xref: /openbmc/linux/arch/ia64/kernel/mca.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * File:	mca.c
4  * Purpose:	Generic MCA handling layer
5  *
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20  *
21  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23  *
24  * Copyright (C) 2006 FUJITSU LIMITED
25  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26  *
27  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28  *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29  *	      added min save state dump, added INIT handler.
30  *
31  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32  *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
33  *	      errors, completed code for logging of corrected & uncorrected
34  *	      machine check errors, and updated for conformance with Nov. 2000
35  *	      revision of the SAL 3.0 spec.
36  *
37  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38  *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39  *	      set SAL default return values, changed error record structure to
40  *	      linked list, added init call to sal_get_state_info_size().
41  *
42  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43  *	      GUID cleanups.
44  *
45  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46  *	      Added INIT backtrace support.
47  *
48  * 2003-12-08 Keith Owens <kaos@sgi.com>
49  *	      smp_call_function() must not be called from interrupt context
50  *	      (can deadlock on tasklist_lock).
51  *	      Use keventd to call smp_call_function().
52  *
53  * 2004-02-01 Keith Owens <kaos@sgi.com>
54  *	      Avoid deadlock when using printk() for MCA and INIT records.
55  *	      Delete all record printing code, moved to salinfo_decode in user
56  *	      space.  Mark variables and functions static where possible.
57  *	      Delete dead variables and functions.  Reorder to remove the need
58  *	      for forward declarations and to consolidate related code.
59  *
60  * 2005-08-12 Keith Owens <kaos@sgi.com>
61  *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
62  *	      state.
63  *
64  * 2005-10-07 Keith Owens <kaos@sgi.com>
65  *	      Add notify_die() hooks.
66  *
67  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68  *	      Add printing support for MCA/INIT.
69  *
70  * 2007-04-27 Russ Anderson <rja@sgi.com>
71  *	      Support multiple cpus going through OS_MCA in the same event.
72  */
73 #include <linux/jiffies.h>
74 #include <linux/types.h>
75 #include <linux/init.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/debug.h>
78 #include <linux/sched/task.h>
79 #include <linux/interrupt.h>
80 #include <linux/irq.h>
81 #include <linux/memblock.h>
82 #include <linux/acpi.h>
83 #include <linux/timer.h>
84 #include <linux/module.h>
85 #include <linux/kernel.h>
86 #include <linux/smp.h>
87 #include <linux/workqueue.h>
88 #include <linux/cpumask.h>
89 #include <linux/kdebug.h>
90 #include <linux/cpu.h>
91 #include <linux/gfp.h>
92 
93 #include <asm/delay.h>
94 #include <asm/machvec.h>
95 #include <asm/meminit.h>
96 #include <asm/page.h>
97 #include <asm/ptrace.h>
98 #include <asm/sal.h>
99 #include <asm/mca.h>
100 #include <asm/kexec.h>
101 
102 #include <asm/irq.h>
103 #include <asm/hw_irq.h>
104 #include <asm/tlb.h>
105 
106 #include "mca_drv.h"
107 #include "entry.h"
108 
109 #if defined(IA64_MCA_DEBUG_INFO)
110 # define IA64_MCA_DEBUG(fmt...)	printk(fmt)
111 #else
112 # define IA64_MCA_DEBUG(fmt...)
113 #endif
114 
115 #define NOTIFY_INIT(event, regs, arg, spin)				\
116 do {									\
117 	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
118 			== NOTIFY_STOP) && ((spin) == 1))		\
119 		ia64_mca_spin(__func__);				\
120 } while (0)
121 
122 #define NOTIFY_MCA(event, regs, arg, spin)				\
123 do {									\
124 	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
125 			== NOTIFY_STOP) && ((spin) == 1))		\
126 		ia64_mca_spin(__func__);				\
127 } while (0)
128 
129 /* Used by mca_asm.S */
130 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
131 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
132 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
133 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
134 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
135 
136 unsigned long __per_cpu_mca[NR_CPUS];
137 
138 /* In mca_asm.S */
139 extern void			ia64_os_init_dispatch_monarch (void);
140 extern void			ia64_os_init_dispatch_slave (void);
141 
142 static int monarch_cpu = -1;
143 
144 static ia64_mc_info_t		ia64_mc_info;
145 
146 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
147 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
148 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
149 #define CPE_HISTORY_LENGTH    5
150 #define CMC_HISTORY_LENGTH    5
151 
152 #ifdef CONFIG_ACPI
153 static struct timer_list cpe_poll_timer;
154 #endif
155 static struct timer_list cmc_poll_timer;
156 /*
157  * This variable tells whether we are currently in polling mode.
158  * Start with this in the wrong state so we won't play w/ timers
159  * before the system is ready.
160  */
161 static int cmc_polling_enabled = 1;
162 
163 /*
164  * Clearing this variable prevents CPE polling from getting activated
165  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
166  * but encounters problems retrieving CPE logs.  This should only be
167  * necessary for debugging.
168  */
169 static int cpe_poll_enabled = 1;
170 
171 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
172 
173 static int mca_init __initdata;
174 
175 /*
176  * limited & delayed printing support for MCA/INIT handler
177  */
178 
179 #define mprintk(fmt...) ia64_mca_printk(fmt)
180 
181 #define MLOGBUF_SIZE (512+256*NR_CPUS)
182 #define MLOGBUF_MSGMAX 256
183 static char mlogbuf[MLOGBUF_SIZE];
184 static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
185 static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
186 static unsigned long mlogbuf_start;
187 static unsigned long mlogbuf_end;
188 static unsigned int mlogbuf_finished = 0;
189 static unsigned long mlogbuf_timestamp = 0;
190 
191 static int loglevel_save = -1;
192 #define BREAK_LOGLEVEL(__console_loglevel)		\
193 	oops_in_progress = 1;				\
194 	if (loglevel_save < 0)				\
195 		loglevel_save = __console_loglevel;	\
196 	__console_loglevel = 15;
197 
198 #define RESTORE_LOGLEVEL(__console_loglevel)		\
199 	if (loglevel_save >= 0) {			\
200 		__console_loglevel = loglevel_save;	\
201 		loglevel_save = -1;			\
202 	}						\
203 	mlogbuf_finished = 0;				\
204 	oops_in_progress = 0;
205 
206 /*
207  * Push messages into buffer, print them later if not urgent.
208  */
209 void ia64_mca_printk(const char *fmt, ...)
210 {
211 	va_list args;
212 	int printed_len;
213 	char temp_buf[MLOGBUF_MSGMAX];
214 	char *p;
215 
216 	va_start(args, fmt);
217 	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
218 	va_end(args);
219 
220 	/* Copy the output into mlogbuf */
221 	if (oops_in_progress) {
222 		/* mlogbuf was abandoned, use printk directly instead. */
223 		printk("%s", temp_buf);
224 	} else {
225 		spin_lock(&mlogbuf_wlock);
226 		for (p = temp_buf; *p; p++) {
227 			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
228 			if (next != mlogbuf_start) {
229 				mlogbuf[mlogbuf_end] = *p;
230 				mlogbuf_end = next;
231 			} else {
232 				/* buffer full */
233 				break;
234 			}
235 		}
236 		mlogbuf[mlogbuf_end] = '\0';
237 		spin_unlock(&mlogbuf_wlock);
238 	}
239 }
240 EXPORT_SYMBOL(ia64_mca_printk);
241 
242 /*
243  * Print buffered messages.
244  *  NOTE: call this after returning normal context. (ex. from salinfod)
245  */
246 void ia64_mlogbuf_dump(void)
247 {
248 	char temp_buf[MLOGBUF_MSGMAX];
249 	char *p;
250 	unsigned long index;
251 	unsigned long flags;
252 	unsigned int printed_len;
253 
254 	/* Get output from mlogbuf */
255 	while (mlogbuf_start != mlogbuf_end) {
256 		temp_buf[0] = '\0';
257 		p = temp_buf;
258 		printed_len = 0;
259 
260 		spin_lock_irqsave(&mlogbuf_rlock, flags);
261 
262 		index = mlogbuf_start;
263 		while (index != mlogbuf_end) {
264 			*p = mlogbuf[index];
265 			index = (index + 1) % MLOGBUF_SIZE;
266 			if (!*p)
267 				break;
268 			p++;
269 			if (++printed_len >= MLOGBUF_MSGMAX - 1)
270 				break;
271 		}
272 		*p = '\0';
273 		if (temp_buf[0])
274 			printk("%s", temp_buf);
275 		mlogbuf_start = index;
276 
277 		mlogbuf_timestamp = 0;
278 		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
279 	}
280 }
281 EXPORT_SYMBOL(ia64_mlogbuf_dump);
282 
283 /*
284  * Call this if system is going to down or if immediate flushing messages to
285  * console is required. (ex. recovery was failed, crash dump is going to be
286  * invoked, long-wait rendezvous etc.)
