special processing for interrupt frames. 1108 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 1109 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 1110 * that this is documented, of course. Set PRED_NON_SYSCALL in the 1111 * switch_stack on the original stack so it will unwind correctly when 1112 * unwind.c reads pt_regs. 1113 * 1114 * thread.ksp is updated to point to the synthesized switch_stack. 1115 */ 1116 p -= sizeof(struct switch_stack); 1117 old_sw = (struct switch_stack *)p; 1118 memcpy(old_sw, sw, sizeof(*sw)); 1119 old_sw->caller_unat = old_unat; 1120 old_sw->ar_fpsr = old_regs->ar_fpsr; 1121 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 1122 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 1123 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 1124 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 1125 old_sw->b0 = (u64)ia64_leave_kernel; 1126 old_sw->b1 = ms->pmsa_br1; 1127 old_sw->ar_pfs = 0; 1128 old_sw->ar_unat = old_unat; 1129 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 1130 previous_current->thread.ksp = (u64)p - 16; 1131 1132 /* Finally copy the original stack's registers back to its RBS. 1133 * Registers from ar.bspstore through ar.bsp at the time of the event 1134 * are in the current RBS, copy them back to the original stack. The 1135 * copy must be done register by register because the original bspstore 1136 * and the current one have different alignments, so the saved RNAT 1137 * data occurs at different places. 1138 * 1139 * mca_asm does cover, so the old_bsp already includes all registers at 1140 * the time of MCA/INIT. It also does flushrs, so all registers before 1141 * this function have been written to backing store on the MCA/INIT 1142 * stack. 1143 */ 1144 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 1145 old_rnat = regs->ar_rnat; 1146 while (slots--) { 1147 if (ia64_rse_is_rnat_slot(new_bspstore)) { 1148 new_rnat = ia64_get_rnat(new_bspstore++); 1149 } 1150 if (ia64_rse_is_rnat_slot(old_bspstore)) { 1151 *old_bspstore++ = old_rnat; 1152 old_rnat = 0; 1153 } 1154 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 1155 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 1156 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 1157 *old_bspstore++ = *new_bspstore++; 1158 } 1159 old_sw->ar_bspstore = (unsigned long)old_bspstore; 1160 old_sw->ar_rnat = old_rnat; 1161 1162 sos->prev_task = previous_current; 1163 return previous_current; 1164 1165 no_mod: 1166 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 1167 smp_processor_id(), type, msg); 1168 old_unat = regs->ar_unat; 1169 finish_pt_regs(regs, sos, &old_unat); 1170 return previous_current; 1171 } 1172 1173 /* The monarch/slave interaction is based on monarch_cpu and requires that all 1174 * slaves have entered rendezvous before the monarch leaves. If any cpu has 1175 * not entered rendezvous yet then wait a bit. The assumption is that any 1176 * slave that has not rendezvoused after a reasonable time is never going to do 1177 * so. In this context, slave includes cpus that respond to the MCA rendezvous 1178 * interrupt, as well as cpus that receive the INIT slave event. 1179 */ 1180 1181 static void 1182 ia64_wait_for_slaves(int monarch, const char *type) 1183 { 1184 int c, i , wait; 1185 1186 /* 1187 * wait 5 seconds total for slaves (arbitrary) 1188 */ 1189 for (i = 0; i < 5000; i++) { 1190 wait = 0; 1191 for_each_online_cpu(c) { 1192 if (c == monarch) 1193 continue; 1194 if (ia64_mc_info.imi_rendez_checkin[c] 1195 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 1196 udelay(1000); /* short wait */ 1197 wait = 1; 1198 break; 1199 } 1200 } 1201 if (!wait) 1202 goto all_in; 1203 } 1204 1205 /* 1206 * Maybe slave(s) dead. Print buffered messages immediately. 1207 */ 1208 ia64_mlogbuf_finish(0); 1209 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); 1210 for_each_online_cpu(c) { 1211 if (c == monarch) 1212 continue; 1213 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 1214 mprintk(" %d", c); 1215 } 1216 mprintk("\n"); 1217 return; 1218 1219 all_in: 1220 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); 1221 return; 1222 } 1223 1224 /* mca_insert_tr 1225 * 1226 * Switch rid when TR reload and needed! 