xref: /openbmc/linux/arch/ia64/kernel/head.S (revision eb3fcf00)
1/*
2 * Here is where the ball gets rolling as far as the kernel is concerned.
3 * When control is transferred to _start, the bootload has already
4 * loaded us to the correct address.  All that's left to do here is
5 * to set up the kernel's global pointer and jump to the kernel
6 * entry point.
7 *
8 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *	Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 * Copyright (C) 1999 Intel Corp.
14 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
15 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
16 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
17 *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
18 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
19 *   Support for CPU Hotplug
20 */
21
22
23#include <asm/asmmacro.h>
24#include <asm/fpu.h>
25#include <asm/kregs.h>
26#include <asm/mmu_context.h>
27#include <asm/asm-offsets.h>
28#include <asm/pal.h>
29#include <asm/pgtable.h>
30#include <asm/processor.h>
31#include <asm/ptrace.h>
32#include <asm/mca_asm.h>
33#include <linux/init.h>
34#include <linux/linkage.h>
35
36#ifdef CONFIG_HOTPLUG_CPU
37#define SAL_PSR_BITS_TO_SET				\
38	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
39
40#define SAVE_FROM_REG(src, ptr, dest)	\
41	mov dest=src;;						\
42	st8 [ptr]=dest,0x08
43
44#define RESTORE_REG(reg, ptr, _tmp)		\
45	ld8 _tmp=[ptr],0x08;;				\
46	mov reg=_tmp
47
48#define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
49	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
50	mov _idx=0;; 								\
511: 												\
52	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
53	add _idx=1,_idx;;							\
54	br.cloop.sptk.many 1b
55
56#define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
57	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
58	mov _idx=0;;							\
59_lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
60	add _idx=1, _idx;;						\
61	br.cloop.sptk.many _lbl
62
63#define SAVE_ONE_RR(num, _reg, _tmp) \
64	movl _tmp=(num<<61);;	\
65	mov _reg=rr[_tmp]
66
67#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
68	SAVE_ONE_RR(0,_r0, _tmp);; \
69	SAVE_ONE_RR(1,_r1, _tmp);; \
70	SAVE_ONE_RR(2,_r2, _tmp);; \
71	SAVE_ONE_RR(3,_r3, _tmp);; \
72	SAVE_ONE_RR(4,_r4, _tmp);; \
73	SAVE_ONE_RR(5,_r5, _tmp);; \
74	SAVE_ONE_RR(6,_r6, _tmp);; \
75	SAVE_ONE_RR(7,_r7, _tmp);;
76
77#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
78	st8 [ptr]=_r0, 8;; \
79	st8 [ptr]=_r1, 8;; \
80	st8 [ptr]=_r2, 8;; \
81	st8 [ptr]=_r3, 8;; \
82	st8 [ptr]=_r4, 8;; \
83	st8 [ptr]=_r5, 8;; \
84	st8 [ptr]=_r6, 8;; \
85	st8 [ptr]=_r7, 8;;
86
87#define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
88	mov		ar.lc=0x08-1;;						\
89	movl	_idx1=0x00;;						\
90RestRR:											\
91	dep.z	_idx2=_idx1,61,3;;					\
92	ld8		_tmp=[ptr],8;;						\
93	mov		rr[_idx2]=_tmp;;					\
94	srlz.d;;									\
95	add		_idx1=1,_idx1;;						\
96	br.cloop.sptk.few	RestRR
97
98#define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
99	movl reg1=sal_state_for_booting_cpu;;	\
100	ld8 reg2=[reg1];;
101
102/*
103 * Adjust region registers saved before starting to save
104 * break regs and rest of the states that need to be preserved.
105 */
106#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
107	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
108	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
109	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
110	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
111	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
112	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
113	st8 [_reg1]=r1,0x08;;								\
114	st8 [_reg1]=r12,0x08;;								\
115	st8 [_reg1]=r13,0x08;;								\
116	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
117	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
118	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
119	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
120	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
121	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
122	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
123	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
124	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
125	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
126	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
127	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
128	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
129	st8 [_reg1]=r4,0x08;;								\
130	st8 [_reg1]=r5,0x08;;								\
131	st8 [_reg1]=r6,0x08;;								\
132	st8 [_reg1]=r7,0x08;;								\
133	st8 [_reg1]=_pred,0x08;;							\
134	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
135	stf.spill.nta [_reg1]=f2,16;;						\
136	stf.spill.nta [_reg1]=f3,16;;						\
137	stf.spill.nta [_reg1]=f4,16;;						\
138	stf.spill.nta [_reg1]=f5,16;;						\
139	stf.spill.nta [_reg1]=f16,16;;						\
140	stf.spill.nta [_reg1]=f17,16;;						\
141	stf.spill.nta [_reg1]=f18,16;;						\
142	stf.spill.nta [_reg1]=f19,16;;						\
143	stf.spill.nta [_reg1]=f20,16;;						\
144	stf.spill.nta [_reg1]=f21,16;;						\
145	stf.spill.nta [_reg1]=f22,16;;						\
146	stf.spill.nta [_reg1]=f23,16;;						\
147	stf.spill.nta [_reg1]=f24,16;;						\
148	stf.spill.nta [_reg1]=f25,16;;						\
149	stf.spill.nta [_reg1]=f26,16;;						\
150	stf.spill.nta [_reg1]=f27,16;;						\
151	stf.spill.nta [_reg1]=f28,16;;						\
152	stf.spill.nta [_reg1]=f29,16;;						\
153	stf.spill.nta [_reg1]=f30,16;;						\
154	stf.spill.nta [_reg1]=f31,16;;
155
156#else
157#define SET_AREA_FOR_BOOTING_CPU(a1, a2)
158#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
159#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
160#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
161#endif
162
163#define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
164	movl _tmp1=(num << 61);;	\
165	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
166	mov rr[_tmp1]=_tmp2
167
168	__PAGE_ALIGNED_DATA
169
170	.global empty_zero_page
171empty_zero_page:
172	.skip PAGE_SIZE
173
174	.global swapper_pg_dir
175swapper_pg_dir:
176	.skip PAGE_SIZE
177
178	.rodata
179halt_msg:
180	stringz "Halting kernel\n"
181
182	__REF
183
184	.global start_ap
185
186	/*
187	 * Start the kernel.  When the bootloader passes control to _start(), r28
188	 * points to the address of the boot parameter area.  Execution reaches
189	 * here in physical mode.
