xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision f8e17c17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 0.9
6  * April 30, 1999
7  *
8  * Copyright (C) 1999 VA Linux Systems
9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
11  *	David Mosberger-Tang <davidm@hpl.hp.com>
12  *	Stephane Eranian <eranian@hpl.hp.com>
13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
15  *
16  * All EFI Runtime Services are not implemented yet as EFI only
17  * supports physical mode addressing on SoftSDV. This is to be fixed
18  * in a future version.  --drummond 1999-07-20
19  *
20  * Implemented EFI runtime services and virtual mode calls.  --davidm
21  *
22  * Goutham Rao: <goutham.rao@intel.com>
23  *	Skip non-WB memory and ignore empty memory ranges.
24  */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36 
37 #include <asm/io.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42 #include <asm/mca.h>
43 #include <asm/setup.h>
44 #include <asm/tlbflush.h>
45 
46 #define EFI_DEBUG	0
47 
48 static __initdata unsigned long palo_phys;
49 
50 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
51 
52 static __initdata efi_config_table_type_t arch_tables[] = {
53 	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
54 	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &sal_systab_phys},
55 	{NULL_GUID, NULL, 0},
56 };
57 
58 extern efi_status_t efi_call_phys (void *, ...);
59 
60 static efi_runtime_services_t *runtime;
61 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
62 
63 #define efi_call_virt(f, args...)	(*(f))(args)
64 
65 #define STUB_GET_TIME(prefix, adjust_arg)				       \
66 static efi_status_t							       \
67 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
68 {									       \
69 	struct ia64_fpreg fr[6];					       \
70 	efi_time_cap_t *atc = NULL;					       \
71 	efi_status_t ret;						       \
72 									       \
73 	if (tc)								       \
74 		atc = adjust_arg(tc);					       \
75 	ia64_save_scratch_fpregs(fr);					       \
76 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
77 				adjust_arg(tm), atc);			       \
78 	ia64_load_scratch_fpregs(fr);					       \
79 	return ret;							       \
80 }
81 
82 #define STUB_SET_TIME(prefix, adjust_arg)				       \
83 static efi_status_t							       \
84 prefix##_set_time (efi_time_t *tm)					       \
85 {									       \
86 	struct ia64_fpreg fr[6];					       \
87 	efi_status_t ret;						       \
88 									       \
89 	ia64_save_scratch_fpregs(fr);					       \
90 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
91 				adjust_arg(tm));			       \
92 	ia64_load_scratch_fpregs(fr);					       \
93 	return ret;							       \
94 }
95 
96 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
97 static efi_status_t							       \
98 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
99 			  efi_time_t *tm)				       \
100 {									       \
101 	struct ia64_fpreg fr[6];					       \
102 	efi_status_t ret;						       \
103 									       \
104 	ia64_save_scratch_fpregs(fr);					       \
105 	ret = efi_call_##prefix(					       \
106 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
107 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
108 	ia64_load_scratch_fpregs(fr);					       \
109 	return ret;							       \
110 }
111 
112 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
113 static efi_status_t							       \
114 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
115 {									       \
116 	struct ia64_fpreg fr[6];					       \
117 	efi_time_t *atm = NULL;						       \
118 	efi_status_t ret;						       \
119 									       \
120 	if (tm)								       \
121 		atm = adjust_arg(tm);					       \
122 	ia64_save_scratch_fpregs(fr);					       \
123 	ret = efi_call_##prefix(					       \
124 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
125 		enabled, atm);						       \
126 	ia64_load_scratch_fpregs(fr);					       \
127 	return ret;							       \
128 }
129 
130 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
131 static efi_status_t							       \
132 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
133 		       unsigned long *data_size, void *data)		       \
134 {									       \
135 	struct ia64_fpreg fr[6];					       \
136 	u32 *aattr = NULL;						       \
137 	efi_status_t ret;						       \
138 									       \
139 	if (attr)							       \
140 		aattr = adjust_arg(attr);				       \
141 	ia64_save_scratch_fpregs(fr);					       \
142 	ret = efi_call_##prefix(					       \
143 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
144 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
145 		adjust_arg(data_size), adjust_arg(data));		       \
146 	ia64_load_scratch_fpregs(fr);					       \
147 	return ret;							       \
148 }
149 
150 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
151 static efi_status_t							       \
152 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
153 			    efi_guid_t *vendor)				       \
154 {									       \
155 	struct ia64_fpreg fr[6];					       \
156 	efi_status_t ret;						       \
157 									       \
158 	ia64_save_scratch_fpregs(fr);					       \
159 	ret = efi_call_##prefix(					       \