1227 * iord: 1: itr, 2: itr; 1228 * 1229 */ 1230 static void mca_insert_tr(u64 iord) 1231 { 1232 1233 int i; 1234 u64 old_rr; 1235 struct ia64_tr_entry *p; 1236 unsigned long psr; 1237 int cpu = smp_processor_id(); 1238 1239 if (!ia64_idtrs[cpu]) 1240 return; 1241 1242 psr = ia64_clear_ic(); 1243 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { 1244 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; 1245 if (p->pte & 0x1) { 1246 old_rr = ia64_get_rr(p->ifa); 1247 if (old_rr != p->rr) { 1248 ia64_set_rr(p->ifa, p->rr); 1249 ia64_srlz_d(); 1250 } 1251 ia64_ptr(iord, p->ifa, p->itir >> 2); 1252 ia64_srlz_i(); 1253 if (iord & 0x1) { 1254 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); 1255 ia64_srlz_i(); 1256 } 1257 if (iord & 0x2) { 1258 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); 1259 ia64_srlz_i(); 1260 } 1261 if (old_rr != p->rr) { 1262 ia64_set_rr(p->ifa, old_rr); 1263 ia64_srlz_d(); 1264 } 1265 } 1266 } 1267 ia64_set_psr(psr); 1268 } 1269 1270 /* 1271 * ia64_mca_handler 1272 * 1273 * This is uncorrectable machine check handler called from OS_MCA 1274 * dispatch code which is in turn called from SAL_CHECK(). 1275 * This is the place where the core of OS MCA handling is done. 1276 * Right now the logs are extracted and displayed in a well-defined 1277 * format. This handler code is supposed to be run only on the 1278 * monarch processor. Once the monarch is done with MCA handling 1279 * further MCA logging is enabled by clearing logs. 1280 * Monarch also has the duty of sending wakeup-IPIs to pull the 1281 * slave processors out of rendezvous spinloop. 1282 * 1283 * If multiple processors call into OS_MCA, the first will become 1284 * the monarch. Subsequent cpus will be recorded in the mca_cpu 1285 * bitmask. After the first monarch has processed its MCA, it 1286 * will wake up the next cpu in the mca_cpu bitmask and then go 1287 * into the rendezvous loop. When all processors have serviced 1288 * their MCA, the last monarch frees up the rest of the processors. 1289 */ 1290 void 1291 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 1292 struct ia64_sal_os_state *sos) 1293 { 1294 int recover, cpu = smp_processor_id(); 1295 struct task_struct *previous_current; 1296 struct ia64_mca_notify_die nd = 1297 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; 1298 static atomic_t mca_count; 1299 static cpumask_t mca_cpu; 1300 1301 if (atomic_add_return(1, &mca_count) == 1) { 1302 monarch_cpu = cpu; 1303 sos->monarch = 1; 1304 } else { 1305 cpumask_set_cpu(cpu, &mca_cpu); 1306 sos->monarch = 0; 1307 } 1308 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " 1309 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); 1310 1311 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 1312 1313 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); 1314 1315 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; 1316 if (sos->monarch) { 1317 ia64_wait_for_slaves(cpu, "MCA"); 1318 1319 /* Wakeup all the processors which are spinning in the 1320 * rendezvous loop. They will leave SAL, then spin in the OS 1321 * with interrupts disabled until this monarch cpu leaves the 1322 * MCA handler. That gets control back to the OS so we can 1323 * backtrace the other cpus, backtrace when spinning in SAL 1324 * does not work. 1325 */ 1326 ia64_mca_wakeup_all(); 1327 } else { 1328 while (cpumask_test_cpu(cpu, &mca_cpu)) 1329 cpu_relax(); /* spin until monarch wakes us */ 1330 } 1331 1332 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); 1333 1334 /* Get the MCA error record and log it */ 1335 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1336 1337 /* MCA error recovery */ 1338 recover = (ia64_mca_ucmc_extension 1339 && ia64_mca_ucmc_extension( 1340 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1341 sos)); 1342 1343 if (recover) { 1344 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1345 rh->severity = sal_log_severity_corrected; 