190	 */
191GLOBAL_ENTRY(_start)
192start_ap:
193	.prologue
194	.save rp, r0		// terminate unwind chain with a NULL rp
195	.body
196
197	rsm psr.i | psr.ic
198	;;
199	srlz.i
200	;;
201 {
202	flushrs				// must be first insn in group
203	srlz.i
204 }
205	;;
206	/*
207	 * Save the region registers, predicate before they get clobbered
208	 */
209	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
210	mov r25=pr;;
211
212	/*
213	 * Initialize kernel region registers:
214	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
215	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
216	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
217	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
218	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
219	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
220	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
221	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
222	 * We initialize all of them to prevent inadvertently assuming
223	 * something about the state of address translation early in boot.
224	 */
225	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
226	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
227	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
228	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
229	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
230	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
231	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
232	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
233	/*
234	 * Now pin mappings into the TLB for kernel text and data
235	 */
236	mov r18=KERNEL_TR_PAGE_SHIFT<<2
237	movl r17=KERNEL_START
238	;;
239	mov cr.itir=r18
240	mov cr.ifa=r17
241	mov r16=IA64_TR_KERNEL
242	mov r3=ip
243	movl r18=PAGE_KERNEL
244	;;
245	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
246	;;
247	or r18=r2,r18
248	;;
249	srlz.i
250	;;
251	itr.i itr[r16]=r18
252	;;
253	itr.d dtr[r16]=r18
254	;;
255	srlz.i
256
257	/*
258	 * Switch into virtual mode:
259	 */
260	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
261		  |IA64_PSR_DI)
262	;;
263	mov cr.ipsr=r16
264	movl r17=1f
265	;;
266	mov cr.iip=r17
267	mov cr.ifs=r0
268	;;
269	rfi
270	;;
2711:	// now we are in virtual mode
272
273	SET_AREA_FOR_BOOTING_CPU(r2, r16);
274
275	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
276	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
277	;;
278
279	// set IVT entry point---can't access I/O ports without it
280	movl r3=ia64_ivt
281	;;
282	mov cr.iva=r3
283	movl r2=FPSR_DEFAULT
284	;;
285	srlz.i
286	movl gp=__gp
287
288	mov ar.fpsr=r2
289	;;
290
291#define isAP	p2	// are we an Application Processor?
292#define isBP	p3	// are we the Bootstrap Processor?
293
294#ifdef CONFIG_SMP
295	/*
296	 * Find the init_task for the currently booting CPU.  At poweron, and in
297	 * UP mode, task_for_booting_cpu is NULL.
298	 */
299	movl r3=task_for_booting_cpu
300 	;;
301	ld8 r3=[r3]
302	movl r2=init_task
303	;;
304	cmp.eq isBP,isAP=r3,r0
305	;;
306(isAP)	mov r2=r3
307#else
308	movl r2=init_task
309	cmp.eq isBP,isAP=r0,r0
310#endif
311	;;
312	tpa r3=r2		// r3 == phys addr of task struct
313	mov r16=-1
314(isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
315
316	// load mapping for stack (virtaddr in r2, physaddr in r3)
317	rsm psr.ic
318	movl r17=PAGE_KERNEL
319	;;
320	srlz.d
321	dep r18=0,r3,0,12
322	;;
323	or r18=r17,r18
324	dep r2=-1,r3,61,3	// IMVA of task
325	;;
326	mov r17=rr[r2]
327	shr.u r16=r3,IA64_GRANULE_SHIFT
328	;;
329	dep r17=0,r17,8,24
330	;;
331	mov cr.itir=r17
332	mov cr.ifa=r2
333
334	mov r19=IA64_TR_CURRENT_STACK
335	;;
336	itr.d dtr[r19]=r18
337	;;
338	ssm psr.ic
339	srlz.d
340  	;;
341
342.load_current:
343	// load the "current" pointer (r13) and ar.k6 with the current task
344	mov IA64_KR(CURRENT)=r2		// virtual address
345	mov IA64_KR(CURRENT_STACK)=r16
346	mov r13=r2
347	/*
348	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
349	 * threads don't store interesting values in that structure, but the space
350	 * still needs to be there because time-critical stuff such as the context
351	 * switching can be implemented more efficiently (for example, __switch_to()
352	 * always sets the psr.dfh bit of the task it is switching to).
