1 /* 2 * File: mca.c 3 * Purpose: Generic MCA handling layer 4 * 5 * Copyright (C) 2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 8 * Copyright (C) 2002 Dell Inc. 9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> 10 * 11 * Copyright (C) 2002 Intel 12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> 13 * 14 * Copyright (C) 2001 Intel 15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> 16 * 17 * Copyright (C) 2000 Intel 18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> 19 * 20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. 21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com> 22 * 23 * Copyright (C) 2006 FUJITSU LIMITED 24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 25 * 26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> 27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 28 * added min save state dump, added INIT handler. 29 * 30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> 31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform 32 * errors, completed code for logging of corrected & uncorrected 33 * machine check errors, and updated for conformance with Nov. 2000 34 * revision of the SAL 3.0 spec. 35 * 36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> 37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, 38 * set SAL default return values, changed error record structure to 39 * linked list, added init call to sal_get_state_info_size(). 40 * 41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> 42 * GUID cleanups. 43 * 44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> 45 * Added INIT backtrace support. 46 * 47 * 2003-12-08 Keith Owens <kaos@sgi.com> 48 * smp_call_function() must not be called from interrupt context 49 * (can deadlock on tasklist_lock). 50 * Use keventd to call smp_call_function(). 51 * 52 * 2004-02-01 Keith Owens <kaos@sgi.com> 53 * Avoid deadlock when using printk() for MCA and INIT records. 54 * Delete all record printing code, moved to salinfo_decode in user 55 * space. Mark variables and functions static where possible. 56 * Delete dead variables and functions. Reorder to remove the need 57 * for forward declarations and to consolidate related code. 58 * 59 * 2005-08-12 Keith Owens <kaos@sgi.com> 60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS 61 * state. 62 * 63 * 2005-10-07 Keith Owens <kaos@sgi.com> 64 * Add notify_die() hooks. 65 * 66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 67 * Add printing support for MCA/INIT. 68 * 69 * 2007-04-27 Russ Anderson <rja@sgi.com> 70 * Support multiple cpus going through OS_MCA in the same event. 71 */ 72 #include <linux/jiffies.h> 73 #include <linux/types.h> 74 #include <linux/init.h> 75 #include <linux/sched.h> 76 #include <linux/interrupt.h> 77 #include <linux/irq.h> 78 #include <linux/bootmem.h> 79 #include <linux/acpi.h> 80 #include <linux/timer.h> 81 #include <linux/module.h> 82 #include <linux/kernel.h> 83 #include <linux/smp.h> 84 #include <linux/workqueue.h> 85 #include <linux/cpumask.h> 86 #include <linux/kdebug.h> 87 #include <linux/cpu.h> 88 #include <linux/gfp.h> 89 90 #include <asm/delay.h> 91 #include <asm/machvec.h> 92 #include <asm/meminit.h> 93 #include <asm/page.h> 94 #include <asm/ptrace.h> 95 #include <asm/sal.h> 96 #include <asm/mca.h> 97 #include <asm/kexec.h> 98 99 #include <asm/irq.h> 100 #include <asm/hw_irq.h> 101 #include <asm/tlb.h> 102 103 #include "mca_drv.h" 104 #include "entry.h" 105 106 #if defined(IA64_MCA_DEBUG_INFO) 107 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 108 #else 109 # define IA64_MCA_DEBUG(fmt...) 110 #endif 111 112 #define NOTIFY_INIT(event, regs, arg, spin) \ 113 do { \ 114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ 115 == NOTIFY_STOP) && ((spin) == 1)) \ 116 ia64_mca_spin(__func__); \ 117 } while (0) 118 119 #define NOTIFY_MCA(event, regs, arg, spin) \ 120 do { \ 121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ 122 == NOTIFY_STOP) && ((spin) == 1)) \ 123 ia64_mca_spin(__func__); \ 124 } while (0) 125 126 /* Used by mca_asm.S */ 127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 130 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ 132 133 unsigned long __per_cpu_mca[NR_CPUS]; 134 135 /* In mca_asm.S */ 136 extern void ia64_os_init_dispatch_monarch (void); 137 extern void ia64_os_init_dispatch_slave (void); 138 139 static int monarch_cpu = -1; 140 141 static ia64_mc_info_t ia64_mc_info; 142 143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 145 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 146 #define CPE_HISTORY_LENGTH 5 147 #define CMC_HISTORY_LENGTH 5 148 149 #ifdef CONFIG_ACPI 150 static struct timer_list cpe_poll_timer; 151 #endif 152 static struct timer_list cmc_poll_timer; 153 /* 154 * This variable tells whether we are currently in polling mode. 155 * Start with this in the wrong state so we won't play w/ timers 156 * before the system is ready. 157 */ 158 static int cmc_polling_enabled = 1; 159 160 /* 161 * Clearing this variable prevents CPE polling from getting activated 162 * in mca_late_init. Use it if your system doesn't provide a CPEI, 163 * but encounters problems retrieving CPE logs. This should only be 164 * necessary for debugging. 165 */ 166 static int cpe_poll_enabled = 1; 167 168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 169 170 static int mca_init __initdata; 171 172 /* 173 * limited & delayed printing support for MCA/INIT handler 174 */ 175 176 #define mprintk(fmt...) ia64_mca_printk(fmt) 177 178 #define MLOGBUF_SIZE (512+256*NR_CPUS) 179 #define MLOGBUF_MSGMAX 256 180 static char mlogbuf[MLOGBUF_SIZE]; 181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ 182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ 183 static unsigned long mlogbuf_start; 184 static unsigned long mlogbuf_end; 185 static unsigned int mlogbuf_finished = 0; 186 static unsigned long mlogbuf_timestamp = 0; 187 188 static int loglevel_save = -1; 189 #define BREAK_LOGLEVEL(__console_loglevel) \ 190 oops_in_progress = 1; \ 191 if (loglevel_save < 0) \ 192 loglevel_save = __console_loglevel; \ 193 __console_loglevel = 15; 194 195 #define RESTORE_LOGLEVEL(__console_loglevel) \ 196 if (loglevel_save >= 0) { \ 197 __console_loglevel = loglevel_save; \ 198 loglevel_save = -1; \ 199 } \ 200 mlogbuf_finished = 0; \ 201 oops_in_progress = 0; 202 203 /* 204 * Push messages into buffer, print them later if not urgent. 205 */ 206 void ia64_mca_printk(const char *fmt, ...) 207 { 208 va_list args; 209 int printed_len; 210 char temp_buf[MLOGBUF_MSGMAX]; 211 char *p; 212 213 va_start(args, fmt); 214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); 215 va_end(args); 216 217 /* Copy the output into mlogbuf */ 218 if (oops_in_progress) { 219 /* mlogbuf was abandoned, use printk directly instead. */ 220 printk("%s", temp_buf); 221 } else { 222 spin_lock(&mlogbuf_wlock); 223 for (p = temp_buf; *p; p++) { 224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; 225 if (next != mlogbuf_start) { 226 mlogbuf[mlogbuf_end] = *p; 227 mlogbuf_end = next; 228 } else { 229 /* buffer full */ 230 break; 231 } 232 } 233 mlogbuf[mlogbuf_end] = '\0'; 234 spin_unlock(&mlogbuf_wlock); 235 } 236 } 237 EXPORT_SYMBOL(ia64_mca_printk); 238 239 /* 240 * Print buffered messages. 241 * NOTE: call this after returning normal context. (ex. from salinfod) 242 */ 243 void ia64_mlogbuf_dump(void) 244 { 245 char temp_buf[MLOGBUF_MSGMAX]; 246 char *p; 247 unsigned long index; 248 unsigned long flags; 249 unsigned int printed_len; 250 251 /* Get output from mlogbuf */ 252 while (mlogbuf_start != mlogbuf_end) { 253 temp_buf[0] = '\0'; 254 p = temp_buf; 255 printed_len = 0; 256 257 spin_lock_irqsave(&mlogbuf_rlock, flags); 258 259 index = mlogbuf_start; 260 while (index != mlogbuf_end) { 261 *p = mlogbuf[index]; 262 index = (index + 1) % MLOGBUF_SIZE; 263 if (!*p) 264 break; 265 p++; 266 if (++printed_len >= MLOGBUF_MSGMAX - 1) 267 break; 268 } 269 *p = '\0'; 270 if (temp_buf[0]) 271 printk("%s", temp_buf); 272 mlogbuf_start = index; 273 274 mlogbuf_timestamp = 0; 275 spin_unlock_irqrestore(&mlogbuf_rlock, flags); 276 } 277 } 278 EXPORT_SYMBOL(ia64_mlogbuf_dump); 279 280 /* 281 * Call this if system is going to down or if immediate flushing messages to 282 * console is required. (ex. recovery was failed, crash dump is going to be 283 * invoked, long-wait rendezvous etc.) 284 * NOTE: this should be called from monarch. 