1346 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1347 sos->os_status = IA64_MCA_CORRECTED; 1348 } else { 1349 /* Dump buffered message to console */ 1350 ia64_mlogbuf_finish(1); 1351 } 1352 1353 if (__this_cpu_read(ia64_mca_tr_reload)) { 1354 mca_insert_tr(0x1); /*Reload dynamic itrs*/ 1355 mca_insert_tr(0x2); /*Reload dynamic itrs*/ 1356 } 1357 1358 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); 1359 1360 if (atomic_dec_return(&mca_count) > 0) { 1361 int i; 1362 1363 /* wake up the next monarch cpu, 1364 * and put this cpu in the rendez loop. 1365 */ 1366 for_each_online_cpu(i) { 1367 if (cpumask_test_cpu(i, &mca_cpu)) { 1368 monarch_cpu = i; 1369 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ 1370 while (monarch_cpu != -1) 1371 cpu_relax(); /* spin until last cpu leaves */ 1372 ia64_set_curr_task(cpu, previous_current); 1373 ia64_mc_info.imi_rendez_checkin[cpu] 1374 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1375 return; 1376 } 1377 } 1378 } 1379 ia64_set_curr_task(cpu, previous_current); 1380 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1381 monarch_cpu = -1; /* This frees the slaves and previous monarchs */ 1382 } 1383 1384 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); 1385 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); 1386 1387 /* 1388 * ia64_mca_cmc_int_handler 1389 * 1390 * This is corrected machine check interrupt handler. 1391 * Right now the logs are extracted and displayed in a well-defined 1392 * format. 1393 * 1394 * Inputs 1395 * interrupt number 1396 * client data arg ptr 1397 * 1398 * Outputs 1399 * None 1400 */ 1401 static irqreturn_t 1402 ia64_mca_cmc_int_handler(int cmc_irq, void *arg) 1403 { 1404 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1405 static int index; 1406 static DEFINE_SPINLOCK(cmc_history_lock); 1407 1408 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1409 __func__, cmc_irq, smp_processor_id()); 1410 1411 /* SAL spec states this should run w/ interrupts enabled */ 1412 local_irq_enable(); 1413 1414 spin_lock(&cmc_history_lock); 1415 if (!cmc_polling_enabled) { 1416 int i, count = 1; /* we know 1 happened now */ 1417 unsigned long now = jiffies; 1418 1419 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1420 if (now - cmc_history[i] <= HZ) 1421 count++; 1422 } 1423 1424 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1425 if (count >= CMC_HISTORY_LENGTH) { 1426 1427 cmc_polling_enabled = 1; 1428 spin_unlock(&cmc_history_lock); 1429 /* If we're being hit with CMC interrupts, we won't 1430 * ever execute the schedule_work() below. Need to 1431 * disable CMC interrupts on this processor now. 1432 */ 1433 ia64_mca_cmc_vector_disable(NULL); 1434 schedule_work(&cmc_disable_work); 1435 1436 /* 1437 * Corrected errors will still be corrected, but 1438 * make sure there's a log somewhere that indicates 1439 * something is generating more than we can handle. 1440 */ 1441 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1442 1443 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1444 1445 /* lock already released, get out now */ 1446 goto out; 1447 } else { 1448 cmc_history[index++] = now; 1449 if (index == CMC_HISTORY_LENGTH) 1450 index = 0; 1451 } 1452 } 1453 spin_unlock(&cmc_history_lock); 1454 out: 1455 /* Get the CMC error record and log it */ 1456 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1457 1458 local_irq_disable(); 1459 1460 return IRQ_HANDLED; 1461 } 1462 1463 /* 1464 * ia64_mca_cmc_int_caller 1465 * 1466 * Triggered by sw interrupt from CMC polling routine. Calls 1467 * real interrupt handler and either triggers a sw interrupt 1468 * on the next cpu or does cleanup at the end. 1469 * 1470 * Inputs 1471 * interrupt number 1472 * client data arg ptr 1473 * Outputs 1474 * handled 1475 */ 1476 static irqreturn_t 1477 ia64_mca_cmc_int_caller(int cmc_irq, void *arg) 1478 { 1479 static int start_count = -1; 1480 unsigned int cpuid; 1481 1482 cpuid = smp_processor_id(); 1483 1484 /* If first cpu, update count */ 1485 if (start_count == -1) 1486 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1487 