287  *  NOTE: this should be called from monarch.
288  */
289 static void ia64_mlogbuf_finish(int wait)
290 {
291 	BREAK_LOGLEVEL(console_loglevel);
292 
293 	spin_lock_init(&mlogbuf_rlock);
294 	ia64_mlogbuf_dump();
295 	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
296 		"MCA/INIT might be dodgy or fail.\n");
297 
298 	if (!wait)
299 		return;
300 
301 	/* wait for console */
302 	printk("Delaying for 5 seconds...\n");
303 	udelay(5*1000000);
304 
305 	mlogbuf_finished = 1;
306 }
307 
308 /*
309  * Print buffered messages from INIT context.
310  */
311 static void ia64_mlogbuf_dump_from_init(void)
312 {
313 	if (mlogbuf_finished)
314 		return;
315 
316 	if (mlogbuf_timestamp &&
317 			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
318 		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
319 			" and the system seems to be messed up.\n");
320 		ia64_mlogbuf_finish(0);
321 		return;
322 	}
323 
324 	if (!spin_trylock(&mlogbuf_rlock)) {
325 		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
326 			"Generated messages other than stack dump will be "
327 			"buffered to mlogbuf and will be printed later.\n");
328 		printk(KERN_ERR "INIT: If messages would not printed after "
329 			"this INIT, wait 30sec and assert INIT again.\n");
330 		if (!mlogbuf_timestamp)
331 			mlogbuf_timestamp = jiffies;
332 		return;
333 	}
334 	spin_unlock(&mlogbuf_rlock);
335 	ia64_mlogbuf_dump();
336 }
337 
338 static inline void
339 ia64_mca_spin(const char *func)
340 {
341 	if (monarch_cpu == smp_processor_id())
342 		ia64_mlogbuf_finish(0);
343 	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
344 	while (1)
345 		cpu_relax();
346 }
347 /*
348  * IA64_MCA log support
349  */
350 #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
351 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
352 
353 typedef struct ia64_state_log_s
354 {
355 	spinlock_t	isl_lock;
356 	int		isl_index;
357 	unsigned long	isl_count;
358 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
359 } ia64_state_log_t;
360 
361 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
362 
363 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
364 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
365 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
366 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
367 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
368 #define IA64_LOG_INDEX_INC(it) \
369     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
370     ia64_state_log[it].isl_count++;}
371 #define IA64_LOG_INDEX_DEC(it) \
372     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
373 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
374 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
375 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
376 
377 static inline void ia64_log_allocate(int it, u64 size)
378 {
379 	ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
380 		(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
381 	if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
382 		panic("%s: Failed to allocate %llu bytes\n", __func__, size);
383 
384 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
385 		(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
386 	if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
387 		panic("%s: Failed to allocate %llu bytes\n", __func__, size);
388 }
389 
390 /*
391  * ia64_log_init
392  *	Reset the OS ia64 log buffer
393  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
394  * Outputs	:	None
395  */
396 static void __init
397 ia64_log_init(int sal_info_type)
398 {
399 	u64	max_size = 0;
400 
401 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
402 	IA64_LOG_LOCK_INIT(sal_info_type);
403 
404 	// SAL will tell us the maximum size of any error record of this type
405 	max_size = ia64_sal_get_state_info_size(sal_info_type);
406 	if (!max_size)
407 		/* alloc_bootmem() doesn't like zero-sized allocations! */
408 		return;
409 
410 	// set up OS data structures to hold error info
411 	ia64_log_allocate(sal_info_type, max_size);
412 }
413 
414 /*
415  * ia64_log_get
416  *
417  *	Get the current MCA log from SAL and copy it into the OS log buffer.
418  *
419  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
420  *              irq_safe    whether you can use printk at this point
421  *  Outputs :   size        (total record length)
422  *              *buffer     (ptr to error record)
423  *
424  */
425 static u64
426 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
427 {
428 	sal_log_record_header_t     *log_buffer;
429 	u64                         total_len = 0;
430 	unsigned long               s;
431 
432 	IA64_LOG_LOCK(sal_info_type);
433 
434 	/* Get the process state information */
435 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
436 
437 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
438 
439 	if (total_len) {
440 		IA64_LOG_INDEX_INC(sal_info_type);
441 		IA64_LOG_UNLOCK(sal_info_type);
442 		if (irq_safe) {
443 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
444 				       __func__, sal_info_type, total_len);
445 		}
446 		*buffer = (u8 *) log_buffer;
447 		return total_len;
448 	} else {
449 		IA64_LOG_UNLOCK(sal_info_type);
450 		return 0;
451 	}
452 }
453 
454 /*
455  *  ia64_mca_log_sal_error_record
456  *
457  *  This function retrieves a specified error record type from SAL
458  *  and wakes up any processes waiting for error records.
459  *
460  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
461  *              FIXME: remove MCA and irq_safe.
462  */
463 static void
464 ia64_mca_log_sal_error_record(int sal_info_type)
465 {
466 	u8 *buffer;
467 	sal_log_record_header_t *rh;
468 	u64 size;
469 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
470 #ifdef IA64_MCA_DEBUG_INFO
471 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
472 #endif
473 
474 	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
475 	if (!size)
476 		return;
477 
478 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
479 
480 	if (irq_safe)
481 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
482 			smp_processor_id(),
483 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
484 
485 	/* Clear logs from corrected errors in case there's no user-level logger */
486 	rh = (sal_log_record_header_t *)buffer;
487 	if (rh->severity == sal_log_severity_corrected)
488 		ia64_sal_clear_state_info(sal_info_type);
489 }
490 
491 /*
492  * search_mca_table
493  *  See if the MCA surfaced in an instruction range
494  *  that has been tagged as recoverable.
495  *
496  *  Inputs
497  *	first	First address range to check
498  *	last	Last address range to check
499  *	ip	Instruction pointer, address we are looking for
500  *
501  * Return value:
502  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
503  */
504 int
505 search_mca_table (const struct mca_table_entry *first,
506                 const struct mca_table_entry *last,
507                 unsigned long ip)
508 {
509         const struct mca_table_entry *curr;
510         u64 curr_start, curr_end;
511 
512         curr = first;
513         while (curr <= last) {
514                 curr_start = (u64) &curr->start_addr + curr->start_addr;
515                 curr_end = (u64) &curr->end_addr + curr->end_addr;
516 
517                 if ((ip >= curr_start) && (ip <= curr_end)) {
518                         return 1;
519                 }
520                 curr++;
521         }
522         return 0;
523 }
524 
525 /* Given an address, look for it in the mca tables. */
526 int mca_recover_range(unsigned long addr)
527 {
528 	extern struct mca_table_entry __start___mca_table[];
529 	extern struct mca_table_entry __stop___mca_table[];
530 
531 	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
532 }
533 EXPORT_SYMBOL_GPL(mca_recover_range);
534 
535 #ifdef CONFIG_ACPI
536 
537 int cpe_vector = -1;
538 int ia64_cpe_irq = -1;
539 
540 static irqreturn_t
541 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
542 {
543 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
544 	static int		index;
545 	static DEFINE_SPINLOCK(cpe_history_lock);
546 
547 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
548 		       __func__, cpe_irq, smp_processor_id());
549 
550 	/* SAL spec states this should run w/ interrupts enabled */
551 	local_irq_enable();
552 
553 	spin_lock(&cpe_history_lock);
554 	if (!cpe_poll_enabled && cpe_vector >= 0) {
555 
556 		int i, count = 1; /* we know 1 happened now */
557 		unsigned long now = jiffies;
558 
559 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
560 			if (now - cpe_history[i] <= HZ)
561 				count++;
562 		}
563 
564 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
565 		if (count >= CPE_HISTORY_LENGTH) {
566 
567 			cpe_poll_enabled = 1;
568 			spin_unlock(&cpe_history_lock);
569 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
570 
571 			/*
572 			 * Corrected errors will still be corrected, but
573 			 * make sure there's a log somewhere that indicates
574 			 * something is generating more than we can handle.