285 */ 286 static void ia64_mlogbuf_finish(int wait) 287 { 288 BREAK_LOGLEVEL(console_loglevel); 289 290 spin_lock_init(&mlogbuf_rlock); 291 ia64_mlogbuf_dump(); 292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " 293 "MCA/INIT might be dodgy or fail.\n"); 294 295 if (!wait) 296 return; 297 298 /* wait for console */ 299 printk("Delaying for 5 seconds...\n"); 300 udelay(5*1000000); 301 302 mlogbuf_finished = 1; 303 } 304 305 /* 306 * Print buffered messages from INIT context. 307 */ 308 static void ia64_mlogbuf_dump_from_init(void) 309 { 310 if (mlogbuf_finished) 311 return; 312 313 if (mlogbuf_timestamp && 314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { 315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " 316 " and the system seems to be messed up.\n"); 317 ia64_mlogbuf_finish(0); 318 return; 319 } 320 321 if (!spin_trylock(&mlogbuf_rlock)) { 322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " 323 "Generated messages other than stack dump will be " 324 "buffered to mlogbuf and will be printed later.\n"); 325 printk(KERN_ERR "INIT: If messages would not printed after " 326 "this INIT, wait 30sec and assert INIT again.\n"); 327 if (!mlogbuf_timestamp) 328 mlogbuf_timestamp = jiffies; 329 return; 330 } 331 spin_unlock(&mlogbuf_rlock); 332 ia64_mlogbuf_dump(); 333 } 334 335 static void inline 336 ia64_mca_spin(const char *func) 337 { 338 if (monarch_cpu == smp_processor_id()) 339 ia64_mlogbuf_finish(0); 340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 341 while (1) 342 cpu_relax(); 343 } 344 /* 345 * IA64_MCA log support 346 */ 347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 349 350 typedef struct ia64_state_log_s 351 { 352 spinlock_t isl_lock; 353 int isl_index; 354 unsigned long isl_count; 355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 356 } ia64_state_log_t; 357 358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 359 360 #define IA64_LOG_ALLOCATE(it, size) \ 361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ 362 (ia64_err_rec_t *)alloc_bootmem(size); \ 363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ 364 (ia64_err_rec_t *)alloc_bootmem(size);} 365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 366 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 367 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 368 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 369 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 370 #define IA64_LOG_INDEX_INC(it) \ 371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 372 ia64_state_log[it].isl_count++;} 373 #define IA64_LOG_INDEX_DEC(it) \ 374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 375 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 376 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 377 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 378 379 /* 380 * ia64_log_init 381 * Reset the OS ia64 log buffer 382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 383 * Outputs : None 384 */ 385 static void __init 386 ia64_log_init(int sal_info_type) 387 { 388 u64 max_size = 0; 389 390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 391 IA64_LOG_LOCK_INIT(sal_info_type); 392 393 // SAL will tell us the maximum size of any error record of this type 394 max_size = ia64_sal_get_state_info_size(sal_info_type); 395 if (!max_size) 396 /* alloc_bootmem() doesn't like zero-sized allocations! */ 397 return; 398 399 // set up OS data structures to hold error info 400 IA64_LOG_ALLOCATE(sal_info_type, max_size); 401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); 402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); 403 } 404 405 /* 406 * ia64_log_get 407 * 408 * Get the current MCA log from SAL and copy it into the OS log buffer. 409 * 410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 411 * irq_safe whether you can use printk at this point 412 * Outputs : size (total record length) 413 * *buffer (ptr to error record) 414 * 415 */ 416 static u64 417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 418 { 419 sal_log_record_header_t *log_buffer; 420 u64 total_len = 0; 421 unsigned long s; 422 423 IA64_LOG_LOCK(sal_info_type); 424 425 /* Get the process state information */ 426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 427 428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 429 430 if (total_len) { 431 IA64_LOG_INDEX_INC(sal_info_type); 432 IA64_LOG_UNLOCK(sal_info_type); 433 if (irq_safe) { 434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", 435 __func__, sal_info_type, total_len); 436 } 437 *buffer = (u8 *) log_buffer; 438 return total_len; 439 } else { 440 IA64_LOG_UNLOCK(sal_info_type); 441 return 0; 442 } 443 } 444 445 /* 446 * ia64_mca_log_sal_error_record 447 * 448 * This function retrieves a specified error record type from SAL 449 * and wakes up any processes waiting for error records. 450 * 451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 452 * FIXME: remove MCA and irq_safe. 453 */ 454 static void 455 ia64_mca_log_sal_error_record(int sal_info_type) 456 { 457 u8 *buffer; 458 sal_log_record_header_t *rh; 459 u64 size; 460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 461 #ifdef IA64_MCA_DEBUG_INFO 462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 463 #endif 464 465 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 466 if (!size) 467 return; 468 469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 470 471 if (irq_safe) 472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 473 smp_processor_id(), 474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 475 476 /* Clear logs from corrected errors in case there's no user-level logger */ 477 rh = (sal_log_record_header_t *)buffer; 478 if (rh->severity == sal_log_severity_corrected) 479 ia64_sal_clear_state_info(sal_info_type); 480 } 481 482 /* 483 * search_mca_table 484 * See if the MCA surfaced in an instruction range 485 * that has been tagged as recoverable. 486 * 487 * Inputs 488 * first First address range to check 489 * last Last address range to check 490 * ip Instruction pointer, address we are looking for 491 * 492 * Return value: 493 * 1 on Success (in the table)/ 0 on Failure (not in the table) 494 */ 495 int 496 search_mca_table (const struct mca_table_entry *first, 497 const struct mca_table_entry *last, 498 unsigned long ip) 499 { 500 const struct mca_table_entry *curr; 501 u64 curr_start, curr_end; 502 503 curr = first; 504 while (curr <= last) { 505 curr_start = (u64) &curr->start_addr + curr->start_addr; 506 curr_end = (u64) &curr->end_addr + curr->end_addr; 507 508 if ((ip >= curr_start) && (ip <= curr_end)) { 509 return 1; 510 } 511 curr++; 512 } 513 return 0; 514 } 515 516 /* Given an address, look for it in the mca tables. */ 517 int mca_recover_range(unsigned long addr) 518 { 519 extern struct mca_table_entry __start___mca_table[]; 520 extern struct mca_table_entry __stop___mca_table[]; 521 522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); 523 } 524 EXPORT_SYMBOL_GPL(mca_recover_range); 525 526 #ifdef CONFIG_ACPI 527 528 int cpe_vector = -1; 529 int ia64_cpe_irq = -1; 530 531 static irqreturn_t 532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg) 533 { 534 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 535 static int index; 536 static DEFINE_SPINLOCK(cpe_history_lock); 537 538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 539 __func__, cpe_irq, smp_processor_id()); 540 541 /* SAL spec states this should run w/ interrupts enabled */ 542 local_irq_enable(); 543 544 spin_lock(&cpe_history_lock); 545 if (!cpe_poll_enabled && cpe_vector >= 0) { 546 547 int i, count = 1; /* we know 1 happened now */ 548 unsigned long now = jiffies; 549 550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 551 if (now - cpe_history[i] <= HZ) 552 count++; 553 } 554 555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 556 if (count >= CPE_HISTORY_LENGTH) { 557 558 cpe_poll_enabled = 1; 559 spin_unlock(&cpe_history_lock); 560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 561 562 /* 563 * Corrected errors will still be corrected, but 564 * make sure there's a log somewhere that indicates 565 * something is generating more than we can handle. 