xref: /openbmc/linux/arch/ia64/kernel/mca.c (revision 1da177e4)
1 /*
2  * File:	mca.c
3  * Purpose:	Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch	GUID cleanups
26  *
27  * 02/01/04 J. Hall	Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *			error flag, set SAL default return values, changed
29  *			error record structure to linked list, added init call
30  *			to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  */
52 #include <linux/config.h>
53 #include <linux/types.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56 #include <linux/interrupt.h>
57 #include <linux/irq.h>
58 #include <linux/kallsyms.h>
59 #include <linux/smp_lock.h>
60 #include <linux/bootmem.h>
61 #include <linux/acpi.h>
62 #include <linux/timer.h>
63 #include <linux/module.h>
64 #include <linux/kernel.h>
65 #include <linux/smp.h>
66 #include <linux/workqueue.h>
67 
68 #include <asm/delay.h>
69 #include <asm/machvec.h>
70 #include <asm/meminit.h>
71 #include <asm/page.h>
72 #include <asm/ptrace.h>
73 #include <asm/system.h>
74 #include <asm/sal.h>
75 #include <asm/mca.h>
76 
77 #include <asm/irq.h>
78 #include <asm/hw_irq.h>
79 
80 #if defined(IA64_MCA_DEBUG_INFO)
81 # define IA64_MCA_DEBUG(fmt...)	printk(fmt)
82 #else
83 # define IA64_MCA_DEBUG(fmt...)
84 #endif
85 
86 /* Used by mca_asm.S */
87 ia64_mca_sal_to_os_state_t	ia64_sal_to_os_handoff_state;
88 ia64_mca_os_to_sal_state_t	ia64_os_to_sal_handoff_state;
89 u64				ia64_mca_serialize;
90 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
91 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
92 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
93 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
94 
95 unsigned long __per_cpu_mca[NR_CPUS];
96 
97 /* In mca_asm.S */
98 extern void			ia64_monarch_init_handler (void);
99 extern void			ia64_slave_init_handler (void);
100 
101 static ia64_mc_info_t		ia64_mc_info;
102 
103 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
104 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
105 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
106 #define CPE_HISTORY_LENGTH    5
107 #define CMC_HISTORY_LENGTH    5
108 
109 static struct timer_list cpe_poll_timer;
110 static struct timer_list cmc_poll_timer;
111 /*
112  * This variable tells whether we are currently in polling mode.
113  * Start with this in the wrong state so we won't play w/ timers
114  * before the system is ready.
115  */
116 static int cmc_polling_enabled = 1;
117 
118 /*
119  * Clearing this variable prevents CPE polling from getting activated
120  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
121  * but encounters problems retrieving CPE logs.  This should only be
122  * necessary for debugging.
123  */
124 static int cpe_poll_enabled = 1;
125 
126 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
127 
128 static int mca_init;
129 
130 /*
131  * IA64_MCA log support
132  */
133 #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
134 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
135 
136 typedef struct ia64_state_log_s
137 {
138 	spinlock_t	isl_lock;
139 	int		isl_index;
140 	unsigned long	isl_count;
141 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
142 } ia64_state_log_t;
143 
144 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
145 
146 #define IA64_LOG_ALLOCATE(it, size) \
147 	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
148 		(ia64_err_rec_t *)alloc_bootmem(size); \
149 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
150 		(ia64_err_rec_t *)alloc_bootmem(size);}
151 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
152 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
153 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
154 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
155 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
156 #define IA64_LOG_INDEX_INC(it) \
157     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
158     ia64_state_log[it].isl_count++;}
159 #define IA64_LOG_INDEX_DEC(it) \
160     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
162 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
163 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
164 
165 /*
166  * ia64_log_init
167  *	Reset the OS ia64 log buffer
168  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
169  * Outputs	:	None
170  */
171 static void
172 ia64_log_init(int sal_info_type)
173 {
174 	u64	max_size = 0;
175 
176 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
177 	IA64_LOG_LOCK_INIT(sal_info_type);
178 
179 	// SAL will tell us the maximum size of any error record of this type
180 	max_size = ia64_sal_get_state_info_size(sal_info_type);
181 	if (!max_size)
182 		/* alloc_bootmem() doesn't like zero-sized allocations! */
183 		return;
184 
185 	// set up OS data structures to hold error info
186 	IA64_LOG_ALLOCATE(sal_info_type, max_size);
187 	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
188 	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
189 }
190 
191 /*
192  * ia64_log_get
193  *
194  *	Get the current MCA log from SAL and copy it into the OS log buffer.
195  *
196  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
197  *              irq_safe    whether you can use printk at this point
198  *  Outputs :   size        (total record length)
199  *              *buffer     (ptr to error record)
200  *
201  */
202 static u64
203 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
204 {
205 	sal_log_record_header_t     *log_buffer;
206 	u64                         total_len = 0;
207 	int                         s;
208 
209 	IA64_LOG_LOCK(sal_info_type);
210 
211 	/* Get the process state information */
212 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
213 
214 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
215 
216 	if (total_len) {
217 		IA64_LOG_INDEX_INC(sal_info_type);
218 		IA64_LOG_UNLOCK(sal_info_type);
219 		if (irq_safe) {
220 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
221 				       "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
222 		}
223 		*buffer = (u8 *) log_buffer;
224 		return total_len;
225 	} else {
226 		IA64_LOG_UNLOCK(sal_info_type);
227 		return 0;
228 	}
229 }
230 
231 /*
232  *  ia64_mca_log_sal_error_record
233  *
234  *  This function retrieves a specified error record type from SAL
235  *  and wakes up any processes waiting for error records.