1488 ia64_mca_cmc_int_handler(cmc_irq, arg); 1489 1490 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1491 1492 if (cpuid < nr_cpu_ids) { 1493 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1494 } else { 1495 /* If no log record, switch out of polling mode */ 1496 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1497 1498 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1499 schedule_work(&cmc_enable_work); 1500 cmc_polling_enabled = 0; 1501 1502 } else { 1503 1504 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1505 } 1506 1507 start_count = -1; 1508 } 1509 1510 return IRQ_HANDLED; 1511 } 1512 1513 /* 1514 * ia64_mca_cmc_poll 1515 * 1516 * Poll for Corrected Machine Checks (CMCs) 1517 * 1518 * Inputs : dummy(unused) 1519 * Outputs : None 1520 * 1521 */ 1522 static void 1523 ia64_mca_cmc_poll (struct timer_list *unused) 1524 { 1525 /* Trigger a CMC interrupt cascade */ 1526 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, 1527 IA64_IPI_DM_INT, 0); 1528 } 1529 1530 /* 1531 * ia64_mca_cpe_int_caller 1532 * 1533 * Triggered by sw interrupt from CPE polling routine. Calls 1534 * real interrupt handler and either triggers a sw interrupt 1535 * on the next cpu or does cleanup at the end. 1536 * 1537 * Inputs 1538 * interrupt number 1539 * client data arg ptr 1540 * Outputs 1541 * handled 1542 */ 1543 #ifdef CONFIG_ACPI 1544 1545 static irqreturn_t 1546 ia64_mca_cpe_int_caller(int cpe_irq, void *arg) 1547 { 1548 static int start_count = -1; 1549 static int poll_time = MIN_CPE_POLL_INTERVAL; 1550 unsigned int cpuid; 1551 1552 cpuid = smp_processor_id(); 1553 1554 /* If first cpu, update count */ 1555 if (start_count == -1) 1556 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1557 1558 ia64_mca_cpe_int_handler(cpe_irq, arg); 1559 1560 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1561 1562 if (cpuid < NR_CPUS) { 1563 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1564 } else { 1565 /* 1566 * If a log was recorded, increase our polling frequency, 1567 * otherwise, backoff or return to interrupt mode. 1568 */ 1569 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1570 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1571 } else if (cpe_vector < 0) { 1572 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1573 } else { 1574 poll_time = MIN_CPE_POLL_INTERVAL; 1575 1576 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1577 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1578 cpe_poll_enabled = 0; 1579 } 1580 1581 if (cpe_poll_enabled) 1582 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1583 start_count = -1; 1584 } 1585 1586 return IRQ_HANDLED; 1587 } 1588 1589 /* 1590 * ia64_mca_cpe_poll 1591 * 1592 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1593 * on first cpu, from there it will trickle through all the cpus. 1594 * 1595 * Inputs : dummy(unused) 1596 * Outputs : None 1597 * 1598 */ 1599 static void 1600 ia64_mca_cpe_poll (struct timer_list *unused) 1601 { 1602 /* Trigger a CPE interrupt cascade */ 1603 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, 1604 IA64_IPI_DM_INT, 0); 1605 } 1606 1607 #endif /* CONFIG_ACPI */ 1608 1609 static int 1610 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1611 { 1612 int c; 1613 struct task_struct *g, *t; 1614 if (val != DIE_INIT_MONARCH_PROCESS) 1615 return NOTIFY_DONE; 1616 #ifdef CONFIG_KEXEC 1617 if (atomic_read(&kdump_in_progress)) 1618 return NOTIFY_DONE; 1619 #endif 1620 1621 /* 1622 * FIXME: mlogbuf will brim over with INIT stack dumps. 