353	 */
354
355	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
356	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
357	mov ar.rsc=0		// place RSE in enforced lazy mode
358	;;
359	loadrs			// clear the dirty partition
360	movl r19=__phys_per_cpu_start
361	mov r18=PERCPU_PAGE_SIZE
362	;;
363#ifndef CONFIG_SMP
364	add r19=r19,r18
365	;;
366#else
367(isAP)	br.few 2f
368	movl r20=__cpu0_per_cpu
369	;;
370	shr.u r18=r18,3
3711:
372	ld8 r21=[r19],8;;
373	st8[r20]=r21,8
374	adds r18=-1,r18;;
375	cmp4.lt p7,p6=0,r18
376(p7)	br.cond.dptk.few 1b
377	mov r19=r20
378	;;
3792:
380#endif
381	tpa r19=r19
382	;;
383	.pred.rel.mutex isBP,isAP
384(isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
385(isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
386	;;
387	mov ar.bspstore=r2	// establish the new RSE stack
388	;;
389	mov ar.rsc=0x3		// place RSE in eager mode
390
391(isBP)	dep r28=-1,r28,61,3	// make address virtual
392(isBP)	movl r2=ia64_boot_param
393	;;
394(isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
395
396#ifdef CONFIG_SMP
397(isAP)	br.call.sptk.many rp=start_secondary
398.ret0:
399(isAP)	br.cond.sptk self
400#endif
401
402	// This is executed by the bootstrap processor (bsp) only:
403
404#ifdef CONFIG_IA64_FW_EMU
405	// initialize PAL & SAL emulator:
406	br.call.sptk.many rp=sys_fw_init
407.ret1:
408#endif
409	br.call.sptk.many rp=start_kernel
410.ret2:	addl r3=@ltoff(halt_msg),gp
411	;;
412	alloc r2=ar.pfs,8,0,2,0
413	;;
414	ld8 out0=[r3]
415	br.call.sptk.many b0=console_print
416
417self:	hint @pause
418	br.sptk.many self		// endless loop
419END(_start)
420
421	.text
422
423GLOBAL_ENTRY(ia64_save_debug_regs)
424	alloc r16=ar.pfs,1,0,0,0
425	mov r20=ar.lc			// preserve ar.lc
426	mov ar.lc=IA64_NUM_DBG_REGS-1
427	mov r18=0
428	add r19=IA64_NUM_DBG_REGS*8,in0
429	;;
4301:	mov r16=dbr[r18]
431#ifdef CONFIG_ITANIUM
432	;;
433	srlz.d
434#endif
435	mov r17=ibr[r18]
436	add r18=1,r18
437	;;
438	st8.nta [in0]=r16,8
439	st8.nta [r19]=r17,8
440	br.cloop.sptk.many 1b
441	;;
442	mov ar.lc=r20			// restore ar.lc
443	br.ret.sptk.many rp
444END(ia64_save_debug_regs)
445
446GLOBAL_ENTRY(ia64_load_debug_regs)
447	alloc r16=ar.pfs,1,0,0,0
448	lfetch.nta [in0]
449	mov r20=ar.lc			// preserve ar.lc
450	add r19=IA64_NUM_DBG_REGS*8,in0
451	mov ar.lc=IA64_NUM_DBG_REGS-1
452	mov r18=-1
453	;;
4541:	ld8.nta r16=[in0],8
455	ld8.nta r17=[r19],8
456	add r18=1,r18
457	;;
458	mov dbr[r18]=r16
459#ifdef CONFIG_ITANIUM
460	;;
461	srlz.d				// Errata 132 (NoFix status)
462#endif
463	mov ibr[r18]=r17
464	br.cloop.sptk.many 1b
465	;;
466	mov ar.lc=r20			// restore ar.lc
467	br.ret.sptk.many rp
468END(ia64_load_debug_regs)
469
470GLOBAL_ENTRY(__ia64_save_fpu)
471	alloc r2=ar.pfs,1,4,0,0
472	adds loc0=96*16-16,in0
473	adds loc1=96*16-16-128,in0
474	;;
475	stf.spill.nta [loc0]=f127,-256
476	stf.spill.nta [loc1]=f119,-256
477	;;
478	stf.spill.nta [loc0]=f111,-256
479	stf.spill.nta [loc1]=f103,-256
480	;;
481	stf.spill.nta [loc0]=f95,-256
482	stf.spill.nta [loc1]=f87,-256