236  *
237  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE/INIT)
238  */
239 static void
240 ia64_mca_log_sal_error_record(int sal_info_type)
241 {
242 	u8 *buffer;
243 	sal_log_record_header_t *rh;
244 	u64 size;
245 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
246 #ifdef IA64_MCA_DEBUG_INFO
247 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
248 #endif
249 
250 	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
251 	if (!size)
252 		return;
253 
254 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
255 
256 	if (irq_safe)
257 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
258 			smp_processor_id(),
259 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
260 
261 	/* Clear logs from corrected errors in case there's no user-level logger */
262 	rh = (sal_log_record_header_t *)buffer;
263 	if (rh->severity == sal_log_severity_corrected)
264 		ia64_sal_clear_state_info(sal_info_type);
265 }
266 
267 /*
268  * platform dependent error handling
269  */
270 #ifndef PLATFORM_MCA_HANDLERS
271 
272 #ifdef CONFIG_ACPI
273 
274 static int cpe_vector = -1;
275 
276 static irqreturn_t
277 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
278 {
279 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
280 	static int		index;
281 	static DEFINE_SPINLOCK(cpe_history_lock);
282 
283 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
284 		       __FUNCTION__, cpe_irq, smp_processor_id());
285 
286 	/* SAL spec states this should run w/ interrupts enabled */
287 	local_irq_enable();
288 
289 	/* Get the CPE error record and log it */
290 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
291 
292 	spin_lock(&cpe_history_lock);
293 	if (!cpe_poll_enabled && cpe_vector >= 0) {
294 
295 		int i, count = 1; /* we know 1 happened now */
296 		unsigned long now = jiffies;
297 
298 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
299 			if (now - cpe_history[i] <= HZ)
300 				count++;
301 		}
302 
303 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
304 		if (count >= CPE_HISTORY_LENGTH) {
305 
306 			cpe_poll_enabled = 1;
307 			spin_unlock(&cpe_history_lock);
308 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
309 
310 			/*
311 			 * Corrected errors will still be corrected, but
312 			 * make sure there's a log somewhere that indicates
313 			 * something is generating more than we can handle.
314 			 */
315 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
316 
317 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
318 
319 			/* lock already released, get out now */
320 			return IRQ_HANDLED;
321 		} else {
322 			cpe_history[index++] = now;
323 			if (index == CPE_HISTORY_LENGTH)
324 				index = 0;
325 		}
326 	}
327 	spin_unlock(&cpe_history_lock);
328 	return IRQ_HANDLED;
329 }
330 
331 #endif /* CONFIG_ACPI */
332 
333 static void
334 show_min_state (pal_min_state_area_t *minstate)
335 {
336 	u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
337 	u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
338 
339 	printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
340 	printk("pr\t\t%016lx\n", minstate->pmsa_pr);
341 	printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
342 	printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
343 	printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
344 	printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
345 	printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
346 	printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
347 	printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
348 	printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
349 	printk("b1\t\t%016lx ", minstate->pmsa_br1);
350 	print_symbol("%s\n", minstate->pmsa_br1);
351 
352 	printk("\nstatic registers r0-r15:\n");
353 	printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
354 	       0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
355 	printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
356 	       minstate->pmsa_gr[3], minstate->pmsa_gr[4],
357 	       minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
358 	printk(" r8-11 %016lx %016lx %016lx %016lx\n",
359 	       minstate->pmsa_gr[7], minstate->pmsa_gr[8],
360 	       minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
361 	printk("r12-15 %016lx %016lx %016lx %016lx\n",
362 	       minstate->pmsa_gr[11], minstate->pmsa_gr[12],
363 	       minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
364 
365 	printk("\nbank 0:\n");
366 	printk("r16-19 %016lx %016lx %016lx %016lx\n",
367 	       minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
368 	       minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
369 	printk("r20-23 %016lx %016lx %016lx %016lx\n",
370 	       minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
371 	       minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
372 	printk("r24-27 %016lx %016lx %016lx %016lx\n",
373 	       minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
374 	       minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
375 	printk("r28-31 %016lx %016lx %016lx %016lx\n",
376 	       minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
377 	       minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
378 
379 	printk("\nbank 1:\n");
380 	printk("r16-19 %016lx %016lx %016lx %016lx\n",
381 	       minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