1623 * To enable show_stack from INIT, we use oops_in_progress which should 1624 * be used in real oops. This would cause something wrong after INIT. 1625 */ 1626 BREAK_LOGLEVEL(console_loglevel); 1627 ia64_mlogbuf_dump_from_init(); 1628 1629 printk(KERN_ERR "Processes interrupted by INIT -"); 1630 for_each_online_cpu(c) { 1631 struct ia64_sal_os_state *s; 1632 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1633 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1634 g = s->prev_task; 1635 if (g) { 1636 if (g->pid) 1637 printk(" %d", g->pid); 1638 else 1639 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1640 } 1641 } 1642 printk("\n\n"); 1643 if (read_trylock(&tasklist_lock)) { 1644 do_each_thread (g, t) { 1645 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1646 show_stack(t, NULL); 1647 } while_each_thread (g, t); 1648 read_unlock(&tasklist_lock); 1649 } 1650 /* FIXME: This will not restore zapped printk locks. */ 1651 RESTORE_LOGLEVEL(console_loglevel); 1652 return NOTIFY_DONE; 1653 } 1654 1655 /* 1656 * C portion of the OS INIT handler 1657 * 1658 * Called from ia64_os_init_dispatch 1659 * 1660 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1661 * this event. This code is used for both monarch and slave INIT events, see 1662 * sos->monarch. 1663 * 1664 * All INIT events switch to the INIT stack and change the previous process to 1665 * blocked status. If one of the INIT events is the monarch then we are 1666 * probably processing the nmi button/command. Use the monarch cpu to dump all 1667 * the processes. The slave INIT events all spin until the monarch cpu 1668 * returns. We can also get INIT slave events for MCA, in which case the MCA 1669 * process is the monarch. 1670 */ 1671 1672 void 1673 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1674 struct ia64_sal_os_state *sos) 1675 { 1676 static atomic_t slaves; 1677 static atomic_t monarchs; 1678 struct task_struct *previous_current; 1679 int cpu = smp_processor_id(); 1680 struct ia64_mca_notify_die nd = 1681 { .sos = sos, .monarch_cpu = &monarch_cpu }; 1682 1683 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); 1684 1685 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1686 sos->proc_state_param, cpu, sos->monarch); 1687 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1688 1689 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1690 sos->os_status = IA64_INIT_RESUME; 1691 1692 /* FIXME: Workaround for broken proms that drive all INIT events as 1693 * slaves. The last slave that enters is promoted to be a monarch. 1694 * Remove this code in September 2006, that gives platforms a year to 1695 * fix their proms and get their customers updated. 1696 */ 1697 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1698 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1699 __func__, cpu); 1700 atomic_dec(&slaves); 1701 sos->monarch = 1; 1702 } 1703 1704 /* FIXME: Workaround for broken proms that drive all INIT events as 1705 * monarchs. Second and subsequent monarchs are demoted to slaves. 1706 * Remove this code in September 2006, that gives platforms a year to 1707 * fix their proms and get their customers updated. 1708 */ 1709 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1710 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1711 __func__, cpu); 1712 atomic_dec(&monarchs); 1713 sos->monarch = 0; 1714 } 1715 1716 if (!sos->monarch) { 1717 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1718 1719 #ifdef CONFIG_KEXEC 1720 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) 1721 udelay(1000); 1722 #else 1723 while (monarch_cpu == -1) 1724 cpu_relax(); /* spin until monarch enters */ 1725 #endif 1726 1727 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); 1728 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); 1729 1730 #ifdef CONFIG_KEXEC 1731 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) 1732 udelay(1000); 1733 #else 1734 while (monarch_cpu != -1) 1735 cpu_relax(); /* spin until monarch leaves */ 1736 #endif 1737 1738 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); 1739 1740 mprintk("Slave on cpu %d returning to normal service.\n", cpu); 1741 ia64_set_curr_task(cpu, previous_current); 1742 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1743 atomic_dec(&slaves); 1744 return; 1745 } 1746 1747 monarch_cpu = cpu; 1748 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); 1749 1750 /* 1751 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1752 * generated via the BMC's command-line interface, but since the console is on the 1753 * same serial line, the user will need some time to switch out of the BMC before 1754 * the dump begins. 