566 */ 567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 568 569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 570 571 /* lock already released, get out now */ 572 goto out; 573 } else { 574 cpe_history[index++] = now; 575 if (index == CPE_HISTORY_LENGTH) 576 index = 0; 577 } 578 } 579 spin_unlock(&cpe_history_lock); 580 out: 581 /* Get the CPE error record and log it */ 582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 583 584 local_irq_disable(); 585 586 return IRQ_HANDLED; 587 } 588 589 #endif /* CONFIG_ACPI */ 590 591 #ifdef CONFIG_ACPI 592 /* 593 * ia64_mca_register_cpev 594 * 595 * Register the corrected platform error vector with SAL. 596 * 597 * Inputs 598 * cpev Corrected Platform Error Vector number 599 * 600 * Outputs 601 * None 602 */ 603 void 604 ia64_mca_register_cpev (int cpev) 605 { 606 /* Register the CPE interrupt vector with SAL */ 607 struct ia64_sal_retval isrv; 608 609 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 610 if (isrv.status) { 611 printk(KERN_ERR "Failed to register Corrected Platform " 612 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 613 return; 614 } 615 616 IA64_MCA_DEBUG("%s: corrected platform error " 617 "vector %#x registered\n", __func__, cpev); 618 } 619 #endif /* CONFIG_ACPI */ 620 621 /* 622 * ia64_mca_cmc_vector_setup 623 * 624 * Setup the corrected machine check vector register in the processor. 625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 626 * This function is invoked on a per-processor basis. 627 * 628 * Inputs 629 * None 630 * 631 * Outputs 632 * None 633 */ 634 void 635 ia64_mca_cmc_vector_setup (void) 636 { 637 cmcv_reg_t cmcv; 638 639 cmcv.cmcv_regval = 0; 640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 641 cmcv.cmcv_vector = IA64_CMC_VECTOR; 642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 643 644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", 645 __func__, smp_processor_id(), IA64_CMC_VECTOR); 646 647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 648 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 649 } 650 651 /* 652 * ia64_mca_cmc_vector_disable 653 * 654 * Mask the corrected machine check vector register in the processor. 655 * This function is invoked on a per-processor basis. 656 * 657 * Inputs 658 * dummy(unused) 659 * 660 * Outputs 661 * None 662 */ 663 static void 664 ia64_mca_cmc_vector_disable (void *dummy) 665 { 666 cmcv_reg_t cmcv; 667 668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 669 670 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 672 673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", 674 __func__, smp_processor_id(), cmcv.cmcv_vector); 675 } 676 677 /* 678 * ia64_mca_cmc_vector_enable 679 * 680 * Unmask the corrected machine check vector register in the processor. 681 * This function is invoked on a per-processor basis. 682 * 683 * Inputs 684 * dummy(unused) 685 * 686 * Outputs 687 * None 688 */ 689 static void 690 ia64_mca_cmc_vector_enable (void *dummy) 691 { 692 cmcv_reg_t cmcv; 693 694 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 695 696 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 697 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 698 699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", 700 __func__, smp_processor_id(), cmcv.cmcv_vector); 701 } 702 703 /* 704 * ia64_mca_cmc_vector_disable_keventd 705 * 706 * Called via keventd (smp_call_function() is not safe in interrupt context) to 707 * disable the cmc interrupt vector. 708 */ 709 static void 710 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) 711 { 712 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); 713 } 714 715 /* 716 * ia64_mca_cmc_vector_enable_keventd 717 * 718 * Called via keventd (smp_call_function() is not safe in interrupt context) to 719 * enable the cmc interrupt vector. 720 */ 721 static void 722 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) 723 { 724 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); 725 } 726 727 /* 728 * ia64_mca_wakeup 729 * 730 * Send an inter-cpu interrupt to wake-up a particular cpu. 731 * 732 * Inputs : cpuid 733 * Outputs : None 734 */ 735 static void 736 ia64_mca_wakeup(int cpu) 737 { 738 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 739 } 740 741 /* 742 * ia64_mca_wakeup_all 743 * 744 * Wakeup all the slave cpus which have rendez'ed previously. 745 * 746 * Inputs : None 747 * Outputs : None 748 */ 749 static void 750 ia64_mca_wakeup_all(void) 751 { 752 int cpu; 753 754 /* Clear the Rendez checkin flag for all cpus */ 755 for_each_online_cpu(cpu) { 756 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 757 ia64_mca_wakeup(cpu); 758 } 759 760 } 761 762 /* 763 * ia64_mca_rendez_interrupt_handler 764 * 765 * This is handler used to put slave processors into spinloop 766 * while the monarch processor does the mca handling and later 767 * wake each slave up once the monarch is done. The state 768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed 769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates 770 * the cpu has come out of OS rendezvous. 771 * 772 * Inputs : None 773 * Outputs : None 774 */ 775 static irqreturn_t 776 ia64_mca_rendez_int_handler(int rendez_irq, void *arg) 777 { 778 unsigned long flags; 779 int cpu = smp_processor_id(); 780 struct ia64_mca_notify_die nd = 781 { .sos = NULL, .monarch_cpu = &monarch_cpu }; 782 783 /* Mask all interrupts */ 784 local_irq_save(flags); 785 786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); 787 788 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 789 /* Register with the SAL monarch that the slave has 790 * reached SAL 791 */ 792 ia64_sal_mc_rendez(); 793 794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); 795 796 /* Wait for the monarch cpu to exit. */ 797 while (monarch_cpu != -1) 798 cpu_relax(); /* spin until monarch leaves */ 799 800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); 801 802 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 803 /* Enable all interrupts */ 804 local_irq_restore(flags); 805 return IRQ_HANDLED; 806 } 807 808 /* 809 * ia64_mca_wakeup_int_handler 810 * 811 * The interrupt handler for processing the inter-cpu interrupt to the 812 * slave cpu which was spinning in the rendez loop. 813 * Since this spinning is done by turning off the interrupts and 814 * polling on the wakeup-interrupt bit in the IRR, there is 815 * nothing useful to be done in the handler. 816 * 817 * Inputs : wakeup_irq (Wakeup-interrupt bit) 818 * arg (Interrupt handler specific argument) 819 * Outputs : None 820 * 821 */ 822 static irqreturn_t 823 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) 824 { 825 return IRQ_HANDLED; 826 } 827 828 /* Function pointer for extra MCA recovery */ 829 int (*ia64_mca_ucmc_extension) 830 (void*,struct ia64_sal_os_state*) 831 = NULL; 832 833 int 834 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 835 { 836 if (ia64_mca_ucmc_extension) 837 return 1; 838 839 ia64_mca_ucmc_extension = fn; 840 return 0; 841 } 842 843 void 844 ia64_unreg_MCA_extension(void) 845 { 846 if (ia64_mca_ucmc_extension) 847 ia64_mca_ucmc_extension = NULL; 848 } 849 850 EXPORT_SYMBOL(ia64_reg_MCA_extension); 851 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 852 853 854 static inline void 855 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) 856 { 857 u64 fslot, tslot, nat; 858 *tr = *fr; 859 fslot = ((unsigned long)fr >> 3) & 63; 860 tslot = ((unsigned long)tr >> 3) & 63; 861 *tnat &= ~(1UL << tslot); 862 nat = (fnat >> fslot) & 1; 863 *tnat |= (nat << tslot); 864 } 865 866 /* Change the comm field on the MCA/INT task to include the pid that 867 * was interrupted, it makes for easier debugging. If that pid was 0 868 * (swapper or nested MCA/INIT) then use the start of the previous comm 869 * field suffixed with its cpu. 870 */ 871 872 static void 873 ia64_mca_modify_comm(const struct task_struct *previous_current) 874 { 875 