382 	       minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
383 	printk("r20-23 %016lx %016lx %016lx %016lx\n",
384 	       minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
385 	       minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
386 	printk("r24-27 %016lx %016lx %016lx %016lx\n",
387 	       minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
388 	       minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
389 	printk("r28-31 %016lx %016lx %016lx %016lx\n",
390 	       minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
391 	       minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
392 }
393 
394 static void
395 fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
396 {
397 	u64 *dst_banked, *src_banked, bit, shift, nat_bits;
398 	int i;
399 
400 	/*
401 	 * First, update the pt-regs and switch-stack structures with the contents stored
402 	 * in the min-state area:
403 	 */
404 	if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
405 		pt->cr_ipsr = ms->pmsa_xpsr;
406 		pt->cr_iip = ms->pmsa_xip;
407 		pt->cr_ifs = ms->pmsa_xfs;
408 	} else {
409 		pt->cr_ipsr = ms->pmsa_ipsr;
410 		pt->cr_iip = ms->pmsa_iip;
411 		pt->cr_ifs = ms->pmsa_ifs;
412 	}
413 	pt->ar_rsc = ms->pmsa_rsc;
414 	pt->pr = ms->pmsa_pr;
415 	pt->r1 = ms->pmsa_gr[0];
416 	pt->r2 = ms->pmsa_gr[1];
417 	pt->r3 = ms->pmsa_gr[2];
418 	sw->r4 = ms->pmsa_gr[3];
419 	sw->r5 = ms->pmsa_gr[4];
420 	sw->r6 = ms->pmsa_gr[5];
421 	sw->r7 = ms->pmsa_gr[6];
422 	pt->r8 = ms->pmsa_gr[7];
423 	pt->r9 = ms->pmsa_gr[8];
424 	pt->r10 = ms->pmsa_gr[9];
425 	pt->r11 = ms->pmsa_gr[10];
426 	pt->r12 = ms->pmsa_gr[11];
427 	pt->r13 = ms->pmsa_gr[12];
428 	pt->r14 = ms->pmsa_gr[13];
429 	pt->r15 = ms->pmsa_gr[14];
430 	dst_banked = &pt->r16;		/* r16-r31 are contiguous in struct pt_regs */
431 	src_banked = ms->pmsa_bank1_gr;
432 	for (i = 0; i < 16; ++i)
433 		dst_banked[i] = src_banked[i];
434 	pt->b0 = ms->pmsa_br0;
435 	sw->b1 = ms->pmsa_br1;
436 
437 	/* construct the NaT bits for the pt-regs structure: */
438 #	define PUT_NAT_BIT(dst, addr)					\
439 	do {								\
440 		bit = nat_bits & 1; nat_bits >>= 1;			\
441 		shift = ((unsigned long) addr >> 3) & 0x3f;		\
442 		dst = ((dst) & ~(1UL << shift)) | (bit << shift);	\
443 	} while (0)
444 
445 	/* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
446 	shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
447 	nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
448 
449 	PUT_NAT_BIT(sw->caller_unat, &pt->r1);
450 	PUT_NAT_BIT(sw->caller_unat, &pt->r2);
451 	PUT_NAT_BIT(sw->caller_unat, &pt->r3);
452 	PUT_NAT_BIT(sw->ar_unat, &sw->r4);
453 	PUT_NAT_BIT(sw->ar_unat, &sw->r5);
454 	PUT_NAT_BIT(sw->ar_unat, &sw->r6);
455 	PUT_NAT_BIT(sw->ar_unat, &sw->r7);
456 	PUT_NAT_BIT(sw->caller_unat, &pt->r8);	PUT_NAT_BIT(sw->caller_unat, &pt->r9);
457 	PUT_NAT_BIT(sw->caller_unat, &pt->r10);	PUT_NAT_BIT(sw->caller_unat, &pt->r11);
458 	PUT_NAT_BIT(sw->caller_unat, &pt->r12);	PUT_NAT_BIT(sw->caller_unat, &pt->r13);
459 	PUT_NAT_BIT(sw->caller_unat, &pt->r14);	PUT_NAT_BIT(sw->caller_unat, &pt->r15);
460 	nat_bits >>= 16;	/* skip over bank0 NaT bits */
461 	PUT_NAT_BIT(sw->caller_unat, &pt->r16);	PUT_NAT_BIT(sw->caller_unat, &pt->r17);
462 	PUT_NAT_BIT(sw->caller_unat, &pt->r18);	PUT_NAT_BIT(sw->caller_unat, &pt->r19);
463 	PUT_NAT_BIT(sw->caller_unat, &pt->r20);	PUT_NAT_BIT(sw->caller_unat, &pt->r21);
464 	PUT_NAT_BIT(sw->caller_unat, &pt->r22);	PUT_NAT_BIT(sw->caller_unat, &pt->r23);
465 	PUT_NAT_BIT(sw->caller_unat, &pt->r24);	PUT_NAT_BIT(sw->caller_unat, &pt->r25);
466 	PUT_NAT_BIT(sw->caller_unat, &pt->r26);	PUT_NAT_BIT(sw->caller_unat, &pt->r27);
467 	PUT_NAT_BIT(sw->caller_unat, &pt->r28);	PUT_NAT_BIT(sw->caller_unat, &pt->r29);
468 	PUT_NAT_BIT(sw->caller_unat, &pt->r30);	PUT_NAT_BIT(sw->caller_unat, &pt->r31);
469 }
470 
471 static void
472 init_handler_platform (pal_min_state_area_t *ms,
473 		       struct pt_regs *pt, struct switch_stack *sw)
474 {
475 	struct unw_frame_info info;
476 
477 	/* if a kernel debugger is available call it here else just dump the registers */
478 
479 	/*
480 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
481 	 * generated via the BMC's command-line interface, but since the console is on the
482 	 * same serial line, the user will need some time to switch out of the BMC before
483 	 * the dump begins.
484 	 */
485 	printk("Delaying for 5 seconds...\n");
486 	udelay(5*1000000);
487 	show_min_state(ms);
488 
489 	printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
490 	fetch_min_state(ms, pt, sw);
491 	unw_init_from_interruption(&info, current, pt, sw);
492 	ia64_do_show_stack(&info, NULL);
493 
494 #ifdef CONFIG_SMP
495 	/* read_trylock() would be handy... */
496 	if (!tasklist_lock.write_lock)
497 		read_lock(&tasklist_lock);
498 #endif
499 	{
500 		struct task_struct *g, *t;
501 		do_each_thread (g, t) {
502 			if (t == current)
503 				continue;
504 
505 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
506 			show_stack(t, NULL);
507 		} while_each_thread (g, t);
508 	}
509 #ifdef CONFIG_SMP
510 	if (!tasklist_lock.write_lock)
511 		read_unlock(&tasklist_lock);
512 #endif
513 
514 	printk("\nINIT dump complete.  Please reboot now.\n");
515 	while (1);			/* hang city if no debugger */
516 }
517 
518 #ifdef CONFIG_ACPI
519 /*
520  * ia64_mca_register_cpev
521  *
522  *  Register the corrected platform error vector with SAL.