575 			 */
576 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
577 
578 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
579 
580 			/* lock already released, get out now */
581 			goto out;
582 		} else {
583 			cpe_history[index++] = now;
584 			if (index == CPE_HISTORY_LENGTH)
585 				index = 0;
586 		}
587 	}
588 	spin_unlock(&cpe_history_lock);
589 out:
590 	/* Get the CPE error record and log it */
591 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
592 
593 	local_irq_disable();
594 
595 	return IRQ_HANDLED;
596 }
597 
598 #endif /* CONFIG_ACPI */
599 
600 #ifdef CONFIG_ACPI
601 /*
602  * ia64_mca_register_cpev
603  *
604  *  Register the corrected platform error vector with SAL.
605  *
606  *  Inputs
607  *      cpev        Corrected Platform Error Vector number
608  *
609  *  Outputs
610  *      None
611  */
612 void
613 ia64_mca_register_cpev (int cpev)
614 {
615 	/* Register the CPE interrupt vector with SAL */
616 	struct ia64_sal_retval isrv;
617 
618 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
619 	if (isrv.status) {
620 		printk(KERN_ERR "Failed to register Corrected Platform "
621 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
622 		return;
623 	}
624 
625 	IA64_MCA_DEBUG("%s: corrected platform error "
626 		       "vector %#x registered\n", __func__, cpev);
627 }
628 #endif /* CONFIG_ACPI */
629 
630 /*
631  * ia64_mca_cmc_vector_setup
632  *
633  *  Setup the corrected machine check vector register in the processor.
634  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
635  *  This function is invoked on a per-processor basis.
636  *
637  * Inputs
638  *      None
639  *
640  * Outputs
641  *	None
642  */
643 void
644 ia64_mca_cmc_vector_setup (void)
645 {
646 	cmcv_reg_t	cmcv;
647 
648 	cmcv.cmcv_regval	= 0;
649 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
650 	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
651 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
652 
653 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
654 		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
655 
656 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
657 		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
658 }
659 
660 /*
661  * ia64_mca_cmc_vector_disable
662  *
663  *  Mask the corrected machine check vector register in the processor.
664  *  This function is invoked on a per-processor basis.
665  *
666  * Inputs
667  *      dummy(unused)
668  *
669  * Outputs
670  *	None
671  */
672 static void
673 ia64_mca_cmc_vector_disable (void *dummy)
674 {
675 	cmcv_reg_t	cmcv;
676 
677 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
678 
679 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
680 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
681 
682 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
683 		       __func__, smp_processor_id(), cmcv.cmcv_vector);
684 }
685 
686 /*
687  * ia64_mca_cmc_vector_enable
688  *
689  *  Unmask the corrected machine check vector register in the processor.
690  *  This function is invoked on a per-processor basis.
691  *
692  * Inputs
693  *      dummy(unused)
694  *
695  * Outputs
696  *	None
697  */
698 static void
699 ia64_mca_cmc_vector_enable (void *dummy)
700 {
701 	cmcv_reg_t	cmcv;
702 
703 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
704 
705 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
706 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
707 
708 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
709 		       __func__, smp_processor_id(), cmcv.cmcv_vector);
710 }
711 
712 /*
713  * ia64_mca_cmc_vector_disable_keventd
714  *
715  * Called via keventd (smp_call_function() is not safe in interrupt context) to
716  * disable the cmc interrupt vector.
717  */
718 static void
719 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
720 {
721 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
722 }
723 
724 /*
725  * ia64_mca_cmc_vector_enable_keventd
726  *
727  * Called via keventd (smp_call_function() is not safe in interrupt context) to
728  * enable the cmc interrupt vector.
729  */
730 static void
731 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
732 {
733 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
734 }
735 
736 /*
737  * ia64_mca_wakeup
738  *
739  *	Send an inter-cpu interrupt to wake-up a particular cpu.
740  *
741  *  Inputs  :   cpuid
742  *  Outputs :   None
743  */
744 static void
745 ia64_mca_wakeup(int cpu)
746 {
747 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
748 }
749 
750 /*
751  * ia64_mca_wakeup_all
752  *
753  *	Wakeup all the slave cpus which have rendez'ed previously.
754  *
755  *  Inputs  :   None
756  *  Outputs :   None
757  */
758 static void
759 ia64_mca_wakeup_all(void)
760 {
761 	int cpu;
762 
763 	/* Clear the Rendez checkin flag for all cpus */
764 	for_each_online_cpu(cpu) {
765 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
766 			ia64_mca_wakeup(cpu);
767 	}
768 
769 }
770 
771 /*
772  * ia64_mca_rendez_interrupt_handler
773  *
774  *	This is handler used to put slave processors into spinloop
775  *	while the monarch processor does the mca handling and later
776  *	wake each slave up once the monarch is done.  The state
777  *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
778  *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
779  *	the cpu has come out of OS rendezvous.
780  *
781  *  Inputs  :   None
782  *  Outputs :   None
783  */
784 static irqreturn_t
785 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
786 {
787 	unsigned long flags;
788 	int cpu = smp_processor_id();
789 	struct ia64_mca_notify_die nd =
790 		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
791 
792 	/* Mask all interrupts */
793 	local_irq_save(flags);
794 
795 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
796 
797 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
798 	/* Register with the SAL monarch that the slave has
799 	 * reached SAL
800 	 */
801 	ia64_sal_mc_rendez();
802 
803 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
804 
805 	/* Wait for the monarch cpu to exit. */
806 	while (monarch_cpu != -1)
807 	       cpu_relax();	/* spin until monarch leaves */
808 
809 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
810 
811 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
812 	/* Enable all interrupts */
813 	local_irq_restore(flags);
814 	return IRQ_HANDLED;
815 }
816 
817 /*
818  * ia64_mca_wakeup_int_handler
819  *
820  *	The interrupt handler for processing the inter-cpu interrupt to the
821  *	slave cpu which was spinning in the rendez loop.
822  *	Since this spinning is done by turning off the interrupts and
823  *	polling on the wakeup-interrupt bit in the IRR, there is
824  *	nothing useful to be done in the handler.
825  *
826  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
827  *	arg		(Interrupt handler specific argument)
828  *  Outputs :   None
829  *
830  */
831 static irqreturn_t
832 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
833 {
834 	return IRQ_HANDLED;
835 }
836 
837 /* Function pointer for extra MCA recovery */
838 int (*ia64_mca_ucmc_extension)
839 	(void*,struct ia64_sal_os_state*)
840 	= NULL;
841 
842 int
843 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
844 {
845 	if (ia64_mca_ucmc_extension)
846 		return 1;
847 
848 	ia64_mca_ucmc_extension = fn;
849 	return 0;
850 }
851 
852 void
853 ia64_unreg_MCA_extension(void)
854 {
855 	if (ia64_mca_ucmc_extension)
856 		ia64_mca_ucmc_extension = NULL;
857 }
858 
859 EXPORT_SYMBOL(ia64_reg_MCA_extension);
860 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
861 
862 
863 static inline void
864 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
865 {
866 	u64 fslot, tslot, nat;
867 	*tr = *fr;
868 	fslot = ((unsigned long)fr >> 3) & 63;
869 	tslot = ((unsigned long)tr >> 3) & 63;
870 	*tnat &= ~(1UL << tslot);
871 	nat = (fnat >> fslot) & 1;
872 	*tnat |= (nat << tslot);
873 }
874 
875 /* Change the comm field on the MCA/INT task to include the pid that
876  * was interrupted, it makes for easier debugging.  If that pid was 0
877  * (swapper or nested MCA/INIT) then use the start of the previous comm
878  * field suffixed with its cpu.