483	;;
484	stf.spill.nta [loc0]=f79,-256
485	stf.spill.nta [loc1]=f71,-256
486	;;
487	stf.spill.nta [loc0]=f63,-256
488	stf.spill.nta [loc1]=f55,-256
489	adds loc2=96*16-32,in0
490	;;
491	stf.spill.nta [loc0]=f47,-256
492	stf.spill.nta [loc1]=f39,-256
493	adds loc3=96*16-32-128,in0
494	;;
495	stf.spill.nta [loc2]=f126,-256
496	stf.spill.nta [loc3]=f118,-256
497	;;
498	stf.spill.nta [loc2]=f110,-256
499	stf.spill.nta [loc3]=f102,-256
500	;;
501	stf.spill.nta [loc2]=f94,-256
502	stf.spill.nta [loc3]=f86,-256
503	;;
504	stf.spill.nta [loc2]=f78,-256
505	stf.spill.nta [loc3]=f70,-256
506	;;
507	stf.spill.nta [loc2]=f62,-256
508	stf.spill.nta [loc3]=f54,-256
509	adds loc0=96*16-48,in0
510	;;
511	stf.spill.nta [loc2]=f46,-256
512	stf.spill.nta [loc3]=f38,-256
513	adds loc1=96*16-48-128,in0
514	;;
515	stf.spill.nta [loc0]=f125,-256
516	stf.spill.nta [loc1]=f117,-256
517	;;
518	stf.spill.nta [loc0]=f109,-256
519	stf.spill.nta [loc1]=f101,-256
520	;;
521	stf.spill.nta [loc0]=f93,-256
522	stf.spill.nta [loc1]=f85,-256
523	;;
524	stf.spill.nta [loc0]=f77,-256
525	stf.spill.nta [loc1]=f69,-256
526	;;
527	stf.spill.nta [loc0]=f61,-256
528	stf.spill.nta [loc1]=f53,-256
529	adds loc2=96*16-64,in0
530	;;
531	stf.spill.nta [loc0]=f45,-256
532	stf.spill.nta [loc1]=f37,-256
533	adds loc3=96*16-64-128,in0
534	;;
535	stf.spill.nta [loc2]=f124,-256
536	stf.spill.nta [loc3]=f116,-256
537	;;
538	stf.spill.nta [loc2]=f108,-256
539	stf.spill.nta [loc3]=f100,-256
540	;;
541	stf.spill.nta [loc2]=f92,-256
542	stf.spill.nta [loc3]=f84,-256
543	;;
544	stf.spill.nta [loc2]=f76,-256
545	stf.spill.nta [loc3]=f68,-256
546	;;
547	stf.spill.nta [loc2]=f60,-256
548	stf.spill.nta [loc3]=f52,-256
549	adds loc0=96*16-80,in0
550	;;
551	stf.spill.nta [loc2]=f44,-256
552	stf.spill.nta [loc3]=f36,-256
553	adds loc1=96*16-80-128,in0
554	;;
555	stf.spill.nta [loc0]=f123,-256
556	stf.spill.nta [loc1]=f115,-256
557	;;
558	stf.spill.nta [loc0]=f107,-256
559	stf.spill.nta [loc1]=f99,-256
560	;;
561	stf.spill.nta [loc0]=f91,-256
562	stf.spill.nta [loc1]=f83,-256
563	;;
564	stf.spill.nta [loc0]=f75,-256
565	stf.spill.nta [loc1]=f67,-256
566	;;
567	stf.spill.nta [loc0]=f59,-256
568	stf.spill.nta [loc1]=f51,-256
569	adds loc2=96*16-96,in0
570	;;
571	stf.spill.nta [loc0]=f43,-256
572	stf.spill.nta [loc1]=f35,-256
573	adds loc3=96*16-96-128,in0
574	;;
575	stf.spill.nta [loc2]=f122,-256
576	stf.spill.nta [loc3]=f114,-256
577	;;
578	stf.spill.nta [loc2]=f106,-256
579	stf.spill.nta [loc3]=f98,-256
580	;;
581	stf.spill.nta [loc2]=f90,-256
582	stf.spill.nta [loc3]=f82,-256
583	;;
584	stf.spill.nta [loc2]=f74,-256
585	stf.spill.nta [loc3]=f66,-256
586	;;
587	stf.spill.nta [loc2]=f58,-256
588	stf.spill.nta [loc3]=f50,-256
589	adds loc0=96*16-112,in0
590	;;
591	stf.spill.nta [loc2]=f42,-256
592	stf.spill.nta [loc3]=f34,-256
593	adds loc1=96*16-112-128,in0
594	;;
595	stf.spill.nta [loc0]=f121,-256
596	stf.spill.nta [loc1]=f113,-256
597	;;
598	stf.spill.nta [loc0]=f105,-256
599	stf.spill.nta [loc1]=f97,-256