523  *
524  *  Inputs
525  *      cpev        Corrected Platform Error Vector number
526  *
527  *  Outputs
528  *      None
529  */
530 static void
531 ia64_mca_register_cpev (int cpev)
532 {
533 	/* Register the CPE interrupt vector with SAL */
534 	struct ia64_sal_retval isrv;
535 
536 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
537 	if (isrv.status) {
538 		printk(KERN_ERR "Failed to register Corrected Platform "
539 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
540 		return;
541 	}
542 
543 	IA64_MCA_DEBUG("%s: corrected platform error "
544 		       "vector %#x registered\n", __FUNCTION__, cpev);
545 }
546 #endif /* CONFIG_ACPI */
547 
548 #endif /* PLATFORM_MCA_HANDLERS */
549 
550 /*
551  * ia64_mca_cmc_vector_setup
552  *
553  *  Setup the corrected machine check vector register in the processor.
554  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
555  *  This function is invoked on a per-processor basis.
556  *
557  * Inputs
558  *      None
559  *
560  * Outputs
561  *	None
562  */
563 void
564 ia64_mca_cmc_vector_setup (void)
565 {
566 	cmcv_reg_t	cmcv;
567 
568 	cmcv.cmcv_regval	= 0;
569 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
570 	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
571 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
572 
573 	IA64_MCA_DEBUG("%s: CPU %d corrected "
574 		       "machine check vector %#x registered.\n",
575 		       __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
576 
577 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
578 		       __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
579 }
580 
581 /*
582  * ia64_mca_cmc_vector_disable
583  *
584  *  Mask the corrected machine check vector register in the processor.
585  *  This function is invoked on a per-processor basis.
586  *
587  * Inputs
588  *      dummy(unused)
589  *
590  * Outputs
591  *	None
592  */
593 static void
594 ia64_mca_cmc_vector_disable (void *dummy)
595 {
596 	cmcv_reg_t	cmcv;
597 
598 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
599 
600 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
601 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
602 
603 	IA64_MCA_DEBUG("%s: CPU %d corrected "
604 		       "machine check vector %#x disabled.\n",
605 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
606 }
607 
608 /*
609  * ia64_mca_cmc_vector_enable
610  *
611  *  Unmask the corrected machine check vector register in the processor.
612  *  This function is invoked on a per-processor basis.
613  *
614  * Inputs
615  *      dummy(unused)
616  *
617  * Outputs
618  *	None
619  */
620 static void
621 ia64_mca_cmc_vector_enable (void *dummy)
622 {
623 	cmcv_reg_t	cmcv;
624 
625 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
626 
627 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
628 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
629 
630 	IA64_MCA_DEBUG("%s: CPU %d corrected "
631 		       "machine check vector %#x enabled.\n",
632 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
633 }
634 
635 /*
636  * ia64_mca_cmc_vector_disable_keventd
637  *
638  * Called via keventd (smp_call_function() is not safe in interrupt context) to
639  * disable the cmc interrupt vector.
640  */
641 static void
642 ia64_mca_cmc_vector_disable_keventd(void *unused)
643 {
644 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
645 }
646 
647 /*
648  * ia64_mca_cmc_vector_enable_keventd
649  *
650  * Called via keventd (smp_call_function() is not safe in interrupt context) to
651  * enable the cmc interrupt vector.
652  */
653 static void
654 ia64_mca_cmc_vector_enable_keventd(void *unused)
655 {
656 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
657 }
658 
659 /*
660  * ia64_mca_wakeup_ipi_wait
661  *
662  *	Wait for the inter-cpu interrupt to be sent by the
663  *	monarch processor once it is done with handling the
664  *	MCA.
665  *
666  *  Inputs  :   None
667  *  Outputs :   None
668  */
669 static void
670 ia64_mca_wakeup_ipi_wait(void)
671 {
672 	int	irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
673 	int	irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
674 	u64	irr = 0;
675 
676 	do {
677 		switch(irr_num) {
678 		      case 0:
679 			irr = ia64_getreg(_IA64_REG_CR_IRR0);
680 			break;
681 		      case 1:
682 			irr = ia64_getreg(_IA64_REG_CR_IRR1);
683 			break;
684 		      case 2:
685 			irr = ia64_getreg(_IA64_REG_CR_IRR2);
686 			break;
687 		      case 3:
688 			irr = ia64_getreg(_IA64_REG_CR_IRR3);
689 			break;
690 		}
691 		cpu_relax();
692 	} while (!(irr & (1UL << irr_bit))) ;
693 }
694 
695 /*
696  * ia64_mca_wakeup
697  *
698  *	Send an inter-cpu interrupt to wake-up a particular cpu
699  *	and mark that cpu to be out of rendez.
700  *
701  *  Inputs  :   cpuid
702  *  Outputs :   None
703  */
704 static void
705 ia64_mca_wakeup(int cpu)
706 {
707 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
708 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
709 
710 }
711 
712 /*
713  * ia64_mca_wakeup_all
714  *
715  *	Wakeup all the cpus which have rendez'ed previously.
716  *
717  *  Inputs  :   None
718  *  Outputs :   None
719  */
720 static void
721 ia64_mca_wakeup_all(void)
722 {
723 	int cpu;
724 
725 	/* Clear the Rendez checkin flag for all cpus */
726 	for(cpu = 0; cpu < NR_CPUS; cpu++) {
727 		if (!cpu_online(cpu))
728 			continue;
729 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
730 			ia64_mca_wakeup(cpu);
731 	}
732 
733 }
734 
735 /*
736  * ia64_mca_rendez_interrupt_handler
737  *
738  *	This is handler used to put slave processors into spinloop
739  *	while the monarch processor does the mca handling and later
740  *	wake each slave up once the monarch is done.