1755 */ 1756 mprintk("Delaying for 5 seconds...\n"); 1757 udelay(5*1000000); 1758 ia64_wait_for_slaves(cpu, "INIT"); 1759 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1760 * to default_monarch_init_process() above and just print all the 1761 * tasks. 1762 */ 1763 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); 1764 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); 1765 1766 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1767 atomic_dec(&monarchs); 1768 ia64_set_curr_task(cpu, previous_current); 1769 monarch_cpu = -1; 1770 return; 1771 } 1772 1773 static int __init 1774 ia64_mca_disable_cpe_polling(char *str) 1775 { 1776 cpe_poll_enabled = 0; 1777 return 1; 1778 } 1779 1780 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1781 1782 static struct irqaction cmci_irqaction = { 1783 .handler = ia64_mca_cmc_int_handler, 1784 .name = "cmc_hndlr" 1785 }; 1786 1787 static struct irqaction cmcp_irqaction = { 1788 .handler = ia64_mca_cmc_int_caller, 1789 .name = "cmc_poll" 1790 }; 1791 1792 static struct irqaction mca_rdzv_irqaction = { 1793 .handler = ia64_mca_rendez_int_handler, 1794 .name = "mca_rdzv" 1795 }; 1796 1797 static struct irqaction mca_wkup_irqaction = { 1798 .handler = ia64_mca_wakeup_int_handler, 1799 .name = "mca_wkup" 1800 }; 1801 1802 #ifdef CONFIG_ACPI 1803 static struct irqaction mca_cpe_irqaction = { 1804 .handler = ia64_mca_cpe_int_handler, 1805 .name = "cpe_hndlr" 1806 }; 1807 1808 static struct irqaction mca_cpep_irqaction = { 1809 .handler = ia64_mca_cpe_int_caller, 1810 .name = "cpe_poll" 1811 }; 1812 #endif /* CONFIG_ACPI */ 1813 1814 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1815 * these stacks can never sleep, they cannot return from the kernel to user 1816 * space, they do not appear in a normal ps listing. So there is no need to 1817 * format most of the fields. 1818 */ 1819 1820 static void 1821 format_mca_init_stack(void *mca_data, unsigned long offset, 1822 const char *type, int cpu) 1823 { 1824 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1825 struct thread_info *ti; 1826 memset(p, 0, KERNEL_STACK_SIZE); 1827 ti = task_thread_info(p); 1828 ti->flags = _TIF_MCA_INIT; 1829 ti->preempt_count = 1; 1830 ti->task = p; 1831 ti->cpu = cpu; 1832 p->stack = ti; 1833 p->state = TASK_UNINTERRUPTIBLE; 1834 cpumask_set_cpu(cpu, &p->cpus_allowed); 1835 INIT_LIST_HEAD(&p->tasks); 1836 p->parent = p->real_parent = p->group_leader = p; 1837 INIT_LIST_HEAD(&p->children); 1838 INIT_LIST_HEAD(&p->sibling); 1839 strncpy(p->comm, type, sizeof(p->comm)-1); 1840 } 1841 1842 /* Caller prevents this from being called after init */ 1843 static void * __ref mca_bootmem(void) 1844 { 1845 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE); 1846 } 1847 1848 /* Do per-CPU MCA-related initialization. */ 1849 void 1850 ia64_mca_cpu_init(void *cpu_data) 1851 { 1852 void *pal_vaddr; 1853 void *data; 1854 long sz = sizeof(struct ia64_mca_cpu); 1855 int cpu = smp_processor_id(); 1856 static int first_time = 1; 1857 1858 /* 1859 * Structure will already be allocated if cpu has been online, 1860 * then offlined. 1861 */ 1862 if (__per_cpu_mca[cpu]) { 1863 data = __va(__per_cpu_mca[cpu]); 1864 } else { 1865 if (first_time) { 1866 data = mca_bootmem(); 1867 first_time = 0; 1868 } else 1869 data = (void *)__get_free_pages(GFP_KERNEL, 1870 get_order(sz)); 1871 if (!data) 1872 panic("Could not allocate MCA memory for cpu %d\n", 1873 cpu); 1874 } 1875 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), 1876 "MCA", cpu); 1877 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), 1878 "INIT", cpu); 1879 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); 1880 1881 /* 1882 * Stash away a copy of the PTE needed to map the per-CPU page. 1883 * We may need it during MCA recovery. 