600	;;
601	stf.spill.nta [loc0]=f89,-256
602	stf.spill.nta [loc1]=f81,-256
603	;;
604	stf.spill.nta [loc0]=f73,-256
605	stf.spill.nta [loc1]=f65,-256
606	;;
607	stf.spill.nta [loc0]=f57,-256
608	stf.spill.nta [loc1]=f49,-256
609	adds loc2=96*16-128,in0
610	;;
611	stf.spill.nta [loc0]=f41,-256
612	stf.spill.nta [loc1]=f33,-256
613	adds loc3=96*16-128-128,in0
614	;;
615	stf.spill.nta [loc2]=f120,-256
616	stf.spill.nta [loc3]=f112,-256
617	;;
618	stf.spill.nta [loc2]=f104,-256
619	stf.spill.nta [loc3]=f96,-256
620	;;
621	stf.spill.nta [loc2]=f88,-256
622	stf.spill.nta [loc3]=f80,-256
623	;;
624	stf.spill.nta [loc2]=f72,-256
625	stf.spill.nta [loc3]=f64,-256
626	;;
627	stf.spill.nta [loc2]=f56,-256
628	stf.spill.nta [loc3]=f48,-256
629	;;
630	stf.spill.nta [loc2]=f40
631	stf.spill.nta [loc3]=f32
632	br.ret.sptk.many rp
633END(__ia64_save_fpu)
634
635GLOBAL_ENTRY(__ia64_load_fpu)
636	alloc r2=ar.pfs,1,2,0,0
637	adds r3=128,in0
638	adds r14=256,in0
639	adds r15=384,in0
640	mov loc0=512
641	mov loc1=-1024+16
642	;;
643	ldf.fill.nta f32=[in0],loc0
644	ldf.fill.nta f40=[ r3],loc0
645	ldf.fill.nta f48=[r14],loc0
646	ldf.fill.nta f56=[r15],loc0
647	;;
648	ldf.fill.nta f64=[in0],loc0
649	ldf.fill.nta f72=[ r3],loc0
650	ldf.fill.nta f80=[r14],loc0
651	ldf.fill.nta f88=[r15],loc0
652	;;
653	ldf.fill.nta f96=[in0],loc1
654	ldf.fill.nta f104=[ r3],loc1
655	ldf.fill.nta f112=[r14],loc1
656	ldf.fill.nta f120=[r15],loc1
657	;;
658	ldf.fill.nta f33=[in0],loc0
659	ldf.fill.nta f41=[ r3],loc0
660	ldf.fill.nta f49=[r14],loc0
661	ldf.fill.nta f57=[r15],loc0
662	;;
663	ldf.fill.nta f65=[in0],loc0
664	ldf.fill.nta f73=[ r3],loc0
665	ldf.fill.nta f81=[r14],loc0
666	ldf.fill.nta f89=[r15],loc0
667	;;
668	ldf.fill.nta f97=[in0],loc1
669	ldf.fill.nta f105=[ r3],loc1
670	ldf.fill.nta f113=[r14],loc1
671	ldf.fill.nta f121=[r15],loc1
672	;;
673	ldf.fill.nta f34=[in0],loc0
674	ldf.fill.nta f42=[ r3],loc0
675	ldf.fill.nta f50=[r14],loc0
676	ldf.fill.nta f58=[r15],loc0
677	;;
678	ldf.fill.nta f66=[in0],loc0
679	ldf.fill.nta f74=[ r3],loc0
680	ldf.fill.nta f82=[r14],loc0
681	ldf.fill.nta f90=[r15],loc0
682	;;
683	ldf.fill.nta f98=[in0],loc1
684	ldf.fill.nta f106=[ r3],loc1
685	ldf.fill.nta f114=[r14],loc1
686	ldf.fill.nta f122=[r15],loc1
687	;;
688	ldf.fill.nta f35=[in0],loc0
689	ldf.fill.nta f43=[ r3],loc0
690	ldf.fill.nta f51=[r14],loc0
691	ldf.fill.nta f59=[r15],loc0
692	;;
693	ldf.fill.nta f67=[in0],loc0
694	ldf.fill.nta f75=[ r3],loc0
695	ldf.fill.nta f83=[r14],loc0
696	ldf.fill.nta f91=[r15],loc0
697	;;
698	ldf.fill.nta f99=[in0],loc1
699	ldf.fill.nta f107=[ r3],loc1
700	ldf.fill.nta f115=[r14],loc1
701	ldf.fill.nta f123=[r15],loc1
702	;;
703	ldf.fill.nta f36=[in0],loc0
704	ldf.fill.nta f44=[ r3],loc0
705	ldf.fill.nta f52=[r14],loc0
706	ldf.fill.nta f60=[r15],loc0
707	;;
708	ldf.fill.nta f68=[in0],loc0
709	ldf.fill.nta f76=[ r3],loc0
710	ldf.fill.nta f84=[r14],loc0
711	ldf.fill.nta f92=[r15],loc0
712	;;
713	ldf.fill.nta f100=[in0],loc1
714	ldf.fill.nta f108=[ r3],loc1