160 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
161 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
162 	ia64_load_scratch_fpregs(fr);					       \
163 	return ret;							       \
164 }
165 
166 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
167 static efi_status_t							       \
168 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
169 		       u32 attr, unsigned long data_size,		       \
170 		       void *data)					       \
171 {									       \
172 	struct ia64_fpreg fr[6];					       \
173 	efi_status_t ret;						       \
174 									       \
175 	ia64_save_scratch_fpregs(fr);					       \
176 	ret = efi_call_##prefix(					       \
177 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
178 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
179 		adjust_arg(data));					       \
180 	ia64_load_scratch_fpregs(fr);					       \
181 	return ret;							       \
182 }
183 
184 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
185 static efi_status_t							       \
186 prefix##_get_next_high_mono_count (u32 *count)				       \
187 {									       \
188 	struct ia64_fpreg fr[6];					       \
189 	efi_status_t ret;						       \
190 									       \
191 	ia64_save_scratch_fpregs(fr);					       \
192 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
193 				__va(runtime->get_next_high_mono_count),       \
194 				adjust_arg(count));			       \
195 	ia64_load_scratch_fpregs(fr);					       \
196 	return ret;							       \
197 }
198 
199 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
200 static void								       \
201 prefix##_reset_system (int reset_type, efi_status_t status,		       \
202 		       unsigned long data_size, efi_char16_t *data)	       \
203 {									       \
204 	struct ia64_fpreg fr[6];					       \
205 	efi_char16_t *adata = NULL;					       \
206 									       \
207 	if (data)							       \
208 		adata = adjust_arg(data);				       \
209 									       \
210 	ia64_save_scratch_fpregs(fr);					       \
211 	efi_call_##prefix(						       \
212 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
213 		reset_type, status, data_size, adata);			       \
214 	/* should not return, but just in case... */			       \
215 	ia64_load_scratch_fpregs(fr);					       \
216 }
217 
218 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
219 
220 STUB_GET_TIME(phys, phys_ptr)
221 STUB_SET_TIME(phys, phys_ptr)
222 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
223 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
224 STUB_GET_VARIABLE(phys, phys_ptr)
225 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
226 STUB_SET_VARIABLE(phys, phys_ptr)
227 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
228 STUB_RESET_SYSTEM(phys, phys_ptr)
229 
230 #define id(arg)	arg
231 
232 STUB_GET_TIME(virt, id)
233 STUB_SET_TIME(virt, id)
234 STUB_GET_WAKEUP_TIME(virt, id)
235 STUB_SET_WAKEUP_TIME(virt, id)
236 STUB_GET_VARIABLE(virt, id)
237 STUB_GET_NEXT_VARIABLE(virt, id)
238 STUB_SET_VARIABLE(virt, id)
239 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
240 STUB_RESET_SYSTEM(virt, id)
241 
242 void
243 efi_gettimeofday (struct timespec64 *ts)
244 {
245 	efi_time_t tm;
246 
247 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
248 		memset(ts, 0, sizeof(*ts));
249 		return;
250 	}
251 
252 	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
253 			    tm.hour, tm.minute, tm.second);
254 	ts->tv_nsec = tm.nanosecond;
255 }
256 
257 static int
258 is_memory_available (efi_memory_desc_t *md)
259 {
260 	if (!(md->attribute & EFI_MEMORY_WB))
261 		return 0;
262 
263 	switch (md->type) {
264 	      case EFI_LOADER_CODE:
265 	      case EFI_LOADER_DATA:
266 	      case EFI_BOOT_SERVICES_CODE:
267 	      case EFI_BOOT_SERVICES_DATA:
268 	      case EFI_CONVENTIONAL_MEMORY:
269 		return 1;
270 	}
271 	return 0;
272 }
273 
274 typedef struct kern_memdesc {
275 	u64 attribute;
276 	u64 start;
277 	u64 num_pages;
278 } kern_memdesc_t;
279 
280 static kern_memdesc_t *kern_memmap;
281 
282 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
283 
284 static inline u64
285 kmd_end(kern_memdesc_t *kmd)
286 {
287 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
288 }
289 
290 static inline u64
291 efi_md_end(efi_memory_desc_t *md)
292 {
293 	return (md->phys_addr + efi_md_size(md));
294 }
295 
296 static inline int
297 efi_wb(efi_memory_desc_t *md)
298 {
299 	return (md->attribute & EFI_MEMORY_WB);
300 }
301 
302 static inline int
303 efi_uc(efi_memory_desc_t *md)
304 {
305 	return (md->attribute & EFI_MEMORY_UC);
306 }
307 
308 static void
309 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
310 {
311 	kern_memdesc_t *k;
312 	u64 start, end, voff;
313 
314 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
315 	for (k = kern_memmap; k->start != ~0UL; k++) {
316 		if (k->attribute != attr)
317 			continue;
318 		start = PAGE_ALIGN(k->start);
319 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
320 		if (start < end)
321 			if ((*callback)(start + voff, end + voff, arg) < 0)
322 				return;
323 	}
324 }
325 
326 /*
327  * Walk the EFI memory map and call CALLBACK once for each EFI memory
328  * descriptor that has memory that is available for OS use.