char *p, comm[sizeof(current->comm)]; 876 if (previous_current->pid) 877 snprintf(comm, sizeof(comm), "%s %d", 878 current->comm, previous_current->pid); 879 else { 880 int l; 881 if ((p = strchr(previous_current->comm, ' '))) 882 l = p - previous_current->comm; 883 else 884 l = strlen(previous_current->comm); 885 snprintf(comm, sizeof(comm), "%s %*s %d", 886 current->comm, l, previous_current->comm, 887 task_thread_info(previous_current)->cpu); 888 } 889 memcpy(current->comm, comm, sizeof(current->comm)); 890 } 891 892 static void 893 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, 894 unsigned long *nat) 895 { 896 const pal_min_state_area_t *ms = sos->pal_min_state; 897 const u64 *bank; 898 899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 900 * pmsa_{xip,xpsr,xfs} 901 */ 902 if (ia64_psr(regs)->ic) { 903 regs->cr_iip = ms->pmsa_iip; 904 regs->cr_ipsr = ms->pmsa_ipsr; 905 regs->cr_ifs = ms->pmsa_ifs; 906 } else { 907 regs->cr_iip = ms->pmsa_xip; 908 regs->cr_ipsr = ms->pmsa_xpsr; 909 regs->cr_ifs = ms->pmsa_xfs; 910 911 sos->iip = ms->pmsa_iip; 912 sos->ipsr = ms->pmsa_ipsr; 913 sos->ifs = ms->pmsa_ifs; 914 } 915 regs->pr = ms->pmsa_pr; 916 regs->b0 = ms->pmsa_br0; 917 regs->ar_rsc = ms->pmsa_rsc; 918 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); 919 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); 920 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); 921 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); 922 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); 923 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); 924 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); 925 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); 926 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); 927 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); 928 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); 929 if (ia64_psr(regs)->bn) 930 bank = ms->pmsa_bank1_gr; 931 else 932 bank = ms->pmsa_bank0_gr; 933 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); 934 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); 935 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); 936 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); 937 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); 938 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); 939 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); 940 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); 941 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); 942 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); 943 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); 944 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); 945 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); 946 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); 947 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); 948 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); 949 } 950 951 /* On entry to this routine, we are running on the per cpu stack, see 952 * mca_asm.h. The original stack has not been touched by this event. Some of 953 * the original stack's registers will be in the RBS on this stack. This stack 954 * also contains a partial pt_regs and switch_stack, the rest of the data is in 955 * PAL minstate. 956 * 957 * The first thing to do is modify the original stack to look like a blocked 958 * task so we can run backtrace on the original task. Also mark the per cpu 959 * stack as current to ensure that we use the correct task state, it also means 960 * that we can do backtrace on the MCA/INIT handler code itself. 961 */ 962 963 static struct task_struct * 964 ia64_mca_modify_original_stack(struct pt_regs *regs, 965 const struct switch_stack *sw, 966 struct ia64_sal_os_state *sos, 967 const char *type) 968 { 969 char *p; 970 ia64_va va; 971 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 972 const pal_min_state_area_t *ms = sos->pal_min_state; 973 struct task_struct *previous_current; 974 struct pt_regs *old_regs; 975 struct switch_stack *old_sw; 976 unsigned size = sizeof(struct pt_regs) + 977 sizeof(struct switch_stack) + 16; 978 unsigned long *old_bspstore, *old_bsp; 979 unsigned long *new_bspstore, *new_bsp; 980 unsigned long old_unat, old_rnat, new_rnat, nat; 981 u64 slots, loadrs = regs->loadrs; 982 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 983 u64 ar_bspstore = regs->ar_bspstore; 984 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 985 const char *msg; 986 int cpu = smp_processor_id(); 987 988 previous_current = curr_task(cpu); 989 set_curr_task(cpu, current); 990 if ((p = strchr(current->comm, ' '))) 991 *p = '\0'; 992 993 /* Best effort attempt to cope with MCA/INIT delivered while in 994 * physical mode. 995 */ 996 regs->cr_ipsr = ms->pmsa_ipsr; 997 if (ia64_psr(regs)->dt == 0) { 998 va.l = r12; 999 if (va.f.reg == 0) { 1000 va.f.reg = 7; 1001 r12 = va.l; 1002 } 1003 va.l = r13; 1004 if (va.f.reg == 0) { 1005 va.f.reg = 7; 1006 r13 = va.l; 1007 } 1008 } 1009 if (ia64_psr(regs)->rt == 0) { 1010 va.l = ar_bspstore; 1011 if (va.f.reg == 0) { 1012 va.f.reg = 7; 1013 ar_bspstore = va.l; 1014 } 1015 va.l = ar_bsp; 1016 if (va.f.reg == 0) { 1017 va.f.reg = 7; 1018 ar_bsp = va.l; 1019 } 1020 } 1021 1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 1023 * have been copied to the old stack, the old stack may fail the 1024 * validation tests below. So ia64_old_stack() must restore the dirty 1025 * registers from the new stack. The old and new bspstore probably 1026 * have different alignments, so loadrs calculated on the old bsp 1027 * cannot be used to restore from the new bsp. Calculate a suitable 1028 * loadrs for the new stack and save it in the new pt_regs, where 1029 * ia64_old_stack() can get it. 1030 */ 1031 old_bspstore = (unsigned long *)ar_bspstore; 1032 old_bsp = (unsigned long *)ar_bsp; 1033 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 1034 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); 1035 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 1036 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 1037 1038 /* Verify the previous stack state before we change it */ 1039 if (user_mode(regs)) { 1040 msg = "occurred in user space"; 1041 /* previous_current is guaranteed to be valid when the task was 1042 * in user space, so ... 1043 */ 1044 ia64_mca_modify_comm(previous_current); 1045 goto no_mod; 1046 } 1047 1048 if (r13 != sos->prev_IA64_KR_CURRENT) { 1049 msg = "inconsistent previous current and r13"; 1050 goto no_mod; 1051 } 1052 1053 if (!mca_recover_range(ms->pmsa_iip)) { 1054 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 1055 msg = "inconsistent r12 and r13"; 1056 goto no_mod; 1057 } 1058 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 1059 msg = "inconsistent ar.bspstore and r13"; 1060 goto no_mod; 1061 } 1062 va.p = old_bspstore; 1063 if (va.f.reg < 5) { 1064 msg = "old_bspstore is in the wrong region"; 1065 goto no_mod; 1066 } 1067 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 1068 msg = "inconsistent ar.bsp and r13"; 1069 goto no_mod; 1070 } 1071 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 1072 if (ar_bspstore + size > r12) { 1073 msg = "no room for blocked state"; 1074 goto no_mod; 1075 } 1076 } 1077 1078 ia64_mca_modify_comm(previous_current); 1079 1080 /* Make the original task look blocked. First stack a struct pt_regs, 1081 * describing the state at the time of interrupt. mca_asm.S built a 1082 * partial pt_regs, copy it and fill in the blanks using minstate. 1083 */ 1084 p = (char *)r12 - sizeof(*regs); 1085 old_regs = (struct pt_regs *)p; 1086 memcpy(old_regs, regs, sizeof(*regs)); 1087 old_regs->loadrs = loadrs; 1088 old_unat = old_regs->ar_unat; 1089 finish_pt_regs(old_regs, sos, &old_unat); 1090 1091 /* Next stack a struct switch_stack. mca_asm.S built a partial 1092 * switch_stack, copy it and fill in the blanks using pt_regs and 1093 * minstate. 1094 * 1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 1096 * ar.pfs is set to 0. 1097 * 1098 * unwind.c::unw_unwind() does special processing for interrupt frames. 