741  *
742  *  Inputs  :   None
743  *  Outputs :   None
744  */
745 static irqreturn_t
746 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
747 {
748 	unsigned long flags;
749 	int cpu = smp_processor_id();
750 
751 	/* Mask all interrupts */
752 	local_irq_save(flags);
753 
754 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
755 	/* Register with the SAL monarch that the slave has
756 	 * reached SAL
757 	 */
758 	ia64_sal_mc_rendez();
759 
760 	/* Wait for the wakeup IPI from the monarch
761 	 * This waiting is done by polling on the wakeup-interrupt
762 	 * vector bit in the processor's IRRs
763 	 */
764 	ia64_mca_wakeup_ipi_wait();
765 
766 	/* Enable all interrupts */
767 	local_irq_restore(flags);
768 	return IRQ_HANDLED;
769 }
770 
771 /*
772  * ia64_mca_wakeup_int_handler
773  *
774  *	The interrupt handler for processing the inter-cpu interrupt to the
775  *	slave cpu which was spinning in the rendez loop.
776  *	Since this spinning is done by turning off the interrupts and
777  *	polling on the wakeup-interrupt bit in the IRR, there is
778  *	nothing useful to be done in the handler.
779  *
780  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
781  *	arg		(Interrupt handler specific argument)
782  *	ptregs		(Exception frame at the time of the interrupt)
783  *  Outputs :   None
784  *
785  */
786 static irqreturn_t
787 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
788 {
789 	return IRQ_HANDLED;
790 }
791 
792 /*
793  * ia64_return_to_sal_check
794  *
795  *	This is function called before going back from the OS_MCA handler
796  *	to the OS_MCA dispatch code which finally takes the control back
797  *	to the SAL.
798  *	The main purpose of this routine is to setup the OS_MCA to SAL
799  *	return state which can be used by the OS_MCA dispatch code
800  *	just before going back to SAL.
801  *
802  *  Inputs  :   None
803  *  Outputs :   None
804  */
805 
806 static void
807 ia64_return_to_sal_check(int recover)
808 {
809 
810 	/* Copy over some relevant stuff from the sal_to_os_mca_handoff
811 	 * so that it can be used at the time of os_mca_to_sal_handoff
812 	 */
813 	ia64_os_to_sal_handoff_state.imots_sal_gp =
814 		ia64_sal_to_os_handoff_state.imsto_sal_gp;
815 
816 	ia64_os_to_sal_handoff_state.imots_sal_check_ra =
817 		ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
818 
819 	if (recover)
820 		ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
821 	else
822 		ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
823 
824 	/* Default = tell SAL to return to same context */
825 	ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
826 
827 	ia64_os_to_sal_handoff_state.imots_new_min_state =
828 		(u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
829 
830 }
831 
832 /* Function pointer for extra MCA recovery */
833 int (*ia64_mca_ucmc_extension)
834 	(void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
835 	= NULL;
836 
837 int
838 ia64_reg_MCA_extension(void *fn)
839 {
840 	if (ia64_mca_ucmc_extension)
841 		return 1;
842 
843 	ia64_mca_ucmc_extension = fn;
844 	return 0;
845 }
846 
847 void
848 ia64_unreg_MCA_extension(void)
849 {
850 	if (ia64_mca_ucmc_extension)
851 		ia64_mca_ucmc_extension = NULL;
852 }
853 
854 EXPORT_SYMBOL(ia64_reg_MCA_extension);
855 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
856 
857 /*
858  * ia64_mca_ucmc_handler
859  *
860  *	This is uncorrectable machine check handler called from OS_MCA
861  *	dispatch code which is in turn called from SAL_CHECK().
862  *	This is the place where the core of OS MCA handling is done.
863  *	Right now the logs are extracted and displayed in a well-defined
864  *	format. This handler code is supposed to be run only on the
865  *	monarch processor. Once the monarch is done with MCA handling
866  *	further MCA logging is enabled by clearing logs.
867  *	Monarch also has the duty of sending wakeup-IPIs to pull the
868  *	slave processors out of rendezvous spinloop.
869  *
870  *  Inputs  :   None
871  *  Outputs :   None
872  */
873 void
874 ia64_mca_ucmc_handler(void)
875 {
876 	pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
877 		&ia64_sal_to_os_handoff_state.proc_state_param;
878 	int recover;
879 
880 	/* Get the MCA error record and log it */
881 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
882 
883 	/* TLB error is only exist in this SAL error record */
884 	recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
885 	/* other error recovery */
886 	   || (ia64_mca_ucmc_extension
887 		&& ia64_mca_ucmc_extension(
888 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
889 			&ia64_sal_to_os_handoff_state,
890 			&ia64_os_to_sal_handoff_state));
891 
892 	if (recover) {
893 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
894 		rh->severity = sal_log_severity_corrected;
895 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
896 	}
897 	/*
898 	 *  Wakeup all the processors which are spinning in the rendezvous
899 	 *  loop.
900 	 */
901 	ia64_mca_wakeup_all();
902 
903 	/* Return to SAL */
904 	ia64_return_to_sal_check(recover);
905 }
906 
907 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
908 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
909 
910 /*
911  * ia64_mca_cmc_int_handler
912  *
913  *  This is corrected machine check interrupt handler.