879  */
880 
881 static void
882 ia64_mca_modify_comm(const struct task_struct *previous_current)
883 {
884 	char *p, comm[sizeof(current->comm)];
885 	if (previous_current->pid)
886 		snprintf(comm, sizeof(comm), "%s %d",
887 			current->comm, previous_current->pid);
888 	else {
889 		int l;
890 		if ((p = strchr(previous_current->comm, ' ')))
891 			l = p - previous_current->comm;
892 		else
893 			l = strlen(previous_current->comm);
894 		snprintf(comm, sizeof(comm), "%s %*s %d",
895 			current->comm, l, previous_current->comm,
896 			task_thread_info(previous_current)->cpu);
897 	}
898 	memcpy(current->comm, comm, sizeof(current->comm));
899 }
900 
901 static void
902 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
903 		unsigned long *nat)
904 {
905 	const pal_min_state_area_t *ms = sos->pal_min_state;
906 	const u64 *bank;
907 
908 	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
909 	 * pmsa_{xip,xpsr,xfs}
910 	 */
911 	if (ia64_psr(regs)->ic) {
912 		regs->cr_iip = ms->pmsa_iip;
913 		regs->cr_ipsr = ms->pmsa_ipsr;
914 		regs->cr_ifs = ms->pmsa_ifs;
915 	} else {
916 		regs->cr_iip = ms->pmsa_xip;
917 		regs->cr_ipsr = ms->pmsa_xpsr;
918 		regs->cr_ifs = ms->pmsa_xfs;
919 
920 		sos->iip = ms->pmsa_iip;
921 		sos->ipsr = ms->pmsa_ipsr;
922 		sos->ifs = ms->pmsa_ifs;
923 	}
924 	regs->pr = ms->pmsa_pr;
925 	regs->b0 = ms->pmsa_br0;
926 	regs->ar_rsc = ms->pmsa_rsc;
927 	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
928 	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
929 	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
930 	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
931 	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
932 	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
933 	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
934 	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
935 	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
936 	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
937 	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
938 	if (ia64_psr(regs)->bn)
939 		bank = ms->pmsa_bank1_gr;
940 	else
941 		bank = ms->pmsa_bank0_gr;
942 	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
943 	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
944 	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
945 	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
946 	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
947 	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
948 	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
949 	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
950 	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
951 	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
952 	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
953 	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
954 	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
955 	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
956 	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
957 	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
958 }
959 
960 /* On entry to this routine, we are running on the per cpu stack, see
961  * mca_asm.h.  The original stack has not been touched by this event.  Some of
962  * the original stack's registers will be in the RBS on this stack.  This stack
963  * also contains a partial pt_regs and switch_stack, the rest of the data is in
964  * PAL minstate.
965  *
966  * The first thing to do is modify the original stack to look like a blocked
967  * task so we can run backtrace on the original task.  Also mark the per cpu
968  * stack as current to ensure that we use the correct task state, it also means
969  * that we can do backtrace on the MCA/INIT handler code itself.
970  */
971 
972 static struct task_struct *
973 ia64_mca_modify_original_stack(struct pt_regs *regs,
974 		const struct switch_stack *sw,
975 		struct ia64_sal_os_state *sos,
976 		const char *type)
977 {
978 	char *p;
979 	ia64_va va;
980 	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
981 	const pal_min_state_area_t *ms = sos->pal_min_state;
982 	struct task_struct *previous_current;
983 	struct pt_regs *old_regs;
984 	struct switch_stack *old_sw;
985 	unsigned size = sizeof(struct pt_regs) +
986 			sizeof(struct switch_stack) + 16;
987 	unsigned long *old_bspstore, *old_bsp;
988 	unsigned long *new_bspstore, *new_bsp;
989 	unsigned long old_unat, old_rnat, new_rnat, nat;
990 	u64 slots, loadrs = regs->loadrs;
991 	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
992 	u64 ar_bspstore = regs->ar_bspstore;
993 	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
994 	const char *msg;
995 	int cpu = smp_processor_id();
996 
997 	previous_current = curr_task(cpu);
998 	ia64_set_curr_task(cpu, current);
999 	if ((p = strchr(current->comm, ' ')))
1000 		*p = '\0';
1001 
1002 	/* Best effort attempt to cope with MCA/INIT delivered while in
1003 	 * physical mode.
1004 	 */
1005 	regs->cr_ipsr = ms->pmsa_ipsr;
1006 	if (ia64_psr(regs)->dt == 0) {
1007 		va.l = r12;
1008 		if (va.f.reg == 0) {
1009 			va.f.reg = 7;
1010 			r12 = va.l;
1011 		}
1012 		va.l = r13;
1013 		if (va.f.reg == 0) {
1014 			va.f.reg = 7;
1015 			r13 = va.l;
1016 		}
1017 	}
1018 	if (ia64_psr(regs)->rt == 0) {
1019 		va.l = ar_bspstore;
1020 		if (va.f.reg == 0) {
1021 			va.f.reg = 7;
1022 			ar_bspstore = va.l;
1023 		}
1024 		va.l = ar_bsp;
1025 		if (va.f.reg == 0) {
1026 			va.f.reg = 7;
1027 			ar_bsp = va.l;
1028 		}
1029 	}
1030 
1031 	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1032 	 * have been copied to the old stack, the old stack may fail the
1033 	 * validation tests below.  So ia64_old_stack() must restore the dirty
1034 	 * registers from the new stack.  The old and new bspstore probably
1035 	 * have different alignments, so loadrs calculated on the old bsp
1036 	 * cannot be used to restore from the new bsp.  Calculate a suitable
1037 	 * loadrs for the new stack and save it in the new pt_regs, where
1038 	 * ia64_old_stack() can get it.
1039 	 */
1040 	old_bspstore = (unsigned long *)ar_bspstore;
1041 	old_bsp = (unsigned long *)ar_bsp;
1042 	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1043 	new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1044 	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1045 	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1046 
1047 	/* Verify the previous stack state before we change it */
1048 	if (user_mode(regs)) {
1049 		msg = "occurred in user space";
1050 		/* previous_current is guaranteed to be valid when the task was
1051 		 * in user space, so ...
1052 		 */
1053 		ia64_mca_modify_comm(previous_current);
1054 		goto no_mod;
1055 	}
1056 
1057 	if (r13 != sos->prev_IA64_KR_CURRENT) {
1058 		msg = "inconsistent previous current and r13";
1059 		goto no_mod;
1060 	}
1061 
1062 	if (!mca_recover_range(ms->pmsa_iip)) {
1063 		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1064 			msg = "inconsistent r12 and r13";
1065 			goto no_mod;
1066 		}
1067 		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1068 			msg = "inconsistent ar.bspstore and r13";
1069 			goto no_mod;
1070 		}
1071 		va.p = old_bspstore;
1072 		if (va.f.reg < 5) {
1073 			msg = "old_bspstore is in the wrong region";
1074 			goto no_mod;
1075 		}
1076 		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1077 			msg = "inconsistent ar.bsp and r13";
1078 			goto no_mod;
1079 		}
1080 		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1081 		if (ar_bspstore + size > r12) {
1082 			msg = "no room for blocked state";
1083 			goto no_mod;
1084 		}
1085 	}
1086 
1087 	ia64_mca_modify_comm(previous_current);
1088 
1089 	/* Make the original task look blocked.  First stack a struct pt_regs,
1090 	 * describing the state at the time of interrupt.  mca_asm.S built a
1091 	 * partial pt_regs, copy it and fill in the blanks using minstate.
1092 	 */
1093 	p = (char *)r12 - sizeof(*regs);
1094 	old_regs = (struct pt_regs *)p;
1095 	memcpy(old_regs, regs, sizeof(*regs));
1096 	old_regs->loadrs = loadrs;
1097 	old_unat = old_regs->ar_unat;
1098 	finish_pt_regs(old_regs, sos, &old_unat);
1099 
1100 	/* Next stack a struct switch_stack.  mca_asm.S built a partial
1101 	 * switch_stack, copy it and fill in the blanks using pt_regs and
1102 	 * minstate.
1103 	 *
1104 	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1105 	 * ar.pfs is set to 0.
1106 	 *
1107 	 * unwind.c::unw_unwind() does special processing for interrupt frames.
1108 	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1109 	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1110 	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1111 	 * switch_stack on the original stack so it will unwind correctly when
1112 	 * unwind.c reads pt_regs.
1113 	 *
1114 	 * thread.ksp is updated to point to the synthesized switch_stack.