1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the 1102 * switch_stack on the original stack so it will unwind correctly when 1103 * unwind.c reads pt_regs. 1104 * 1105 * thread.ksp is updated to point to the synthesized switch_stack. 1106 */ 1107 p -= sizeof(struct switch_stack); 1108 old_sw = (struct switch_stack *)p; 1109 memcpy(old_sw, sw, sizeof(*sw)); 1110 old_sw->caller_unat = old_unat; 1111 old_sw->ar_fpsr = old_regs->ar_fpsr; 1112 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 1113 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 1114 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 1115 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 1116 old_sw->b0 = (u64)ia64_leave_kernel; 1117 old_sw->b1 = ms->pmsa_br1; 1118 old_sw->ar_pfs = 0; 1119 old_sw->ar_unat = old_unat; 1120 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 1121 previous_current->thread.ksp = (u64)p - 16; 1122 1123 /* Finally copy the original stack's registers back to its RBS. 1124 * Registers from ar.bspstore through ar.bsp at the time of the event 1125 * are in the current RBS, copy them back to the original stack. The 1126 * copy must be done register by register because the original bspstore 1127 * and the current one have different alignments, so the saved RNAT 1128 * data occurs at different places. 1129 * 1130 * mca_asm does cover, so the old_bsp already includes all registers at 1131 * the time of MCA/INIT. It also does flushrs, so all registers before 1132 * this function have been written to backing store on the MCA/INIT 1133 * stack. 1134 */ 1135 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 1136 old_rnat = regs->ar_rnat; 1137 while (slots--) { 1138 if (ia64_rse_is_rnat_slot(new_bspstore)) { 1139 new_rnat = ia64_get_rnat(new_bspstore++); 1140 } 1141 if (ia64_rse_is_rnat_slot(old_bspstore)) { 1142 *old_bspstore++ = old_rnat; 1143 old_rnat = 0; 1144 } 1145 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 1146 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 1147 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 1148 *old_bspstore++ = *new_bspstore++; 1149 } 1150 old_sw->ar_bspstore = (unsigned long)old_bspstore; 1151 old_sw->ar_rnat = old_rnat; 1152 1153 sos->prev_task = previous_current; 1154 return previous_current; 1155 1156 no_mod: 1157 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 1158 smp_processor_id(), type, msg); 1159 old_unat = regs->ar_unat; 1160 finish_pt_regs(regs, sos, &old_unat); 1161 return previous_current; 1162 } 1163 1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all 1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has 1166 * not entered rendezvous yet then wait a bit. The assumption is that any 1167 * slave that has not rendezvoused after a reasonable time is never going to do 1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous 1169 * interrupt, as well as cpus that receive the INIT slave event. 1170 */ 1171 1172 static void 1173 ia64_wait_for_slaves(int monarch, const char *type) 1174 { 1175 int c, i , wait; 1176 1177 /* 1178 * wait 5 seconds total for slaves (arbitrary) 1179 */ 1180 for (i = 0; i < 5000; i++) { 1181 wait = 0; 1182 for_each_online_cpu(c) { 1183 if (c == monarch) 1184 continue; 1185 if (ia64_mc_info.imi_rendez_checkin[c] 1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 1187 udelay(1000); /* short wait */ 1188 wait = 1; 1189 break; 1190 } 1191 } 1192 if (!wait) 1193 goto all_in; 1194 } 1195 1196 /* 1197 * Maybe slave(s) dead. Print buffered messages immediately. 1198 */ 1199 ia64_mlogbuf_finish(0); 1200 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); 1201 for_each_online_cpu(c) { 1202 if (c == monarch) 1203 continue; 1204 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 1205 mprintk(" %d", c); 1206 } 1207 mprintk("\n"); 1208 return; 1209 1210 all_in: 1211 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); 1212 return; 1213 } 1214 1215 /* mca_insert_tr 1216 * 1217 * Switch rid when TR reload and needed! 1218 * iord: 1: itr, 2: itr; 1219 * 1220 */ 1221 static void mca_insert_tr(u64 iord) 1222 { 1223 1224 int i; 1225 u64 old_rr; 1226 struct ia64_tr_entry *p; 1227 unsigned long psr; 1228 int cpu = smp_processor_id(); 1229 1230 if (!ia64_idtrs[cpu]) 1231 return; 1232 1233 psr = ia64_clear_ic(); 1234 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { 1235 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; 1236 if (p->pte & 0x1) { 1237 old_rr = ia64_get_rr(p->ifa); 1238 if (old_rr != p->rr) { 1239 ia64_set_rr(p->ifa, p->rr); 1240 ia64_srlz_d(); 1241 } 1242 ia64_ptr(iord, p->ifa, p->itir >> 2); 1243 ia64_srlz_i(); 1244 if (iord & 0x1) { 1245 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); 1246 ia64_srlz_i(); 1247 } 1248 if (iord & 0x2) { 1249 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); 1250 ia64_srlz_i(); 1251 } 1252 if (old_rr != p->rr) { 1253 ia64_set_rr(p->ifa, old_rr); 1254 ia64_srlz_d(); 1255 } 1256 } 1257 } 1258 ia64_set_psr(psr); 1259 } 1260 1261 /* 1262 * ia64_mca_handler 1263 * 1264 * This is uncorrectable machine check handler called from OS_MCA 1265 * dispatch code which is in turn called from SAL_CHECK(). 1266 * This is the place where the core of OS MCA handling is done. 1267 * Right now the logs are extracted and displayed in a well-defined 1268 * format. This handler code is supposed to be run only on the 1269 * monarch processor. Once the monarch is done with MCA handling 1270 * further MCA logging is enabled by clearing logs. 1271 * Monarch also has the duty of sending wakeup-IPIs to pull the 1272 * slave processors out of rendezvous spinloop. 1273 * 1274 * If multiple processors call into OS_MCA, the first will become 1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu 1276 * bitmask. After the first monarch has processed its MCA, it 1277 * will wake up the next cpu in the mca_cpu bitmask and then go 1278 * into the rendezvous loop. When all processors have serviced 1279 * their MCA, the last monarch frees up the rest of the processors. 1280 */ 1281 void 1282 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 1283 struct ia64_sal_os_state *sos) 1284 { 1285 int recover, cpu = smp_processor_id(); 1286 struct task_struct *previous_current; 1287 struct ia64_mca_notify_die nd = 1288 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; 1289 static atomic_t mca_count; 1290 static cpumask_t mca_cpu; 1291 1292 if (atomic_add_return(1, &mca_count) == 1) { 1293 monarch_cpu = cpu; 1294 sos->monarch = 1; 1295 } else { 1296 cpumask_set_cpu(cpu, &mca_cpu); 1297 sos->monarch = 0; 1298 } 1299 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " 1300 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); 1301 1302 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 1303 1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); 1305 1306 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; 1307 if (sos->monarch) { 1308 ia64_wait_for_slaves(cpu, "MCA"); 1309 1310 /* Wakeup all the processors which are spinning in the 1311 * rendezvous loop. They will leave SAL, then spin in the OS 1312 * with interrupts disabled until this monarch cpu leaves the 1313 * MCA handler. That gets control back to the OS so we can 1314 * backtrace the other cpus, backtrace when spinning in SAL 1315 * does not work. 1316 */ 1317 ia64_mca_wakeup_all(); 1318 } else { 1319 while (cpumask_test_cpu(cpu, &mca_cpu)) 1320 cpu_relax(); /* spin until monarch wakes us */ 1321 } 1322 1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); 1324 1325 /* Get the MCA error record and log it */ 1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1327 1328 /* MCA error recovery */ 1329 recover = (ia64_mca_ucmc_extension 1330 && ia64_mca_ucmc_extension( 1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1332 sos)); 1333 1334 if (recover) { 1335 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1336 rh->severity = sal_log_severity_corrected; 1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1338 sos->os_status = IA64_MCA_CORRECTED; 1339 } else { 1340 /* Dump buffered message to console */ 1341 ia64_mlogbuf_finish(1); 1342 } 1343 1344 if (__this_cpu_read(ia64_mca_tr_reload)) { 1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/ 1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/ 1347 } 1348 1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); 1350 1351 if (atomic_dec_return(&mca_count) > 0) { 1352 int i; 1353 1354 /* wake up the next monarch cpu, 1355 * and put this cpu in the rendez loop. 1356 */ 1357 for_each_online_cpu(i) { 1358 if (cpumask_test_cpu(i, &mca_cpu)) { 1359 monarch_cpu = i; 1360 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ 1361 while (monarch_cpu != -1) 1362 cpu_relax(); /* spin until last cpu leaves */ 1363 set_curr_task(cpu, previous_current); 1364 ia64_mc_info.imi_rendez_checkin[cpu] 1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1366 return; 1367 } 1368 } 1369 } 1370 set_curr_task(cpu, previous_current); 1371 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1372 monarch_cpu = -1; /* This frees the slaves and previous monarchs */ 1373 } 1374 1375 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); 1376 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); 1377 1378 /* 1379 * ia64_mca_cmc_int_handler 1380 * 1381 * This is corrected machine check interrupt handler. 