715	ldf.fill.nta f116=[r14],loc1
716	ldf.fill.nta f124=[r15],loc1
717	;;
718	ldf.fill.nta f37=[in0],loc0
719	ldf.fill.nta f45=[ r3],loc0
720	ldf.fill.nta f53=[r14],loc0
721	ldf.fill.nta f61=[r15],loc0
722	;;
723	ldf.fill.nta f69=[in0],loc0
724	ldf.fill.nta f77=[ r3],loc0
725	ldf.fill.nta f85=[r14],loc0
726	ldf.fill.nta f93=[r15],loc0
727	;;
728	ldf.fill.nta f101=[in0],loc1
729	ldf.fill.nta f109=[ r3],loc1
730	ldf.fill.nta f117=[r14],loc1
731	ldf.fill.nta f125=[r15],loc1
732	;;
733	ldf.fill.nta f38 =[in0],loc0
734	ldf.fill.nta f46 =[ r3],loc0
735	ldf.fill.nta f54 =[r14],loc0
736	ldf.fill.nta f62 =[r15],loc0
737	;;
738	ldf.fill.nta f70 =[in0],loc0
739	ldf.fill.nta f78 =[ r3],loc0
740	ldf.fill.nta f86 =[r14],loc0
741	ldf.fill.nta f94 =[r15],loc0
742	;;
743	ldf.fill.nta f102=[in0],loc1
744	ldf.fill.nta f110=[ r3],loc1
745	ldf.fill.nta f118=[r14],loc1
746	ldf.fill.nta f126=[r15],loc1
747	;;
748	ldf.fill.nta f39 =[in0],loc0
749	ldf.fill.nta f47 =[ r3],loc0
750	ldf.fill.nta f55 =[r14],loc0
751	ldf.fill.nta f63 =[r15],loc0
752	;;
753	ldf.fill.nta f71 =[in0],loc0
754	ldf.fill.nta f79 =[ r3],loc0
755	ldf.fill.nta f87 =[r14],loc0
756	ldf.fill.nta f95 =[r15],loc0
757	;;
758	ldf.fill.nta f103=[in0]
759	ldf.fill.nta f111=[ r3]
760	ldf.fill.nta f119=[r14]
761	ldf.fill.nta f127=[r15]
762	br.ret.sptk.many rp
763END(__ia64_load_fpu)
764
765GLOBAL_ENTRY(__ia64_init_fpu)
766	stf.spill [sp]=f0		// M3
767	mov	 f32=f0			// F
768	nop.b	 0
769
770	ldfps	 f33,f34=[sp]		// M0
771	ldfps	 f35,f36=[sp]		// M1
772	mov      f37=f0			// F
773	;;
774
775	setf.s	 f38=r0			// M2
776	setf.s	 f39=r0			// M3
777	mov      f40=f0			// F
778
779	ldfps	 f41,f42=[sp]		// M0
780	ldfps	 f43,f44=[sp]		// M1
781	mov      f45=f0			// F
782
783	setf.s	 f46=r0			// M2
784	setf.s	 f47=r0			// M3
785	mov      f48=f0			// F
786
787	ldfps	 f49,f50=[sp]		// M0
788	ldfps	 f51,f52=[sp]		// M1
789	mov      f53=f0			// F
790
791	setf.s	 f54=r0			// M2
792	setf.s	 f55=r0			// M3
793	mov      f56=f0			// F
794
795	ldfps	 f57,f58=[sp]		// M0
796	ldfps	 f59,f60=[sp]		// M1
797	mov      f61=f0			// F
798
799	setf.s	 f62=r0			// M2
800	setf.s	 f63=r0			// M3
801	mov      f64=f0			// F
802
803	ldfps	 f65,f66=[sp]		// M0
804	ldfps	 f67,f68=[sp]		// M1
805	mov      f69=f0			// F
806
807	setf.s	 f70=r0			// M2
808	setf.s	 f71=r0			// M3
809	mov      f72=f0			// F
810
811	ldfps	 f73,f74=[sp]		// M0
812	ldfps	 f75,f76=[sp]		// M1
813	mov      f77=f0			// F
814
815	setf.s	 f78=r0			// M2
816	setf.s	 f79=r0			// M3
817	mov      f80=f0			// F
818
819	ldfps	 f81,f82=[sp]		// M0
820	ldfps	 f83,f84=[sp]		// M1
821	mov      f85=f0			// F
822
823	setf.s	 f86=r0			// M2
824	setf.s	 f87=r0			// M3
825	mov      f88=f0			// F
826
827	/*
828	 * When the instructions are cached, it would be faster to initialize
829	 * the remaining registers with simply mov instructions (F-unit).
830	 * This gets the time down to ~29 cycles.  However, this would use up
831	 * 33 bundles, whereas continuing with the above pattern yields
832	 * 10 bundles and ~30 cycles.