1115 	 */
1116 	p -= sizeof(struct switch_stack);
1117 	old_sw = (struct switch_stack *)p;
1118 	memcpy(old_sw, sw, sizeof(*sw));
1119 	old_sw->caller_unat = old_unat;
1120 	old_sw->ar_fpsr = old_regs->ar_fpsr;
1121 	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1122 	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1123 	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1124 	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1125 	old_sw->b0 = (u64)ia64_leave_kernel;
1126 	old_sw->b1 = ms->pmsa_br1;
1127 	old_sw->ar_pfs = 0;
1128 	old_sw->ar_unat = old_unat;
1129 	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1130 	previous_current->thread.ksp = (u64)p - 16;
1131 
1132 	/* Finally copy the original stack's registers back to its RBS.
1133 	 * Registers from ar.bspstore through ar.bsp at the time of the event
1134 	 * are in the current RBS, copy them back to the original stack.  The
1135 	 * copy must be done register by register because the original bspstore
1136 	 * and the current one have different alignments, so the saved RNAT
1137 	 * data occurs at different places.
1138 	 *
1139 	 * mca_asm does cover, so the old_bsp already includes all registers at
1140 	 * the time of MCA/INIT.  It also does flushrs, so all registers before
1141 	 * this function have been written to backing store on the MCA/INIT
1142 	 * stack.
1143 	 */
1144 	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1145 	old_rnat = regs->ar_rnat;
1146 	while (slots--) {
1147 		if (ia64_rse_is_rnat_slot(new_bspstore)) {
1148 			new_rnat = ia64_get_rnat(new_bspstore++);
1149 		}
1150 		if (ia64_rse_is_rnat_slot(old_bspstore)) {
1151 			*old_bspstore++ = old_rnat;
1152 			old_rnat = 0;
1153 		}
1154 		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1155 		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1156 		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1157 		*old_bspstore++ = *new_bspstore++;
1158 	}
1159 	old_sw->ar_bspstore = (unsigned long)old_bspstore;
1160 	old_sw->ar_rnat = old_rnat;
1161 
1162 	sos->prev_task = previous_current;
1163 	return previous_current;
1164 
1165 no_mod:
1166 	mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1167 			smp_processor_id(), type, msg);
1168 	old_unat = regs->ar_unat;
1169 	finish_pt_regs(regs, sos, &old_unat);
1170 	return previous_current;
1171 }
1172 
1173 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1174  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1175  * not entered rendezvous yet then wait a bit.  The assumption is that any
1176  * slave that has not rendezvoused after a reasonable time is never going to do
1177  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1178  * interrupt, as well as cpus that receive the INIT slave event.
1179  */
1180 
1181 static void
1182 ia64_wait_for_slaves(int monarch, const char *type)
1183 {
1184 	int c, i , wait;
1185 
1186 	/*
1187 	 * wait 5 seconds total for slaves (arbitrary)
1188 	 */
1189 	for (i = 0; i < 5000; i++) {
1190 		wait = 0;
1191 		for_each_online_cpu(c) {
1192 			if (c == monarch)
1193 				continue;
1194 			if (ia64_mc_info.imi_rendez_checkin[c]
1195 					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1196 				udelay(1000);		/* short wait */
1197 				wait = 1;
1198 				break;
1199 			}
1200 		}
1201 		if (!wait)
1202 			goto all_in;
1203 	}
1204 
1205 	/*
1206 	 * Maybe slave(s) dead. Print buffered messages immediately.
1207 	 */
1208 	ia64_mlogbuf_finish(0);
1209 	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1210 	for_each_online_cpu(c) {
1211 		if (c == monarch)
1212 			continue;
1213 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1214 			mprintk(" %d", c);
1215 	}
1216 	mprintk("\n");
1217 	return;
1218 
1219 all_in:
1220 	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1221 	return;
1222 }
1223 
1224 /*  mca_insert_tr
1225  *
1226  *  Switch rid when TR reload and needed!
1227  *  iord: 1: itr, 2: itr;
1228  *
1229 */
1230 static void mca_insert_tr(u64 iord)
1231 {
1232 
1233 	int i;
1234 	u64 old_rr;
1235 	struct ia64_tr_entry *p;
1236 	unsigned long psr;
1237 	int cpu = smp_processor_id();
1238 
1239 	if (!ia64_idtrs[cpu])
1240 		return;
1241 
1242 	psr = ia64_clear_ic();
1243 	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1244 		p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1245 		if (p->pte & 0x1) {
1246 			old_rr = ia64_get_rr(p->ifa);
1247 			if (old_rr != p->rr) {
1248 				ia64_set_rr(p->ifa, p->rr);
1249 				ia64_srlz_d();
1250 			}
1251 			ia64_ptr(iord, p->ifa, p->itir >> 2);
1252 			ia64_srlz_i();
1253 			if (iord & 0x1) {
1254 				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1255 				ia64_srlz_i();
1256 			}
1257 			if (iord & 0x2) {
1258 				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1259 				ia64_srlz_i();
1260 			}
1261 			if (old_rr != p->rr) {
1262 				ia64_set_rr(p->ifa, old_rr);
1263 				ia64_srlz_d();
1264 			}
1265 		}
1266 	}
1267 	ia64_set_psr(psr);
1268 }
1269 
1270 /*
1271  * ia64_mca_handler
1272  *
1273  *	This is uncorrectable machine check handler called from OS_MCA
1274  *	dispatch code which is in turn called from SAL_CHECK().
1275  *	This is the place where the core of OS MCA handling is done.
1276  *	Right now the logs are extracted and displayed in a well-defined
1277  *	format. This handler code is supposed to be run only on the
1278  *	monarch processor. Once the monarch is done with MCA handling
1279  *	further MCA logging is enabled by clearing logs.
1280  *	Monarch also has the duty of sending wakeup-IPIs to pull the
1281  *	slave processors out of rendezvous spinloop.
1282  *
1283  *	If multiple processors call into OS_MCA, the first will become
1284  *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
1285  *	bitmask.  After the first monarch has processed its MCA, it
1286  *	will wake up the next cpu in the mca_cpu bitmask and then go
1287  *	into the rendezvous loop.  When all processors have serviced
1288  *	their MCA, the last monarch frees up the rest of the processors.
1289  */
1290 void
1291 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1292 		 struct ia64_sal_os_state *sos)
1293 {
1294 	int recover, cpu = smp_processor_id();
1295 	struct task_struct *previous_current;
1296 	struct ia64_mca_notify_die nd =
1297 		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1298 	static atomic_t mca_count;
1299 	static cpumask_t mca_cpu;
1300 
1301 	if (atomic_add_return(1, &mca_count) == 1) {
1302 		monarch_cpu = cpu;
1303 		sos->monarch = 1;
1304 	} else {
1305 		cpumask_set_cpu(cpu, &mca_cpu);
1306 		sos->monarch = 0;
1307 	}
1308 	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1309 		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1310 
1311 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1312 
1313 	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1314 
1315 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1316 	if (sos->monarch) {
1317 		ia64_wait_for_slaves(cpu, "MCA");
1318 
1319 		/* Wakeup all the processors which are spinning in the
1320 		 * rendezvous loop.  They will leave SAL, then spin in the OS
1321 		 * with interrupts disabled until this monarch cpu leaves the
1322 		 * MCA handler.  That gets control back to the OS so we can
1323 		 * backtrace the other cpus, backtrace when spinning in SAL
1324 		 * does not work.
1325 		 */
1326 		ia64_mca_wakeup_all();
1327 	} else {
1328 		while (cpumask_test_cpu(cpu, &mca_cpu))
1329 			cpu_relax();	/* spin until monarch wakes us */
1330 	}
1331 
1332 	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1333 
1334 	/* Get the MCA error record and log it */
1335 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1336 
1337 	/* MCA error recovery */
1338 	recover = (ia64_mca_ucmc_extension
1339 		&& ia64_mca_ucmc_extension(
1340 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1341 			sos));
1342 
1343 	if (recover) {
1344 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1345 		rh->severity = sal_log_severity_corrected;
1346 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1347 		sos->os_status = IA64_MCA_CORRECTED;
1348 	} else {
1349 		/* Dump buffered message to console */
1350 		ia64_mlogbuf_finish(1);
1351 	}
1352 
1353 	if (__this_cpu_read(ia64_mca_tr_reload)) {
1354 		mca_insert_tr(0x1); /*Reload dynamic itrs*/
1355 		mca_insert_tr(0x2); /*Reload dynamic itrs*/
1356 	}
1357 
1358 	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1359 
1360 	if (atomic_dec_return(&mca_count) > 0) {
1361 		int i;
1362 
1363 		/* wake up the next monarch cpu,
1364 		 * and put this cpu in the rendez loop.