914  *	Right now the logs are extracted and displayed in a well-defined
915  *	format.
916  *
917  * Inputs
918  *      interrupt number
919  *      client data arg ptr
920  *      saved registers ptr
921  *
922  * Outputs
923  *	None
924  */
925 static irqreturn_t
926 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
927 {
928 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
929 	static int		index;
930 	static DEFINE_SPINLOCK(cmc_history_lock);
931 
932 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
933 		       __FUNCTION__, cmc_irq, smp_processor_id());
934 
935 	/* SAL spec states this should run w/ interrupts enabled */
936 	local_irq_enable();
937 
938 	/* Get the CMC error record and log it */
939 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
940 
941 	spin_lock(&cmc_history_lock);
942 	if (!cmc_polling_enabled) {
943 		int i, count = 1; /* we know 1 happened now */
944 		unsigned long now = jiffies;
945 
946 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
947 			if (now - cmc_history[i] <= HZ)
948 				count++;
949 		}
950 
951 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
952 		if (count >= CMC_HISTORY_LENGTH) {
953 
954 			cmc_polling_enabled = 1;
955 			spin_unlock(&cmc_history_lock);
956 			schedule_work(&cmc_disable_work);
957 
958 			/*
959 			 * Corrected errors will still be corrected, but
960 			 * make sure there's a log somewhere that indicates
961 			 * something is generating more than we can handle.
962 			 */
963 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
964 
965 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
966 
967 			/* lock already released, get out now */
968 			return IRQ_HANDLED;
969 		} else {
970 			cmc_history[index++] = now;
971 			if (index == CMC_HISTORY_LENGTH)
972 				index = 0;
973 		}
974 	}
975 	spin_unlock(&cmc_history_lock);
976 	return IRQ_HANDLED;
977 }
978 
979 /*
980  *  ia64_mca_cmc_int_caller
981  *
982  * 	Triggered by sw interrupt from CMC polling routine.  Calls
983  * 	real interrupt handler and either triggers a sw interrupt
984  * 	on the next cpu or does cleanup at the end.
985  *
986  * Inputs
987  *	interrupt number
988  *	client data arg ptr
989  *	saved registers ptr
990  * Outputs
991  * 	handled
992  */
993 static irqreturn_t
994 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
995 {
996 	static int start_count = -1;
997 	unsigned int cpuid;
998 
999 	cpuid = smp_processor_id();
1000 
1001 	/* If first cpu, update count */
1002 	if (start_count == -1)
1003 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1004 
1005 	ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1006 
1007 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1008 
1009 	if (cpuid < NR_CPUS) {
1010 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1011 	} else {
1012 		/* If no log record, switch out of polling mode */
1013 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1014 
1015 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1016 			schedule_work(&cmc_enable_work);
1017 			cmc_polling_enabled = 0;
1018 
1019 		} else {
1020 
1021 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1022 		}
1023 
1024 		start_count = -1;
1025 	}
1026 
1027 	return IRQ_HANDLED;
1028 }
1029 
1030 /*
1031  *  ia64_mca_cmc_poll
1032  *
1033  *	Poll for Corrected Machine Checks (CMCs)
1034  *
1035  * Inputs   :   dummy(unused)
1036  * Outputs  :   None
1037  *
1038  */
1039 static void
1040 ia64_mca_cmc_poll (unsigned long dummy)
1041 {
1042 	/* Trigger a CMC interrupt cascade  */
1043 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1044 }
1045 
1046 /*
1047  *  ia64_mca_cpe_int_caller
1048  *
1049  * 	Triggered by sw interrupt from CPE polling routine.  Calls
1050  * 	real interrupt handler and either triggers a sw interrupt
1051  * 	on the next cpu or does cleanup at the end.
1052  *
1053  * Inputs
1054  *	interrupt number
1055  *	client data arg ptr
1056  *	saved registers ptr
1057  * Outputs
1058  * 	handled
1059  */
1060 #ifdef CONFIG_ACPI
1061 
1062 static irqreturn_t
1063 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1064 {
1065 	static int start_count = -1;
1066 	static int poll_time = MIN_CPE_POLL_INTERVAL;
1067 	unsigned int cpuid;
1068 
1069 	cpuid = smp_processor_id();
1070 
1071 	/* If first cpu, update count */
1072 	if (start_count == -1)
1073 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1074 
1075 	ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1076 
1077 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1078 
1079 	if (cpuid < NR_CPUS) {
1080 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1081 	} else {
1082 		/*
1083 		 * If a log was recorded, increase our polling frequency,
1084 		 * otherwise, backoff or return to interrupt mode.
1085 		 */
1086 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1087 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1088 		} else if (cpe_vector < 0) {
1089 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1090 		} else {
1091 			poll_time = MIN_CPE_POLL_INTERVAL;
1092 
1093 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1094 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1095 			cpe_poll_enabled = 0;
1096 		}
1097 
1098 		if (cpe_poll_enabled)
1099 			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1100 		start_count = -1;
1101 	}
1102 
1103 	return IRQ_HANDLED;
1104 }
1105 
1106 #endif /* CONFIG_ACPI */
1107 
1108 /*
1109  *  ia64_mca_cpe_poll
1110  *
1111  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1112  *	on first cpu, from there it will trickle through all the cpus.
1113  *
1114  * Inputs   :   dummy(unused)
1115  * Outputs  :   None
1116  *
1117  */
1118 static void
1119 ia64_mca_cpe_poll (unsigned long dummy)
1120 {
1121 	/* Trigger a CPE interrupt cascade  */
1122 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1123 }
1124 
1125 /*
1126  * C portion of the OS INIT handler
1127  *
1128  * Called from ia64_monarch_init_handler
1129  *
1130  * Inputs: pointer to pt_regs where processor info was saved.