833	 */
834
835	ldfps	 f89,f90=[sp]		// M0
836	ldfps	 f91,f92=[sp]		// M1
837	mov      f93=f0			// F
838
839	setf.s	 f94=r0			// M2
840	setf.s	 f95=r0			// M3
841	mov      f96=f0			// F
842
843	ldfps	 f97,f98=[sp]		// M0
844	ldfps	 f99,f100=[sp]		// M1
845	mov      f101=f0		// F
846
847	setf.s	 f102=r0		// M2
848	setf.s	 f103=r0		// M3
849	mov      f104=f0		// F
850
851	ldfps	 f105,f106=[sp]		// M0
852	ldfps	 f107,f108=[sp]		// M1
853	mov      f109=f0		// F
854
855	setf.s	 f110=r0		// M2
856	setf.s	 f111=r0		// M3
857	mov      f112=f0		// F
858
859	ldfps	 f113,f114=[sp]		// M0
860	ldfps	 f115,f116=[sp]		// M1
861	mov      f117=f0		// F
862
863	setf.s	 f118=r0		// M2
864	setf.s	 f119=r0		// M3
865	mov      f120=f0		// F
866
867	ldfps	 f121,f122=[sp]		// M0
868	ldfps	 f123,f124=[sp]		// M1
869	mov      f125=f0		// F
870
871	setf.s	 f126=r0		// M2
872	setf.s	 f127=r0		// M3
873	br.ret.sptk.many rp		// F
874END(__ia64_init_fpu)
875
876/*
877 * Switch execution mode from virtual to physical
878 *
879 * Inputs:
880 *	r16 = new psr to establish
881 * Output:
882 *	r19 = old virtual address of ar.bsp
883 *	r20 = old virtual address of sp
884 *
885 * Note: RSE must already be in enforced lazy mode
886 */
887GLOBAL_ENTRY(ia64_switch_mode_phys)
888 {
889	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
890	mov r15=ip
891 }
892	;;
893 {
894	flushrs				// must be first insn in group
895	srlz.i
896 }
897	;;
898	mov cr.ipsr=r16			// set new PSR
899	add r3=1f-ia64_switch_mode_phys,r15
900
901	mov r19=ar.bsp
902	mov r20=sp
903	mov r14=rp			// get return address into a general register
904	;;
905
906	// going to physical mode, use tpa to translate virt->phys
907	tpa r17=r19
908	tpa r3=r3
909	tpa sp=sp
910	tpa r14=r14
911	;;
912
913	mov r18=ar.rnat			// save ar.rnat
914	mov ar.bspstore=r17		// this steps on ar.rnat
915	mov cr.iip=r3
916	mov cr.ifs=r0
917	;;
918	mov ar.rnat=r18			// restore ar.rnat
919	rfi				// must be last insn in group
920	;;
9211:	mov rp=r14
922	br.ret.sptk.many rp
923END(ia64_switch_mode_phys)
924
925/*
926 * Switch execution mode from physical to virtual
927 *
928 * Inputs:
929 *	r16 = new psr to establish
930 *	r19 = new bspstore to establish
931 *	r20 = new sp to establish
932 *
933 * Note: RSE must already be in enforced lazy mode
934 */
935GLOBAL_ENTRY(ia64_switch_mode_virt)
936 {
937	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
938	mov r15=ip
939 }
940	;;
941 {
942	flushrs				// must be first insn in group
943	srlz.i
944 }
945	;;
946	mov cr.ipsr=r16			// set new PSR
947	add r3=1f-ia64_switch_mode_virt,r15
948
949	mov r14=rp			// get return address into a general register
950	;;
951
952	// going to virtual
953	//   - for code addresses, set upper bits of addr to KERNEL_START
954	//   - for stack addresses, copy from input argument
955	movl r18=KERNEL_START
956	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
957	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
958	mov sp=r20
959	;;
960	or r3=r3,r18
961	or r14=r14,r18
962	;;
963
964	mov r18=ar.rnat			// save ar.rnat
965	mov ar.bspstore=r19		// this steps on ar.rnat
966	mov cr.iip=r3
967	mov cr.ifs=r0
968	;;
969	mov ar.rnat=r18			// restore ar.rnat
970	rfi				// must be last insn in group
971	;;
9721:	mov rp=r14
973	br.ret.sptk.many rp
974END(ia64_switch_mode_virt)
975
976GLOBAL_ENTRY(ia64_delay_loop)
977	.prologue
978{	nop 0			// work around GAS unwind info generation bug...
979	.save ar.lc,r2
980	mov r2=ar.lc
981	.body
982	;;
983	mov ar.lc=r32
984}
985	;;
986	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
987	// inside function body without corrupting unwind info).
988{	nop 0 }
9891:	br.cloop.sptk.few 1b
990	;;
991	mov ar.lc=r2
992	br.ret.sptk.many rp
993END(ia64_delay_loop)
994
995/*
996 * Return a CPU-local timestamp in nano-seconds.  This timestamp is
997 * NOT synchronized across CPUs its return value must never be
998 * compared against the values returned on another CPU.  The usage in
999 * kernel/sched/core.c ensures that.
1000 *
1001 * The return-value of sched_clock() is NOT supposed to wrap-around.
1002 * If it did, it would cause some scheduling hiccups (at the worst).
1003 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1004 * that would happen only once every 5+ years.
1005 *
1006 * The code below basically calculates:
1007 *
1008 *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1009 *
1010 * except that the multiplication and the shift are done with 128-bit
1011 * intermediate precision so that we can produce a full 64-bit result.
1012 */
1013GLOBAL_ENTRY(ia64_native_sched_clock)
1014	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1015	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1016	;;
1017	ldf8 f8=[r8]
1018	;;
1019	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1020	;;
1021	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1022	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1023	;;
1024	getf.sig r8=f10		//						(5 cyc)
1025	getf.sig r9=f11
1026	;;
1027	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1028	br.ret.sptk.many rp
1029END(ia64_native_sched_clock)
1030
1031#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1032GLOBAL_ENTRY(cycle_to_cputime)
1033	alloc r16=ar.pfs,1,0,0,0
1034	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1035	;;
1036	ldf8 f8=[r8]
1037	;;
1038	setf.sig f9=r32
1039	;;
1040	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1041	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1042	;;
1043	getf.sig r8=f10		//						(5 cyc)
1044	getf.sig r9=f11
1045	;;
1046	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1047	br.ret.sptk.many rp
1048END(cycle_to_cputime)
1049#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1050
1051#ifdef CONFIG_IA64_BRL_EMU
1052
1053/*
1054 *  Assembly routines used by brl_emu.c to set preserved register state.