1365 		 */
1366 		for_each_online_cpu(i) {
1367 			if (cpumask_test_cpu(i, &mca_cpu)) {
1368 				monarch_cpu = i;
1369 				cpumask_clear_cpu(i, &mca_cpu);	/* wake next cpu */
1370 				while (monarch_cpu != -1)
1371 					cpu_relax();	/* spin until last cpu leaves */
1372 				ia64_set_curr_task(cpu, previous_current);
1373 				ia64_mc_info.imi_rendez_checkin[cpu]
1374 						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1375 				return;
1376 			}
1377 		}
1378 	}
1379 	ia64_set_curr_task(cpu, previous_current);
1380 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1381 	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
1382 }
1383 
1384 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1385 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1386 
1387 /*
1388  * ia64_mca_cmc_int_handler
1389  *
1390  *  This is corrected machine check interrupt handler.
1391  *	Right now the logs are extracted and displayed in a well-defined
1392  *	format.
1393  *
1394  * Inputs
1395  *      interrupt number
1396  *      client data arg ptr
1397  *
1398  * Outputs
1399  *	None
1400  */
1401 static irqreturn_t
1402 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1403 {
1404 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1405 	static int		index;
1406 	static DEFINE_SPINLOCK(cmc_history_lock);
1407 
1408 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1409 		       __func__, cmc_irq, smp_processor_id());
1410 
1411 	/* SAL spec states this should run w/ interrupts enabled */
1412 	local_irq_enable();
1413 
1414 	spin_lock(&cmc_history_lock);
1415 	if (!cmc_polling_enabled) {
1416 		int i, count = 1; /* we know 1 happened now */
1417 		unsigned long now = jiffies;
1418 
1419 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1420 			if (now - cmc_history[i] <= HZ)
1421 				count++;
1422 		}
1423 
1424 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1425 		if (count >= CMC_HISTORY_LENGTH) {
1426 
1427 			cmc_polling_enabled = 1;
1428 			spin_unlock(&cmc_history_lock);
1429 			/* If we're being hit with CMC interrupts, we won't
1430 			 * ever execute the schedule_work() below.  Need to
1431 			 * disable CMC interrupts on this processor now.
1432 			 */
1433 			ia64_mca_cmc_vector_disable(NULL);
1434 			schedule_work(&cmc_disable_work);
1435 
1436 			/*
1437 			 * Corrected errors will still be corrected, but
1438 			 * make sure there's a log somewhere that indicates
1439 			 * something is generating more than we can handle.
1440 			 */
1441 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1442 
1443 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1444 
1445 			/* lock already released, get out now */
1446 			goto out;
1447 		} else {
1448 			cmc_history[index++] = now;
1449 			if (index == CMC_HISTORY_LENGTH)
1450 				index = 0;
1451 		}
1452 	}
1453 	spin_unlock(&cmc_history_lock);
1454 out:
1455 	/* Get the CMC error record and log it */
1456 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1457 
1458 	local_irq_disable();
1459 
1460 	return IRQ_HANDLED;
1461 }
1462 
1463 /*
1464  *  ia64_mca_cmc_int_caller
1465  *
1466  * 	Triggered by sw interrupt from CMC polling routine.  Calls
1467  * 	real interrupt handler and either triggers a sw interrupt
1468  * 	on the next cpu or does cleanup at the end.
1469  *
1470  * Inputs
1471  *	interrupt number
1472  *	client data arg ptr
1473  * Outputs
1474  * 	handled
1475  */
1476 static irqreturn_t
1477 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1478 {
1479 	static int start_count = -1;
1480 	unsigned int cpuid;
1481 
1482 	cpuid = smp_processor_id();
1483 
1484 	/* If first cpu, update count */
1485 	if (start_count == -1)
1486 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1487 
1488 	ia64_mca_cmc_int_handler(cmc_irq, arg);
1489 
1490 	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1491 
1492 	if (cpuid < nr_cpu_ids) {
1493 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1494 	} else {
1495 		/* If no log record, switch out of polling mode */
1496 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1497 
1498 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1499 			schedule_work(&cmc_enable_work);
1500 			cmc_polling_enabled = 0;
1501 
1502 		} else {
1503 
1504 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1505 		}
1506 
1507 		start_count = -1;
1508 	}
1509 
1510 	return IRQ_HANDLED;
1511 }
1512 
1513 /*
1514  *  ia64_mca_cmc_poll
1515  *
1516  *	Poll for Corrected Machine Checks (CMCs)
1517  *
1518  * Inputs   :   dummy(unused)
1519  * Outputs  :   None
1520  *
1521  */
1522 static void
1523 ia64_mca_cmc_poll (struct timer_list *unused)
1524 {
1525 	/* Trigger a CMC interrupt cascade  */
1526 	platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1527 							IA64_IPI_DM_INT, 0);
1528 }
1529 
1530 /*
1531  *  ia64_mca_cpe_int_caller
1532  *
1533  * 	Triggered by sw interrupt from CPE polling routine.  Calls
1534  * 	real interrupt handler and either triggers a sw interrupt
1535  * 	on the next cpu or does cleanup at the end.
1536  *
1537  * Inputs
1538  *	interrupt number
1539  *	client data arg ptr
1540  * Outputs
1541  * 	handled
1542  */
1543 #ifdef CONFIG_ACPI
1544 
1545 static irqreturn_t
1546 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1547 {
1548 	static int start_count = -1;
1549 	static int poll_time = MIN_CPE_POLL_INTERVAL;
1550 	unsigned int cpuid;
1551 
1552 	cpuid = smp_processor_id();
1553 
1554 	/* If first cpu, update count */
1555 	if (start_count == -1)
1556 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1557 
1558 	ia64_mca_cpe_int_handler(cpe_irq, arg);
1559 
1560 	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1561 
1562 	if (cpuid < NR_CPUS) {
1563 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1564 	} else {
1565 		/*
1566 		 * If a log was recorded, increase our polling frequency,
1567 		 * otherwise, backoff or return to interrupt mode.
1568 		 */
1569 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1570 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1571 		} else if (cpe_vector < 0) {
1572 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1573 		} else {
1574 			poll_time = MIN_CPE_POLL_INTERVAL;
1575 
1576 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1577 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1578 			cpe_poll_enabled = 0;
1579 		}
1580 
1581 		if (cpe_poll_enabled)
1582 			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1583 		start_count = -1;
1584 	}
1585 
1586 	return IRQ_HANDLED;
1587 }
1588 
1589 /*
1590  *  ia64_mca_cpe_poll
1591  *
1592  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1593  *	on first cpu, from there it will trickle through all the cpus.
1594  *
1595  * Inputs   :   dummy(unused)
1596  * Outputs  :   None
1597  *
1598  */
1599 static void
1600 ia64_mca_cpe_poll (struct timer_list *unused)
1601 {
1602 	/* Trigger a CPE interrupt cascade  */
1603 	platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1604 							IA64_IPI_DM_INT, 0);
1605 }
1606 
1607 #endif /* CONFIG_ACPI */
1608 
1609 static int
1610 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1611 {
1612 	int c;
1613 	struct task_struct *g, *t;
1614 	if (val != DIE_INIT_MONARCH_PROCESS)
1615 		return NOTIFY_DONE;
1616 #ifdef CONFIG_KEXEC
1617 	if (atomic_read(&kdump_in_progress))
1618 		return NOTIFY_DONE;
1619 #endif
1620 
1621 	/*
1622 	 * FIXME: mlogbuf will brim over with INIT stack dumps.
1623 	 * To enable show_stack from INIT, we use oops_in_progress which should
1624 	 * be used in real oops. This would cause something wrong after INIT.