1131  *
1132  * Returns:
1133  *   0 if SAL must warm boot the System
1134  *   1 if SAL must return to interrupted context using PAL_MC_RESUME
1135  *
1136  */
1137 void
1138 ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
1139 {
1140 	pal_min_state_area_t *ms;
1141 
1142 	oops_in_progress = 1;	/* avoid deadlock in printk, but it makes recovery dodgy */
1143 	console_loglevel = 15;	/* make sure printks make it to console */
1144 
1145 	printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
1146 		ia64_sal_to_os_handoff_state.proc_state_param);
1147 
1148 	/*
1149 	 * Address of minstate area provided by PAL is physical,
1150 	 * uncacheable (bit 63 set). Convert to Linux virtual
1151 	 * address in region 6.
1152 	 */
1153 	ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
1154 
1155 	init_handler_platform(ms, pt, sw);	/* call platform specific routines */
1156 }
1157 
1158 static int __init
1159 ia64_mca_disable_cpe_polling(char *str)
1160 {
1161 	cpe_poll_enabled = 0;
1162 	return 1;
1163 }
1164 
1165 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1166 
1167 static struct irqaction cmci_irqaction = {
1168 	.handler =	ia64_mca_cmc_int_handler,
1169 	.flags =	SA_INTERRUPT,
1170 	.name =		"cmc_hndlr"
1171 };
1172 
1173 static struct irqaction cmcp_irqaction = {
1174 	.handler =	ia64_mca_cmc_int_caller,
1175 	.flags =	SA_INTERRUPT,
1176 	.name =		"cmc_poll"
1177 };
1178 
1179 static struct irqaction mca_rdzv_irqaction = {
1180 	.handler =	ia64_mca_rendez_int_handler,
1181 	.flags =	SA_INTERRUPT,
1182 	.name =		"mca_rdzv"
1183 };
1184 
1185 static struct irqaction mca_wkup_irqaction = {
1186 	.handler =	ia64_mca_wakeup_int_handler,
1187 	.flags =	SA_INTERRUPT,
1188 	.name =		"mca_wkup"
1189 };
1190 
1191 #ifdef CONFIG_ACPI
1192 static struct irqaction mca_cpe_irqaction = {
1193 	.handler =	ia64_mca_cpe_int_handler,
1194 	.flags =	SA_INTERRUPT,
1195 	.name =		"cpe_hndlr"
1196 };
1197 
1198 static struct irqaction mca_cpep_irqaction = {
1199 	.handler =	ia64_mca_cpe_int_caller,
1200 	.flags =	SA_INTERRUPT,
1201 	.name =		"cpe_poll"
1202 };
1203 #endif /* CONFIG_ACPI */
1204 
1205 /* Do per-CPU MCA-related initialization.  */
1206 
1207 void __devinit
1208 ia64_mca_cpu_init(void *cpu_data)
1209 {
1210 	void *pal_vaddr;
1211 
1212 	if (smp_processor_id() == 0) {
1213 		void *mca_data;
1214 		int cpu;
1215 
1216 		mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1217 					 * NR_CPUS);
1218 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1219 			__per_cpu_mca[cpu] = __pa(mca_data);
1220 			mca_data += sizeof(struct ia64_mca_cpu);
1221 		}
1222 	}
1223 
1224         /*
1225          * The MCA info structure was allocated earlier and its
1226          * physical address saved in __per_cpu_mca[cpu].  Copy that
1227          * address * to ia64_mca_data so we can access it as a per-CPU
1228          * variable.
1229          */
1230 	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1231 
1232 	/*
1233 	 * Stash away a copy of the PTE needed to map the per-CPU page.
1234 	 * We may need it during MCA recovery.
1235 	 */
1236 	__get_cpu_var(ia64_mca_per_cpu_pte) =
1237 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1238 
1239         /*
1240          * Also, stash away a copy of the PAL address and the PTE
1241          * needed to map it.
1242          */
1243         pal_vaddr = efi_get_pal_addr();
1244 	if (!pal_vaddr)
1245 		return;
1246 	__get_cpu_var(ia64_mca_pal_base) =
1247 		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1248 	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1249 							      PAGE_KERNEL));
1250 }
1251 
1252 /*
1253  * ia64_mca_init
1254  *
1255  *  Do all the system level mca specific initialization.
1256  *
1257  *	1. Register spinloop and wakeup request interrupt vectors
1258  *
1259  *	2. Register OS_MCA handler entry point
1260  *
1261  *	3. Register OS_INIT handler entry point
1262  *
1263  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1264  *
1265  *  Note that this initialization is done very early before some kernel
1266  *  services are available.