1884 */ 1885 __this_cpu_write(ia64_mca_per_cpu_pte, 1886 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); 1887 1888 /* 1889 * Also, stash away a copy of the PAL address and the PTE 1890 * needed to map it. 1891 */ 1892 pal_vaddr = efi_get_pal_addr(); 1893 if (!pal_vaddr) 1894 return; 1895 __this_cpu_write(ia64_mca_pal_base, 1896 GRANULEROUNDDOWN((unsigned long) pal_vaddr)); 1897 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), 1898 PAGE_KERNEL))); 1899 } 1900 1901 static int ia64_mca_cpu_online(unsigned int cpu) 1902 { 1903 unsigned long flags; 1904 1905 local_irq_save(flags); 1906 if (!cmc_polling_enabled) 1907 ia64_mca_cmc_vector_enable(NULL); 1908 local_irq_restore(flags); 1909 return 0; 1910 } 1911 1912 /* 1913 * ia64_mca_init 1914 * 1915 * Do all the system level mca specific initialization. 1916 * 1917 * 1. Register spinloop and wakeup request interrupt vectors 1918 * 1919 * 2. Register OS_MCA handler entry point 1920 * 1921 * 3. Register OS_INIT handler entry point 1922 * 1923 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1924 * 1925 * Note that this initialization is done very early before some kernel 1926 * services are available. 1927 * 1928 * Inputs : None 1929 * 1930 * Outputs : None 1931 */ 1932 void __init 1933 ia64_mca_init(void) 1934 { 1935 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1936 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1937 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1938 int i; 1939 long rc; 1940 struct ia64_sal_retval isrv; 1941 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1942 static struct notifier_block default_init_monarch_nb = { 1943 .notifier_call = default_monarch_init_process, 1944 .priority = 0/* we need to notified last */ 1945 }; 1946 1947 IA64_MCA_DEBUG("%s: begin\n", __func__); 1948 1949 /* Clear the Rendez checkin flag for all cpus */ 1950 for(i = 0 ; i < NR_CPUS; i++) 1951 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1952 1953 /* 1954 * Register the rendezvous spinloop and wakeup mechanism with SAL 1955 */ 1956 1957 /* Register the rendezvous interrupt vector with SAL */ 1958 while (1) { 1959 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1960 SAL_MC_PARAM_MECHANISM_INT, 1961 IA64_MCA_RENDEZ_VECTOR, 1962 timeout, 1963 SAL_MC_PARAM_RZ_ALWAYS); 1964 rc = isrv.status; 1965 if (rc == 0) 1966 break; 1967 if (rc == -2) { 1968 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1969 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1970 timeout = isrv.v0; 1971 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); 1972 continue; 1973 } 1974 printk(KERN_ERR "Failed to register rendezvous interrupt " 1975 "with SAL (status %ld)\n", rc); 1976 return; 1977 } 1978 1979 /* Register the wakeup interrupt vector with SAL */ 1980 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1981 SAL_MC_PARAM_MECHANISM_INT, 1982 IA64_MCA_WAKEUP_VECTOR, 1983 0, 0); 1984 rc = isrv.status; 1985 if (rc) { 1986 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1987 "(status %ld)\n", rc); 1988 return; 1989 } 1990 1991 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); 1992 1993 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 1994 /* 1995 * XXX - disable SAL checksum by setting size to 0; should be 1996 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 1997 */ 1998 ia64_mc_info.imi_mca_handler_size = 0; 1999 2000 /* Register the os mca handler with SAL */ 2001 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 2002 ia64_mc_info.imi_mca_handler, 2003 ia64_tpa(mca_hldlr_ptr->gp), 2004 ia64_mc_info.imi_mca_handler_size, 2005 0, 0, 0))) 2006 { 2007 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 2008 "(status %ld)\n", rc); 2009 return; 2010 } 2011 2012 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, 2013 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 2014 2015 /* 2016 * XXX - disable SAL checksum by setting size to 0, should be 2017 * size of the actual init handler in mca_asm.S. 2018 */ 2019 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 2020 ia64_mc_info.imi_monarch_init_handler_size = 0; 2021 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 2022 ia64_mc_info.imi_slave_init_handler_size = 0; 2023 2024 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, 2025 ia64_mc_info.imi_monarch_init_handler); 2026 2027 /* Register the os init handler