1625 	 */
1626 	BREAK_LOGLEVEL(console_loglevel);
1627 	ia64_mlogbuf_dump_from_init();
1628 
1629 	printk(KERN_ERR "Processes interrupted by INIT -");
1630 	for_each_online_cpu(c) {
1631 		struct ia64_sal_os_state *s;
1632 		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1633 		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1634 		g = s->prev_task;
1635 		if (g) {
1636 			if (g->pid)
1637 				printk(" %d", g->pid);
1638 			else
1639 				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1640 		}
1641 	}
1642 	printk("\n\n");
1643 	if (read_trylock(&tasklist_lock)) {
1644 		do_each_thread (g, t) {
1645 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1646 			show_stack(t, NULL);
1647 		} while_each_thread (g, t);
1648 		read_unlock(&tasklist_lock);
1649 	}
1650 	/* FIXME: This will not restore zapped printk locks. */
1651 	RESTORE_LOGLEVEL(console_loglevel);
1652 	return NOTIFY_DONE;
1653 }
1654 
1655 /*
1656  * C portion of the OS INIT handler
1657  *
1658  * Called from ia64_os_init_dispatch
1659  *
1660  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1661  * this event.  This code is used for both monarch and slave INIT events, see
1662  * sos->monarch.
1663  *
1664  * All INIT events switch to the INIT stack and change the previous process to
1665  * blocked status.  If one of the INIT events is the monarch then we are
1666  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1667  * the processes.  The slave INIT events all spin until the monarch cpu
1668  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1669  * process is the monarch.
1670  */
1671 
1672 void
1673 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1674 		  struct ia64_sal_os_state *sos)
1675 {
1676 	static atomic_t slaves;
1677 	static atomic_t monarchs;
1678 	struct task_struct *previous_current;
1679 	int cpu = smp_processor_id();
1680 	struct ia64_mca_notify_die nd =
1681 		{ .sos = sos, .monarch_cpu = &monarch_cpu };
1682 
1683 	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1684 
1685 	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1686 		sos->proc_state_param, cpu, sos->monarch);
1687 	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1688 
1689 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1690 	sos->os_status = IA64_INIT_RESUME;
1691 
1692 	/* FIXME: Workaround for broken proms that drive all INIT events as
1693 	 * slaves.  The last slave that enters is promoted to be a monarch.
1694 	 * Remove this code in September 2006, that gives platforms a year to
1695 	 * fix their proms and get their customers updated.
1696 	 */
1697 	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1698 		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1699 		        __func__, cpu);
1700 		atomic_dec(&slaves);
1701 		sos->monarch = 1;
1702 	}
1703 
1704 	/* FIXME: Workaround for broken proms that drive all INIT events as
1705 	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1706 	 * Remove this code in September 2006, that gives platforms a year to
1707 	 * fix their proms and get their customers updated.
1708 	 */
1709 	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1710 		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1711 			       __func__, cpu);
1712 		atomic_dec(&monarchs);
1713 		sos->monarch = 0;
1714 	}
1715 
1716 	if (!sos->monarch) {
1717 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1718 
1719 #ifdef CONFIG_KEXEC
1720 		while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1721 			udelay(1000);
1722 #else
1723 		while (monarch_cpu == -1)
1724 			cpu_relax();	/* spin until monarch enters */
1725 #endif
1726 
1727 		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1728 		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1729 
1730 #ifdef CONFIG_KEXEC
1731 		while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1732 			udelay(1000);
1733 #else
1734 		while (monarch_cpu != -1)
1735 			cpu_relax();	/* spin until monarch leaves */
1736 #endif
1737 
1738 		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1739 
1740 		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1741 		ia64_set_curr_task(cpu, previous_current);
1742 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1743 		atomic_dec(&slaves);
1744 		return;
1745 	}
1746 
1747 	monarch_cpu = cpu;
1748 	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1749 
1750 	/*
1751 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1752 	 * generated via the BMC's command-line interface, but since the console is on the
1753 	 * same serial line, the user will need some time to switch out of the BMC before
1754 	 * the dump begins.
1755 	 */
1756 	mprintk("Delaying for 5 seconds...\n");
1757 	udelay(5*1000000);
1758 	ia64_wait_for_slaves(cpu, "INIT");
1759 	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1760 	 * to default_monarch_init_process() above and just print all the
1761 	 * tasks.
1762 	 */
1763 	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1764 	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1765 
1766 	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1767 	atomic_dec(&monarchs);
1768 	ia64_set_curr_task(cpu, previous_current);
1769 	monarch_cpu = -1;
1770 	return;
1771 }
1772 
1773 static int __init
1774 ia64_mca_disable_cpe_polling(char *str)
1775 {
1776 	cpe_poll_enabled = 0;
1777 	return 1;
1778 }
1779 
1780 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1781 
1782 static struct irqaction cmci_irqaction = {
1783 	.handler =	ia64_mca_cmc_int_handler,
1784 	.name =		"cmc_hndlr"
1785 };
1786 
1787 static struct irqaction cmcp_irqaction = {
1788 	.handler =	ia64_mca_cmc_int_caller,
1789 	.name =		"cmc_poll"
1790 };
1791 
1792 static struct irqaction mca_rdzv_irqaction = {
1793 	.handler =	ia64_mca_rendez_int_handler,
1794 	.name =		"mca_rdzv"
1795 };
1796 
1797 static struct irqaction mca_wkup_irqaction = {
1798 	.handler =	ia64_mca_wakeup_int_handler,
1799 	.name =		"mca_wkup"
1800 };
1801 
1802 #ifdef CONFIG_ACPI
1803 static struct irqaction mca_cpe_irqaction = {
1804 	.handler =	ia64_mca_cpe_int_handler,
1805 	.name =		"cpe_hndlr"
1806 };
1807 
1808 static struct irqaction mca_cpep_irqaction = {
1809 	.handler =	ia64_mca_cpe_int_caller,
1810 	.name =		"cpe_poll"
1811 };
1812 #endif /* CONFIG_ACPI */
1813 
1814 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1815  * these stacks can never sleep, they cannot return from the kernel to user
1816  * space, they do not appear in a normal ps listing.  So there is no need to
1817  * format most of the fields.
1818  */
1819 
1820 static void
1821 format_mca_init_stack(void *mca_data, unsigned long offset,
1822 		const char *type, int cpu)
1823 {
1824 	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1825 	struct thread_info *ti;
1826 	memset(p, 0, KERNEL_STACK_SIZE);
1827 	ti = task_thread_info(p);
1828 	ti->flags = _TIF_MCA_INIT;
1829 	ti->preempt_count = 1;
1830 	ti->task = p;
1831 	ti->cpu = cpu;
1832 	p->stack = ti;
1833 	p->state = TASK_UNINTERRUPTIBLE;
1834 	cpumask_set_cpu(cpu, &p->cpus_allowed);
1835 	INIT_LIST_HEAD(&p->tasks);
1836 	p->parent = p->real_parent = p->group_leader = p;
1837 	INIT_LIST_HEAD(&p->children);
1838 	INIT_LIST_HEAD(&p->sibling);
1839 	strncpy(p->comm, type, sizeof(p->comm)-1);
1840 }
1841 
1842 /* Caller prevents this from being called after init */
1843 static void * __ref mca_bootmem(void)
1844 {
1845 	return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1846 }
1847 
1848 /* Do per-CPU MCA-related initialization.  */
1849 void
1850 ia64_mca_cpu_init(void *cpu_data)
1851 {
1852 	void *pal_vaddr;
1853 	void *data;
1854 	long sz = sizeof(struct ia64_mca_cpu);
1855 	int cpu = smp_processor_id();
1856 	static int first_time = 1;
1857 
1858 	/*
1859 	 * Structure will already be allocated if cpu has been online,
1860 	 * then offlined.
1861 	 */
1862 	if (__per_cpu_mca[cpu]) {
1863 		data = __va(__per_cpu_mca[cpu]);
1864 	} else {
1865 		if (first_time) {
1866 			data = mca_bootmem();
1867 			first_time = 0;
1868 		} else
1869 			data = (void *)__get_free_pages(GFP_KERNEL,
1870 							get_order(sz));
1871 		if (!data)
1872 			panic("Could not allocate MCA memory for cpu %d\n",
1873 					cpu);
1874 	}
1875 	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1876 		"MCA", cpu);
1877 	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1878 		"INIT", cpu);
1879 	__this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1880 
1881 	/*
1882 	 * Stash away a copy of the PTE needed to map the per-CPU page.
1883 	 * We may need it during MCA recovery.
1884 	 */
1885 	__this_cpu_write(ia64_mca_per_cpu_pte,
1886 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1887 
1888 	/*
1889 	 * Also, stash away a copy of the PAL address and the PTE
1890 	 * needed to map it.