1267  *
1268  *  Inputs  :   None
1269  *
1270  *  Outputs :   None
1271  */
1272 void __init
1273 ia64_mca_init(void)
1274 {
1275 	ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
1276 	ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
1277 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1278 	int i;
1279 	s64 rc;
1280 	struct ia64_sal_retval isrv;
1281 	u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;	/* platform specific */
1282 
1283 	IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1284 
1285 	/* Clear the Rendez checkin flag for all cpus */
1286 	for(i = 0 ; i < NR_CPUS; i++)
1287 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1288 
1289 	/*
1290 	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1291 	 */
1292 
1293 	/* Register the rendezvous interrupt vector with SAL */
1294 	while (1) {
1295 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1296 					      SAL_MC_PARAM_MECHANISM_INT,
1297 					      IA64_MCA_RENDEZ_VECTOR,
1298 					      timeout,
1299 					      SAL_MC_PARAM_RZ_ALWAYS);
1300 		rc = isrv.status;
1301 		if (rc == 0)
1302 			break;
1303 		if (rc == -2) {
1304 			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1305 				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1306 			timeout = isrv.v0;
1307 			continue;
1308 		}
1309 		printk(KERN_ERR "Failed to register rendezvous interrupt "
1310 		       "with SAL (status %ld)\n", rc);
1311 		return;
1312 	}
1313 
1314 	/* Register the wakeup interrupt vector with SAL */
1315 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1316 				      SAL_MC_PARAM_MECHANISM_INT,
1317 				      IA64_MCA_WAKEUP_VECTOR,
1318 				      0, 0);
1319 	rc = isrv.status;
1320 	if (rc) {
1321 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1322 		       "(status %ld)\n", rc);
1323 		return;
1324 	}
1325 
1326 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1327 
1328 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1329 	/*
1330 	 * XXX - disable SAL checksum by setting size to 0; should be
1331 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1332 	 */
1333 	ia64_mc_info.imi_mca_handler_size	= 0;
1334 
1335 	/* Register the os mca handler with SAL */
1336 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1337 				       ia64_mc_info.imi_mca_handler,
1338 				       ia64_tpa(mca_hldlr_ptr->gp),
1339 				       ia64_mc_info.imi_mca_handler_size,
1340 				       0, 0, 0)))
1341 	{
1342 		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1343 		       "(status %ld)\n", rc);
1344 		return;
1345 	}
1346 
1347 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1348 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1349 
1350 	/*
1351 	 * XXX - disable SAL checksum by setting size to 0, should be
1352 	 * size of the actual init handler in mca_asm.S.
1353 	 */
1354 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(mon_init_ptr->fp);
1355 	ia64_mc_info.imi_monarch_init_handler_size	= 0;
1356 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(slave_init_ptr->fp);
1357 	ia64_mc_info.imi_slave_init_handler_size	= 0;
1358 
1359 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1360 		       ia64_mc_info.imi_monarch_init_handler);
1361 
1362 	/* Register the os init handler with SAL */
1363 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1364 				       ia64_mc_info.imi_monarch_init_handler,
1365 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1366 				       ia64_mc_info.imi_monarch_init_handler_size,
1367 				       ia64_mc_info.imi_slave_init_handler,
1368 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1369 				       ia64_mc_info.imi_slave_init_handler_size)))
1370 	{
1371 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1372 		       "(status %ld)\n", rc);
1373 		return;
1374 	}
1375 
1376 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1377 
1378 	/*
1379 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1380 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1381 	 */
1382 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1383 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1384 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1385 
1386 	/* Setup the MCA rendezvous interrupt vector */
1387 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1388 
1389 	/* Setup the MCA wakeup interrupt vector */
1390 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1391 
1392 #ifdef CONFIG_ACPI
1393 	/* Setup the CPEI/P vector and handler */
1394 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1395 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1396 #endif
1397 
1398 	/* Initialize the areas set aside by the OS to buffer the
1399 	 * platform/processor error states for MCA/INIT/CMC
1400 	 * handling.
1401 	 */
1402 	ia64_log_init(SAL_INFO_TYPE_MCA);
1403 	ia64_log_init(SAL_INFO_TYPE_INIT);
1404 	ia64_log_init(SAL_INFO_TYPE_CMC);
1405 	ia64_log_init(SAL_INFO_TYPE_CPE);
1406 
1407 	mca_init = 1;
1408 	printk(KERN_INFO "MCA related initialization done\n");
1409 }
1410 
1411 /*
1412  * ia64_mca_late_init
1413  *
1414  *	Opportunity to setup things that require initialization later
1415  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
1416  *	platform doesn't support an interrupt driven mechanism.
1417  *
1418  *  Inputs  :   None
1419  *  Outputs :   Status
1420  */
1421 static int __init
1422 ia64_mca_late_init(void)
1423 {
1424 	if (!mca_init)
1425 		return 0;
1426 
1427 	/* Setup the CMCI/P vector and handler */
1428 	init_timer(&cmc_poll_timer);
1429 	cmc_poll_timer.function = ia64_mca_cmc_poll;
1430 
1431 	/* Unmask/enable the vector */
1432 	cmc_polling_enabled = 0;
1433 	schedule_work(&cmc_enable_work);
1434 
1435 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1436 
1437 #ifdef CONFIG_ACPI
1438 	/* Setup the CPEI/P vector and handler */
1439 	init_timer(&cpe_poll_timer);
1440 	cpe_poll_timer.function = ia64_mca_cpe_poll;
1441 
1442 	{
1443 		irq_desc_t *desc;
1444 		unsigned int irq;
1445 
1446 		if (cpe_vector >= 0) {
1447 			/* If platform supports CPEI, enable the irq. */
1448 			cpe_poll_enabled = 0;
1449 			for (irq = 0; irq < NR_IRQS; ++irq)
1450 				if (irq_to_vector(irq) == cpe_vector) {
1451 					desc = irq_descp(irq);
1452 					desc->status |= IRQ_PER_CPU;
1453 					setup_irq(irq, &mca_cpe_irqaction);
1454 				}
1455 			ia64_mca_register_cpev(cpe_vector);
1456 			IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1457 		} else {
1458 			/* If platform doesn't support CPEI, get the timer going. */
1459 			if (cpe_poll_enabled) {
1460 				ia64_mca_cpe_poll(0UL);
1461 				IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1462 			}
1463 		}
1464 	}
1465 #endif
1466 
1467 	return 0;
1468 }
1469 
1470 device_initcall(ia64_mca_late_init);
1471