1055 */
1056
1057#define SET_REG(reg)				\
1058 GLOBAL_ENTRY(ia64_set_##reg);			\
1059	alloc r16=ar.pfs,1,0,0,0;		\
1060	mov reg=r32;				\
1061	;;					\
1062	br.ret.sptk.many rp;			\
1063 END(ia64_set_##reg)
1064
1065SET_REG(b1);
1066SET_REG(b2);
1067SET_REG(b3);
1068SET_REG(b4);
1069SET_REG(b5);
1070
1071#endif /* CONFIG_IA64_BRL_EMU */
1072
1073#ifdef CONFIG_SMP
1074
1075#ifdef CONFIG_HOTPLUG_CPU
1076GLOBAL_ENTRY(ia64_jump_to_sal)
1077	alloc r16=ar.pfs,1,0,0,0;;
1078	rsm psr.i  | psr.ic
1079{
1080	flushrs
1081	srlz.i
1082}
1083	tpa r25=in0
1084	movl r18=tlb_purge_done;;
1085	DATA_VA_TO_PA(r18);;
1086	mov b1=r18 	// Return location
1087	movl r18=ia64_do_tlb_purge;;
1088	DATA_VA_TO_PA(r18);;
1089	mov b2=r18 	// doing tlb_flush work
1090	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1091	movl r17=1f;;
1092	DATA_VA_TO_PA(r17);;
1093	mov cr.iip=r17
1094	movl r16=SAL_PSR_BITS_TO_SET;;
1095	mov cr.ipsr=r16
1096	mov cr.ifs=r0;;
1097	rfi;;			// note: this unmask MCA/INIT (psr.mc)
10981:
1099	/*
1100	 * Invalidate all TLB data/inst
1101	 */
1102	br.sptk.many b2;; // jump to tlb purge code
1103
1104tlb_purge_done:
1105	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1106	RESTORE_REG(b0, r25, r17);;
1107	RESTORE_REG(b1, r25, r17);;
1108	RESTORE_REG(b2, r25, r17);;
1109	RESTORE_REG(b3, r25, r17);;
1110	RESTORE_REG(b4, r25, r17);;
1111	RESTORE_REG(b5, r25, r17);;
1112	ld8 r1=[r25],0x08;;
1113	ld8 r12=[r25],0x08;;
1114	ld8 r13=[r25],0x08;;
1115	RESTORE_REG(ar.fpsr, r25, r17);;
1116	RESTORE_REG(ar.pfs, r25, r17);;
1117	RESTORE_REG(ar.rnat, r25, r17);;
1118	RESTORE_REG(ar.unat, r25, r17);;
1119	RESTORE_REG(ar.bspstore, r25, r17);;
1120	RESTORE_REG(cr.dcr, r25, r17);;
1121	RESTORE_REG(cr.iva, r25, r17);;
1122	RESTORE_REG(cr.pta, r25, r17);;
1123	srlz.d;;	// required not to violate RAW dependency
1124	RESTORE_REG(cr.itv, r25, r17);;
1125	RESTORE_REG(cr.pmv, r25, r17);;
1126	RESTORE_REG(cr.cmcv, r25, r17);;
1127	RESTORE_REG(cr.lrr0, r25, r17);;
1128	RESTORE_REG(cr.lrr1, r25, r17);;
1129	ld8 r4=[r25],0x08;;
1130	ld8 r5=[r25],0x08;;
1131	ld8 r6=[r25],0x08;;
1132	ld8 r7=[r25],0x08;;
1133	ld8 r17=[r25],0x08;;
1134	mov pr=r17,-1;;
1135	RESTORE_REG(ar.lc, r25, r17);;
1136	/*
1137	 * Now Restore floating point regs
1138	 */
1139	ldf.fill.nta f2=[r25],16;;
1140	ldf.fill.nta f3=[r25],16;;
1141	ldf.fill.nta f4=[r25],16;;
1142	ldf.fill.nta f5=[r25],16;;
1143	ldf.fill.nta f16=[r25],16;;
1144	ldf.fill.nta f17=[r25],16;;
1145	ldf.fill.nta f18=[r25],16;;
1146	ldf.fill.nta f19=[r25],16;;
1147	ldf.fill.nta f20=[r25],16;;
1148	ldf.fill.nta f21=[r25],16;;
1149	ldf.fill.nta f22=[r25],16;;
1150	ldf.fill.nta f23=[r25],16;;
1151	ldf.fill.nta f24=[r25],16;;
1152	ldf.fill.nta f25=[r25],16;;
1153	ldf.fill.nta f26=[r25],16;;
1154	ldf.fill.nta f27=[r25],16;;
1155	ldf.fill.nta f28=[r25],16;;
1156	ldf.fill.nta f29=[r25],16;;
1157	ldf.fill.nta f30=[r25],16;;
1158	ldf.fill.nta f31=[r25],16;;
1159
1160	/*
1161	 * Now that we have done all the register restores
1162	 * we are now ready for the big DIVE to SAL Land
1163	 */
1164	ssm psr.ic;;
1165	srlz.d;;
1166	br.ret.sptk.many b0;;
1167END(ia64_jump_to_sal)
1168#endif /* CONFIG_HOTPLUG_CPU */
1169
1170#endif /* CONFIG_SMP */
1171