1891 	 */
1892 	pal_vaddr = efi_get_pal_addr();
1893 	if (!pal_vaddr)
1894 		return;
1895 	__this_cpu_write(ia64_mca_pal_base,
1896 		GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1897 	__this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1898 							      PAGE_KERNEL)));
1899 }
1900 
1901 static int ia64_mca_cpu_online(unsigned int cpu)
1902 {
1903 	unsigned long flags;
1904 
1905 	local_irq_save(flags);
1906 	if (!cmc_polling_enabled)
1907 		ia64_mca_cmc_vector_enable(NULL);
1908 	local_irq_restore(flags);
1909 	return 0;
1910 }
1911 
1912 /*
1913  * ia64_mca_init
1914  *
1915  *  Do all the system level mca specific initialization.
1916  *
1917  *	1. Register spinloop and wakeup request interrupt vectors
1918  *
1919  *	2. Register OS_MCA handler entry point
1920  *
1921  *	3. Register OS_INIT handler entry point
1922  *
1923  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1924  *
1925  *  Note that this initialization is done very early before some kernel
1926  *  services are available.
1927  *
1928  *  Inputs  :   None
1929  *
1930  *  Outputs :   None
1931  */
1932 void __init
1933 ia64_mca_init(void)
1934 {
1935 	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1936 	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1937 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1938 	int i;
1939 	long rc;
1940 	struct ia64_sal_retval isrv;
1941 	unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1942 	static struct notifier_block default_init_monarch_nb = {
1943 		.notifier_call = default_monarch_init_process,
1944 		.priority = 0/* we need to notified last */
1945 	};
1946 
1947 	IA64_MCA_DEBUG("%s: begin\n", __func__);
1948 
1949 	/* Clear the Rendez checkin flag for all cpus */
1950 	for(i = 0 ; i < NR_CPUS; i++)
1951 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1952 
1953 	/*
1954 	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1955 	 */
1956 
1957 	/* Register the rendezvous interrupt vector with SAL */
1958 	while (1) {
1959 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1960 					      SAL_MC_PARAM_MECHANISM_INT,
1961 					      IA64_MCA_RENDEZ_VECTOR,
1962 					      timeout,
1963 					      SAL_MC_PARAM_RZ_ALWAYS);
1964 		rc = isrv.status;
1965 		if (rc == 0)
1966 			break;
1967 		if (rc == -2) {
1968 			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1969 				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1970 			timeout = isrv.v0;
1971 			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1972 			continue;
1973 		}
1974 		printk(KERN_ERR "Failed to register rendezvous interrupt "
1975 		       "with SAL (status %ld)\n", rc);
1976 		return;
1977 	}
1978 
1979 	/* Register the wakeup interrupt vector with SAL */
1980 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1981 				      SAL_MC_PARAM_MECHANISM_INT,
1982 				      IA64_MCA_WAKEUP_VECTOR,
1983 				      0, 0);
1984 	rc = isrv.status;
1985 	if (rc) {
1986 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1987 		       "(status %ld)\n", rc);
1988 		return;
1989 	}
1990 
1991 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1992 
1993 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1994 	/*
1995 	 * XXX - disable SAL checksum by setting size to 0; should be
1996 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1997 	 */
1998 	ia64_mc_info.imi_mca_handler_size	= 0;
1999 
2000 	/* Register the os mca handler with SAL */
2001 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2002 				       ia64_mc_info.imi_mca_handler,
2003 				       ia64_tpa(mca_hldlr_ptr->gp),
2004 				       ia64_mc_info.imi_mca_handler_size,
2005 				       0, 0, 0)))
2006 	{
2007 		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2008 		       "(status %ld)\n", rc);
2009 		return;
2010 	}
2011 
2012 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2013 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2014 
2015 	/*
2016 	 * XXX - disable SAL checksum by setting size to 0, should be
2017 	 * size of the actual init handler in mca_asm.S.
2018 	 */
2019 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
2020 	ia64_mc_info.imi_monarch_init_handler_size	= 0;
2021 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
2022 	ia64_mc_info.imi_slave_init_handler_size	= 0;
2023 
2024 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2025 		       ia64_mc_info.imi_monarch_init_handler);
2026 
2027 	/* Register the os init handler with SAL */
2028 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2029 				       ia64_mc_info.imi_monarch_init_handler,
2030 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2031 				       ia64_mc_info.imi_monarch_init_handler_size,
2032 				       ia64_mc_info.imi_slave_init_handler,
2033 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2034 				       ia64_mc_info.imi_slave_init_handler_size)))
2035 	{
2036 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2037 		       "(status %ld)\n", rc);
2038 		return;
2039 	}
2040 	if (register_die_notifier(&default_init_monarch_nb)) {
2041 		printk(KERN_ERR "Failed to register default monarch INIT process\n");
2042 		return;
2043 	}
2044 
2045 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2046 
2047 	/* Initialize the areas set aside by the OS to buffer the
2048 	 * platform/processor error states for MCA/INIT/CMC
2049 	 * handling.
2050 	 */
2051 	ia64_log_init(SAL_INFO_TYPE_MCA);
2052 	ia64_log_init(SAL_INFO_TYPE_INIT);
2053 	ia64_log_init(SAL_INFO_TYPE_CMC);
2054 	ia64_log_init(SAL_INFO_TYPE_CPE);
2055 
2056 	mca_init = 1;
2057 	printk(KERN_INFO "MCA related initialization done\n");
2058 }
2059 
2060 
2061 /*
2062  * These pieces cannot be done in ia64_mca_init() because it is called before
2063  * early_irq_init() which would wipe out our percpu irq registrations. But we
2064  * cannot leave them until ia64_mca_late_init() because by then all the other
2065  * processors have been brought online and have set their own CMC vectors to
2066  * point at a non-existant action. Called from arch_early_irq_init().
2067  */
2068 void __init ia64_mca_irq_init(void)
2069 {
2070 	/*
2071 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2072 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2073 	 */
2074 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2075 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2076 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2077 
2078 	/* Setup the MCA rendezvous interrupt vector */
2079 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2080 
2081 	/* Setup the MCA wakeup interrupt vector */
2082 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2083 
2084 #ifdef CONFIG_ACPI
2085 	/* Setup the CPEI/P handler */
2086 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2087 #endif
2088 }
2089 
2090 /*
2091  * ia64_mca_late_init
2092  *
2093  *	Opportunity to setup things that require initialization later
2094  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
2095  *	platform doesn't support an interrupt driven mechanism.
2096  *
2097  *  Inputs  :   None
2098  *  Outputs :   Status
2099  */
2100 static int __init
2101 ia64_mca_late_init(void)
2102 {
2103 	if (!mca_init)
2104 		return 0;
2105 
2106 	/* Setup the CMCI/P vector and handler */
2107 	timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2108 
2109 	/* Unmask/enable the vector */
2110 	cmc_polling_enabled = 0;
2111 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2112 			  ia64_mca_cpu_online, NULL);
2113 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2114 
2115 #ifdef CONFIG_ACPI
2116 	/* Setup the CPEI/P vector and handler */
2117 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2118 	timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2119 
2120 	{
2121 		unsigned int irq;
2122 
2123 		if (cpe_vector >= 0) {
2124 			/* If platform supports CPEI, enable the irq. */
2125 			irq = local_vector_to_irq(cpe_vector);
2126 			if (irq > 0) {
2127 				cpe_poll_enabled = 0;
2128 				irq_set_status_flags(irq, IRQ_PER_CPU);
2129 				setup_irq(irq, &mca_cpe_irqaction);
2130 				ia64_cpe_irq = irq;
2131 				ia64_mca_register_cpev(cpe_vector);
2132 				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2133 					__func__);
2134 				return 0;
2135 			}
2136 			printk(KERN_ERR "%s: Failed to find irq for CPE "
2137 					"interrupt handler, vector %d\n",
2138 					__func__, cpe_vector);
2139 		}
2140 		/* If platform doesn't support CPEI, get the timer going. */
2141 		if (cpe_poll_enabled) {
2142 			ia64_mca_cpe_poll(0UL);
2143 			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2144 		}
2145 	}
2146 #endif
2147 
2148 	return 0;
2149 }
2150 
2151 device_initcall(ia64_mca_late_init);
2152