1382 * Right now the logs are extracted and displayed in a well-defined 1383 * format. 1384 * 1385 * Inputs 1386 * interrupt number 1387 * client data arg ptr 1388 * 1389 * Outputs 1390 * None 1391 */ 1392 static irqreturn_t 1393 ia64_mca_cmc_int_handler(int cmc_irq, void *arg) 1394 { 1395 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1396 static int index; 1397 static DEFINE_SPINLOCK(cmc_history_lock); 1398 1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1400 __func__, cmc_irq, smp_processor_id()); 1401 1402 /* SAL spec states this should run w/ interrupts enabled */ 1403 local_irq_enable(); 1404 1405 spin_lock(&cmc_history_lock); 1406 if (!cmc_polling_enabled) { 1407 int i, count = 1; /* we know 1 happened now */ 1408 unsigned long now = jiffies; 1409 1410 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1411 if (now - cmc_history[i] <= HZ) 1412 count++; 1413 } 1414 1415 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1416 if (count >= CMC_HISTORY_LENGTH) { 1417 1418 cmc_polling_enabled = 1; 1419 spin_unlock(&cmc_history_lock); 1420 /* If we're being hit with CMC interrupts, we won't 1421 * ever execute the schedule_work() below. Need to 1422 * disable CMC interrupts on this processor now. 1423 */ 1424 ia64_mca_cmc_vector_disable(NULL); 1425 schedule_work(&cmc_disable_work); 1426 1427 /* 1428 * Corrected errors will still be corrected, but 1429 * make sure there's a log somewhere that indicates 1430 * something is generating more than we can handle. 1431 */ 1432 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1433 1434 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1435 1436 /* lock already released, get out now */ 1437 goto out; 1438 } else { 1439 cmc_history[index++] = now; 1440 if (index == CMC_HISTORY_LENGTH) 1441 index = 0; 1442 } 1443 } 1444 spin_unlock(&cmc_history_lock); 1445 out: 1446 /* Get the CMC error record and log it */ 1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1448 1449 local_irq_disable(); 1450 1451 return IRQ_HANDLED; 1452 } 1453 1454 /* 1455 * ia64_mca_cmc_int_caller 1456 * 1457 * Triggered by sw interrupt from CMC polling routine. Calls 1458 * real interrupt handler and either triggers a sw interrupt 1459 * on the next cpu or does cleanup at the end. 1460 * 1461 * Inputs 1462 * interrupt number 1463 * client data arg ptr 1464 * Outputs 1465 * handled 1466 */ 1467 static irqreturn_t 1468 ia64_mca_cmc_int_caller(int cmc_irq, void *arg) 1469 { 1470 static int start_count = -1; 1471 unsigned int cpuid; 1472 1473 cpuid = smp_processor_id(); 1474 1475 /* If first cpu, update count */ 1476 if (start_count == -1) 1477 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1478 1479 ia64_mca_cmc_int_handler(cmc_irq, arg); 1480 1481 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1482 1483 if (cpuid < nr_cpu_ids) { 1484 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1485 } else { 1486 /* If no log record, switch out of polling mode */ 1487 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1488 1489 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1490 schedule_work(&cmc_enable_work); 1491 cmc_polling_enabled = 0; 1492 1493 } else { 1494 1495 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1496 } 1497 1498 start_count = -1; 1499 } 1500 1501 return IRQ_HANDLED; 1502 } 1503 1504 /* 1505 * ia64_mca_cmc_poll 1506 * 1507 * Poll for Corrected Machine Checks (CMCs) 1508 * 1509 * Inputs : dummy(unused) 1510 * Outputs : None 1511 * 1512 */ 1513 static void 1514 ia64_mca_cmc_poll (unsigned long dummy) 1515 { 1516 /* Trigger a CMC interrupt cascade */ 1517 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, 1518 IA64_IPI_DM_INT, 0); 1519 } 1520 1521 /* 1522 * ia64_mca_cpe_int_caller 1523 * 1524 * Triggered by sw interrupt from CPE polling routine. Calls 1525 * real interrupt handler and either triggers a sw interrupt 1526 * on the next cpu or does cleanup at the end. 1527 * 1528 * Inputs 1529 * interrupt number 1530 * client data arg ptr 1531 * Outputs 1532 * handled 1533 */ 1534 #ifdef CONFIG_ACPI 1535 1536 static irqreturn_t 1537 ia64_mca_cpe_int_caller(int cpe_irq, void *arg) 1538 { 1539 static int start_count = -1; 1540 static int poll_time = MIN_CPE_POLL_INTERVAL; 1541 unsigned int cpuid; 1542 1543 cpuid = smp_processor_id(); 1544 1545 /* If first cpu, update count */ 1546 if (start_count == -1) 1547 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1548 1549 ia64_mca_cpe_int_handler(cpe_irq, arg); 1550 1551 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1552 1553 if (cpuid < NR_CPUS) { 1554 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1555 } else { 1556 /* 1557 * If a log was recorded, increase our polling frequency, 1558 * otherwise, backoff or return to interrupt mode. 1559 */ 1560 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1561 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1562 } else if (cpe_vector < 0) { 1563 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1564 } else { 1565 poll_time = MIN_CPE_POLL_INTERVAL; 1566 1567 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1568 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1569 cpe_poll_enabled = 0; 1570 } 1571 1572 if (cpe_poll_enabled) 1573 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1574 start_count = -1; 1575 } 1576 1577 return IRQ_HANDLED; 1578 } 1579 1580 /* 1581 * ia64_mca_cpe_poll 1582 * 1583 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1584 * on first cpu, from there it will trickle through all the cpus. 1585 * 1586 * Inputs : dummy(unused) 1587 * Outputs : None 1588 * 1589 */ 1590 static void 1591 ia64_mca_cpe_poll (unsigned long dummy) 1592 { 1593 /* Trigger a CPE interrupt cascade */ 1594 platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, 1595 IA64_IPI_DM_INT, 0); 1596 } 1597 1598 #endif /* CONFIG_ACPI */ 1599 1600 static int 1601 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1602 { 1603 int c; 1604 struct task_struct *g, *t; 1605 if (val != DIE_INIT_MONARCH_PROCESS) 1606 return NOTIFY_DONE; 1607 #ifdef CONFIG_KEXEC 1608 if (atomic_read(&kdump_in_progress)) 1609 return NOTIFY_DONE; 1610 #endif 1611 1612 /* 1613 * FIXME: mlogbuf will brim over with INIT stack dumps. 1614 * To enable show_stack from INIT, we use oops_in_progress which should 1615 * be used in real oops. This would cause something wrong after INIT. 1616 */ 1617 BREAK_LOGLEVEL(console_loglevel); 1618 ia64_mlogbuf_dump_from_init(); 1619 1620 printk(KERN_ERR "Processes interrupted by INIT -"); 1621 for_each_online_cpu(c) { 1622 struct ia64_sal_os_state *s; 1623 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1624 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1625 g = s->prev_task; 1626 if (g) { 1627 if (g->pid) 1628 printk(" %d", g->pid); 1629 else 1630 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1631 } 1632 } 1633 printk("\n\n"); 1634 if (read_trylock(&tasklist_lock)) { 1635 do_each_thread (g, t) { 1636 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1637 show_stack(t, NULL); 1638 } while_each_thread (g, t); 1639 read_unlock(&tasklist_lock); 1640 } 1641 /* FIXME: This will not restore zapped printk locks. */ 1642 RESTORE_LOGLEVEL(console_loglevel); 1643 return NOTIFY_DONE; 1644 } 1645 1646 /* 1647 * C portion of the OS INIT handler 1648 * 1649 * Called from ia64_os_init_dispatch 1650 * 1651 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1652 * this event. This code is used for both monarch and slave INIT events, see 1653 * sos->monarch. 