with SAL */ 2028 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 2029 ia64_mc_info.imi_monarch_init_handler, 2030 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2031 ia64_mc_info.imi_monarch_init_handler_size, 2032 ia64_mc_info.imi_slave_init_handler, 2033 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2034 ia64_mc_info.imi_slave_init_handler_size))) 2035 { 2036 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 2037 "(status %ld)\n", rc); 2038 return; 2039 } 2040 if (register_die_notifier(&default_init_monarch_nb)) { 2041 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 2042 return; 2043 } 2044 2045 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); 2046 2047 /* Initialize the areas set aside by the OS to buffer the 2048 * platform/processor error states for MCA/INIT/CMC 2049 * handling. 2050 */ 2051 ia64_log_init(SAL_INFO_TYPE_MCA); 2052 ia64_log_init(SAL_INFO_TYPE_INIT); 2053 ia64_log_init(SAL_INFO_TYPE_CMC); 2054 ia64_log_init(SAL_INFO_TYPE_CPE); 2055 2056 mca_init = 1; 2057 printk(KERN_INFO "MCA related initialization done\n"); 2058 } 2059 2060 2061 /* 2062 * These pieces cannot be done in ia64_mca_init() because it is called before 2063 * early_irq_init() which would wipe out our percpu irq registrations. But we 2064 * cannot leave them until ia64_mca_late_init() because by then all the other 2065 * processors have been brought online and have set their own CMC vectors to 2066 * point at a non-existant action. Called from arch_early_irq_init(). 2067 */ 2068 void __init ia64_mca_irq_init(void) 2069 { 2070 /* 2071 * Configure the CMCI/P vector and handler. Interrupts for CMC are 2072 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 2073 */ 2074 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); 2075 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); 2076 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 2077 2078 /* Setup the MCA rendezvous interrupt vector */ 2079 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); 2080 2081 /* Setup the MCA wakeup interrupt vector */ 2082 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); 2083 2084 #ifdef CONFIG_ACPI 2085 /* Setup the CPEI/P handler */ 2086 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); 2087 #endif 2088 } 2089 2090 /* 2091 * ia64_mca_late_init 2092 * 2093 * Opportunity to setup things that require initialization later 2094 * than ia64_mca_init. Setup a timer to poll for CPEs if the 2095 * platform doesn't support an interrupt driven mechanism. 2096 * 2097 * Inputs : None 2098 * Outputs : Status 2099 */ 2100 static int __init 2101 ia64_mca_late_init(void) 2102 { 2103 if (!mca_init) 2104 return 0; 2105 2106 /* Setup the CMCI/P vector and handler */ 2107 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0); 2108 2109 /* Unmask/enable the vector */ 2110 cmc_polling_enabled = 0; 2111 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online", 2112 ia64_mca_cpu_online, NULL); 2113 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); 2114 2115 #ifdef CONFIG_ACPI 2116 /* Setup the CPEI/P vector and handler */ 2117 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 2118 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0); 2119 2120 { 2121 unsigned int irq; 2122 2123 if (cpe_vector >= 0) { 2124 /* If platform supports CPEI, enable the irq. */ 2125 irq = local_vector_to_irq(cpe_vector); 2126 if (irq > 0) { 2127 cpe_poll_enabled = 0; 2128 irq_set_status_flags(irq, IRQ_PER_CPU); 2129 setup_irq(irq, &mca_cpe_irqaction); 2130 ia64_cpe_irq = irq; 2131 ia64_mca_register_cpev(cpe_vector); 2132 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", 2133 __func__); 2134 return 0; 2135 } 2136 printk(KERN_ERR "%s: Failed to find irq for CPE " 2137 "interrupt handler, vector %d\n", 2138 __func__, cpe_vector); 2139 } 2140 /* If platform doesn't support CPEI, get the timer going. */ 2141 if (cpe_poll_enabled) { 2142 ia64_mca_cpe_poll(0UL); 2143 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); 2144 } 2145 } 2146 #endif 2147 2148 return 0; 2149 } 2150 2151 device_initcall(ia64_mca_late_init); 2152