1654 * 1655 * All INIT events switch to the INIT stack and change the previous process to 1656 * blocked status. If one of the INIT events is the monarch then we are 1657 * probably processing the nmi button/command. Use the monarch cpu to dump all 1658 * the processes. The slave INIT events all spin until the monarch cpu 1659 * returns. We can also get INIT slave events for MCA, in which case the MCA 1660 * process is the monarch. 1661 */ 1662 1663 void 1664 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1665 struct ia64_sal_os_state *sos) 1666 { 1667 static atomic_t slaves; 1668 static atomic_t monarchs; 1669 struct task_struct *previous_current; 1670 int cpu = smp_processor_id(); 1671 struct ia64_mca_notify_die nd = 1672 { .sos = sos, .monarch_cpu = &monarch_cpu }; 1673 1674 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); 1675 1676 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1677 sos->proc_state_param, cpu, sos->monarch); 1678 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1679 1680 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1681 sos->os_status = IA64_INIT_RESUME; 1682 1683 /* FIXME: Workaround for broken proms that drive all INIT events as 1684 * slaves. The last slave that enters is promoted to be a monarch. 1685 * Remove this code in September 2006, that gives platforms a year to 1686 * fix their proms and get their customers updated. 1687 */ 1688 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1689 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1690 __func__, cpu); 1691 atomic_dec(&slaves); 1692 sos->monarch = 1; 1693 } 1694 1695 /* FIXME: Workaround for broken proms that drive all INIT events as 1696 * monarchs. Second and subsequent monarchs are demoted to slaves. 1697 * Remove this code in September 2006, that gives platforms a year to 1698 * fix their proms and get their customers updated. 1699 */ 1700 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1701 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1702 __func__, cpu); 1703 atomic_dec(&monarchs); 1704 sos->monarch = 0; 1705 } 1706 1707 if (!sos->monarch) { 1708 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1709 1710 #ifdef CONFIG_KEXEC 1711 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) 1712 udelay(1000); 1713 #else 1714 while (monarch_cpu == -1) 1715 cpu_relax(); /* spin until monarch enters */ 1716 #endif 1717 1718 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); 1719 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); 1720 1721 #ifdef CONFIG_KEXEC 1722 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) 1723 udelay(1000); 1724 #else 1725 while (monarch_cpu != -1) 1726 cpu_relax(); /* spin until monarch leaves */ 1727 #endif 1728 1729 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); 1730 1731 mprintk("Slave on cpu %d returning to normal service.\n", cpu); 1732 set_curr_task(cpu, previous_current); 1733 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1734 atomic_dec(&slaves); 1735 return; 1736 } 1737 1738 monarch_cpu = cpu; 1739 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); 1740 1741 /* 1742 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1743 * generated via the BMC's command-line interface, but since the console is on the 1744 * same serial line, the user will need some time to switch out of the BMC before 1745 * the dump begins. 1746 */ 1747 mprintk("Delaying for 5 seconds...\n"); 1748 udelay(5*1000000); 1749 ia64_wait_for_slaves(cpu, "INIT"); 1750 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1751 * to default_monarch_init_process() above and just print all the 1752 * tasks. 1753 */ 1754 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); 1755 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); 1756 1757 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1758 atomic_dec(&monarchs); 1759 set_curr_task(cpu, previous_current); 1760 monarch_cpu = -1; 1761 return; 1762 } 1763 1764 static int __init 1765 ia64_mca_disable_cpe_polling(char *str) 1766 { 1767 cpe_poll_enabled = 0; 1768 return 1; 1769 } 1770 1771 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1772 1773 static struct irqaction cmci_irqaction = { 1774 .handler = ia64_mca_cmc_int_handler, 1775 .name = "cmc_hndlr" 1776 }; 1777 1778 static struct irqaction cmcp_irqaction = { 1779 .handler = ia64_mca_cmc_int_caller, 1780 .name = "cmc_poll" 1781 }; 1782 1783 static struct irqaction mca_rdzv_irqaction = { 1784 .handler = ia64_mca_rendez_int_handler, 1785 .name = "mca_rdzv" 1786 }; 1787 1788 static struct irqaction mca_wkup_irqaction = { 1789 .handler = ia64_mca_wakeup_int_handler, 1790 .name = "mca_wkup" 1791 }; 1792 1793 #ifdef CONFIG_ACPI 1794 static struct irqaction mca_cpe_irqaction = { 1795 .handler = ia64_mca_cpe_int_handler, 1796 .name = "cpe_hndlr" 1797 }; 1798 1799 static struct irqaction mca_cpep_irqaction = { 1800 .handler = ia64_mca_cpe_int_caller, 1801 .name = "cpe_poll" 1802 }; 1803 #endif /* CONFIG_ACPI */ 1804 1805 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1806 * these stacks can never sleep, they cannot return from the kernel to user 1807 * space, they do not appear in a normal ps listing. So there is no need to 1808 * format most of the fields. 1809 */ 1810 1811 static void 1812 format_mca_init_stack(void *mca_data, unsigned long offset, 1813 const char *type, int cpu) 1814 { 1815 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1816 struct thread_info *ti; 1817 memset(p, 0, KERNEL_STACK_SIZE); 1818 ti = task_thread_info(p); 1819 ti->flags = _TIF_MCA_INIT; 1820 ti->preempt_count = 1; 1821 ti->task = p; 1822 ti->cpu = cpu; 1823 p->stack = ti; 1824 p->state = TASK_UNINTERRUPTIBLE; 1825 cpumask_set_cpu(cpu, &p->cpus_allowed); 1826 INIT_LIST_HEAD(&p->tasks); 1827 p->parent = p->real_parent = p->group_leader = p; 1828 INIT_LIST_HEAD(&p->children); 1829 INIT_LIST_HEAD(&p->sibling); 1830 strncpy(p->comm, type, sizeof(p->comm)-1); 1831 } 1832 1833 /* Caller prevents this from being called after init */ 1834 static void * __init_refok mca_bootmem(void) 1835 { 1836 return __alloc_bootmem(sizeof(struct ia64_mca_cpu), 1837 KERNEL_STACK_SIZE, 0); 1838 } 1839 1840 /* Do per-CPU MCA-related initialization. */ 1841 void 1842 ia64_mca_cpu_init(void *cpu_data) 1843 { 1844 void *pal_vaddr; 1845 void *data; 1846 long sz = sizeof(struct ia64_mca_cpu); 1847 int cpu = smp_processor_id(); 1848 static int first_time = 1; 1849 1850 /* 1851 * Structure will already be allocated if cpu has been online, 1852 * then offlined. 1853 */ 1854 if (__per_cpu_mca[cpu]) { 1855 data = __va(__per_cpu_mca[cpu]); 1856 } else { 1857 if (first_time) { 1858 data = mca_bootmem(); 1859 first_time = 0; 1860 } else 1861 data = (void *)__get_free_pages(GFP_KERNEL, 1862 get_order(sz)); 1863 if (!data) 1864 panic("Could not allocate MCA memory for cpu %d\n", 1865 cpu); 1866 } 1867 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), 1868 "MCA", cpu); 1869 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), 1870 "INIT", cpu); 1871 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); 1872 1873 /* 1874 * Stash away a copy of the PTE needed to map the per-CPU page. 1875 * We may need it during MCA recovery. 1876 */ 1877 __this_cpu_write(ia64_mca_per_cpu_pte, 1878 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); 1879 1880 /* 1881 * Also, stash away a copy of the PAL address and the PTE 1882 * needed to map it. 1883 */ 1884 pal_vaddr = efi_get_pal_addr(); 1885 if (!pal_vaddr) 1886 return; 1887 __this_cpu_write(ia64_mca_pal_base, 1888 GRANULEROUNDDOWN((unsigned long) pal_vaddr)); 1889 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), 1890 PAGE_KERNEL))); 1891 } 1892 1893 static void ia64_mca_cmc_vector_adjust(void *dummy) 1894 { 1895 unsigned long flags; 1896 1897 local_irq_save(flags); 1898 if (!cmc_polling_enabled) 1899 ia64_mca_cmc_vector_enable(NULL); 1900 local_irq_restore(flags); 1901 } 1902 1903 static int mca_cpu_callback(struct notifier_block *nfb, 1904 unsigned long action, 1905 void *hcpu) 1906 { 1907 switch (action) { 1908 case CPU_ONLINE: 1909 case CPU_ONLINE_FROZEN: 1910 ia64_mca_cmc_vector_adjust(NULL); 1911 break; 1912 } 1913 return NOTIFY_OK; 1914 } 1915 1916 static struct notifier_block mca_cpu_notifier = { 1917 .notifier_call = mca_cpu_callback 1918 }; 1919 1920 /* 1921 * ia64_mca_init 1922 * 1923 * Do all the system level mca specific initialization. 1924 * 1925 * 1. Register spinloop and wakeup request interrupt vectors 1926 * 1927 * 2. Register OS_MCA handler entry point 1928 * 1929 * 3. Register OS_INIT handler entry point 1930 * 1931 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1932 * 1933 * Note that this initialization is done very early before some kernel 1934 * services are available. 1935 * 1936 * Inputs : None 1937 * 1938 * Outputs : None 1939 */ 1940 void __init 1941 ia64_mca_init(void) 1942 { 1943 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1944 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1945 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1946 int i; 1947 long rc; 1948 struct ia64_sal_retval isrv; 1949 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1950 static struct notifier_block default_init_monarch_nb = { 1951 .notifier_call = default_monarch_init_process, 1952 .priority = 0/* we need to notified last */ 1953 }; 1954 1955 IA64_MCA_DEBUG("%s: begin\n", __func__); 1956 1957 /* Clear the Rendez checkin flag for all cpus */ 1958 for(i = 0 ; i < NR_CPUS; i++) 1959 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1960 1961 /* 1962 * Register the rendezvous spinloop and wakeup mechanism with SAL 1963 */ 1964 1965 /* Register the rendezvous interrupt vector with SAL */ 1966 while (1) { 1967 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1968 SAL_MC_PARAM_MECHANISM_INT, 1969 IA64_MCA_RENDEZ_VECTOR, 1970 timeout, 1971 SAL_MC_PARAM_RZ_ALWAYS); 1972 rc = isrv.status; 1973 if (rc == 0) 1974 break; 1975 if (rc == -2) { 1976 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1977 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1978 timeout = isrv.v0; 1979 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); 1980 continue; 1981 } 1982 printk(KERN_ERR "Failed to register rendezvous interrupt " 1983 "with SAL (status %ld)\n", rc); 1984 return; 1985 } 1986 1987 /* Register the wakeup interrupt vector with SAL */ 1988 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1989 SAL_MC_PARAM_MECHANISM_INT, 1990 IA64_MCA_WAKEUP_VECTOR, 1991 0, 0); 1992 rc = isrv.status; 1993 if (rc) { 1994 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1995 "(status %ld)\n", rc); 1996 return; 1997 } 1998 1999 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); 2000 2001 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 2002 /* 2003 * XXX - disable SAL checksum by setting size to 0; should be 2004 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 2005 */ 2006 ia64_mc_info.imi_mca_handler_size = 0; 2007 2008 /* Register the os mca handler with SAL */ 2009 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 2010 ia64_mc_info.imi_mca_handler, 2011 ia64_tpa(mca_hldlr_ptr->gp), 2012 ia64_mc_info.imi_mca_handler_size, 2013 0, 0, 0))) 2014 { 2015 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 2016 "(status %ld)\n", rc); 2017 return; 2018 } 2019 2020 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, 2021 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 2022 2023 /* 2024 * XXX - disable SAL checksum by setting size to 0, should be 2025 * size of the actual init handler in mca_asm.S. 2026 */ 2027 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 2028 ia64_mc_info.imi_monarch_init_handler_size = 0; 2029 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 2030 ia64_mc_info.imi_slave_init_handler_size = 0; 2031 2032 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, 2033 ia64_mc_info.imi_monarch_init_handler); 2034 2035 /* Register the os init handler with SAL */ 2036 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 2037 ia64_mc_info.imi_monarch_init_handler, 2038 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2039 ia64_mc_info.imi_monarch_init_handler_size, 2040 ia64_mc_info.imi_slave_init_handler, 2041 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2042 ia64_mc_info.imi_slave_init_handler_size))) 2043 { 2044 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 2045 "(status %ld)\n", rc); 2046 return; 2047 } 2048 if (register_die_notifier(&default_init_monarch_nb)) { 2049 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 2050 return; 2051 } 2052 2053 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); 2054 2055 /* Initialize the areas set aside by the OS to buffer the 2056 * platform/processor error states for MCA/INIT/CMC 2057 * handling. 2058 */ 2059 ia64_log_init(SAL_INFO_TYPE_MCA); 2060 ia64_log_init(SAL_INFO_TYPE_INIT); 2061 ia64_log_init(SAL_INFO_TYPE_CMC); 2062 ia64_log_init(SAL_INFO_TYPE_CPE); 2063 2064 mca_init = 1; 2065 printk(KERN_INFO "MCA related initialization done\n"); 2066 } 2067 2068 2069 /* 2070 * These pieces cannot be done in ia64_mca_init() because it is called before 2071 * early_irq_init() which would wipe out our percpu irq registrations. But we 2072 * cannot leave them until ia64_mca_late_init() because by then all the other 2073 * processors have been brought online and have set their own CMC vectors to 2074 * point at a non-existant action. Called from arch_early_irq_init(). 2075 */ 2076 void __init ia64_mca_irq_init(void) 2077 { 2078 /* 2079 * Configure the CMCI/P vector and handler. Interrupts for CMC are 2080 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 2081 */ 2082 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); 2083 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); 2084 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 2085 2086 /* Setup the MCA rendezvous interrupt vector */ 2087 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); 2088 2089 /* Setup the MCA wakeup interrupt vector */ 2090 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); 2091 2092 #ifdef CONFIG_ACPI 2093 /* Setup the CPEI/P handler */ 2094 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); 2095 #endif 2096 } 2097 2098 /* 2099 * ia64_mca_late_init 2100 * 2101 * Opportunity to setup things that require initialization later 2102 * than ia64_mca_init. Setup a timer to poll for CPEs if the 2103 * platform doesn't support an interrupt driven mechanism. 2104 * 2105 * Inputs : None 2106 * Outputs : Status 2107 */ 2108 static int __init 2109 ia64_mca_late_init(void) 2110 { 2111 if (!mca_init) 2112 return 0; 2113 2114 register_hotcpu_notifier(&mca_cpu_notifier); 2115 2116 /* Setup the CMCI/P vector and handler */ 2117 setup_timer(&cmc_poll_timer, ia64_mca_cmc_poll, 0UL); 2118 2119 /* Unmask/enable the vector */ 2120 cmc_polling_enabled = 0; 2121 schedule_work(&cmc_enable_work); 2122 2123 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); 2124 2125 #ifdef CONFIG_ACPI 2126 /* Setup the CPEI/P vector and handler */ 2127 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 2128 setup_timer(&cpe_poll_timer, ia64_mca_cpe_poll, 0UL); 2129 2130 { 2131 unsigned int irq; 2132 2133 if (cpe_vector >= 0) { 2134 /* If platform supports CPEI, enable the irq. */ 2135 irq = local_vector_to_irq(cpe_vector); 2136 if (irq > 0) { 2137 cpe_poll_enabled = 0; 2138 irq_set_status_flags(irq, IRQ_PER_CPU); 2139 setup_irq(irq, &mca_cpe_irqaction); 2140 ia64_cpe_irq = irq; 2141 ia64_mca_register_cpev(cpe_vector); 2142 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", 2143 __func__); 2144 return 0; 2145 } 2146 printk(KERN_ERR "%s: Failed to find irq for CPE " 2147 "interrupt handler, vector %d\n", 2148 __func__, cpe_vector); 2149 } 2150 /* If platform doesn't support CPEI, get the timer going. */ 2151 if (cpe_poll_enabled) { 2152 ia64_mca_cpe_poll(0UL); 2153 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); 2154 } 2155 } 2156 #endif 2157 2158 return 0; 2159 } 2160 2161 device_initcall(ia64_mca_late_init); 2162