329  */
330 void
331 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
332 {
333 	walk(callback, arg, EFI_MEMORY_WB);
334 }
335 
336 /*
337  * Walk the EFI memory map and call CALLBACK once for each EFI memory
338  * descriptor that has memory that is available for uncached allocator.
339  */
340 void
341 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
342 {
343 	walk(callback, arg, EFI_MEMORY_UC);
344 }
345 
346 /*
347  * Look for the PAL_CODE region reported by EFI and map it using an
348  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
349  * Abstraction Layer chapter 11 in ADAG
350  */
351 void *
352 efi_get_pal_addr (void)
353 {
354 	void *efi_map_start, *efi_map_end, *p;
355 	efi_memory_desc_t *md;
356 	u64 efi_desc_size;
357 	int pal_code_count = 0;
358 	u64 vaddr, mask;
359 
360 	efi_map_start = __va(ia64_boot_param->efi_memmap);
361 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
362 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
363 
364 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
365 		md = p;
366 		if (md->type != EFI_PAL_CODE)
367 			continue;
368 
369 		if (++pal_code_count > 1) {
370 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
371 			       "dropped @ %llx\n", md->phys_addr);
372 			continue;
373 		}
374 		/*
375 		 * The only ITLB entry in region 7 that is used is the one
376 		 * installed by __start().  That entry covers a 64MB range.
377 		 */
378 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
379 		vaddr = PAGE_OFFSET + md->phys_addr;
380 
381 		/*
382 		 * We must check that the PAL mapping won't overlap with the
383 		 * kernel mapping.
384 		 *
385 		 * PAL code is guaranteed to be aligned on a power of 2 between
386 		 * 4k and 256KB and that only one ITR is needed to map it. This
387 		 * implies that the PAL code is always aligned on its size,
388 		 * i.e., the closest matching page size supported by the TLB.
389 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
390 		 * it is bigger than 64MB (very unlikely!).  So for now the
391 		 * following test is enough to determine whether or not we need
392 		 * a dedicated ITR for the PAL code.
393 		 */
394 		if ((vaddr & mask) == (KERNEL_START & mask)) {
395 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
396 			       __func__);
397 			continue;
398 		}
399 
400 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
401 			panic("Whoa!  PAL code size bigger than a granule!");
402 
403 #if EFI_DEBUG
404 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
405 
406 		printk(KERN_INFO "CPU %d: mapping PAL code "
407                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
408                        smp_processor_id(), md->phys_addr,
409                        md->phys_addr + efi_md_size(md),
410                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
411 #endif
412 		return __va(md->phys_addr);
413 	}
414 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
415 	       __func__);
416 	return NULL;
417 }
418 
419 
420 static u8 __init palo_checksum(u8 *buffer, u32 length)
421 {
422 	u8 sum = 0;
423 	u8 *end = buffer + length;
424 
425 	while (buffer < end)
426 		sum = (u8) (sum + *(buffer++));
427 
428 	return sum;
429 }
430 
431 /*
432  * Parse and handle PALO table which is published at:
433  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
434  */
435 static void __init handle_palo(unsigned long phys_addr)
436 {
437 	struct palo_table *palo = __va(phys_addr);
438 	u8  checksum;
439 
440 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
441 		printk(KERN_INFO "PALO signature incorrect.\n");
442 		return;
443 	}
444 
445 	checksum = palo_checksum((u8 *)palo, palo->length);
446 	if (checksum) {
447 		printk(KERN_INFO "PALO checksum incorrect.\n");
448 		return;
449 	}
450 
451 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
452 }
453 
454 void
455 efi_map_pal_code (void)
456 {
457 	void *pal_vaddr = efi_get_pal_addr ();
458 	u64 psr;
459 
460 	if (!pal_vaddr)
461 		return;
462 
463 	/*
464 	 * Cannot write to CRx with PSR.ic=1
465 	 */
466 	psr = ia64_clear_ic();
467 	ia64_itr(0x1, IA64_TR_PALCODE,
468 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
469 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
470 		 IA64_GRANULE_SHIFT);
471 	ia64_set_psr(psr);		/* restore psr */
472 }
473 
474 void __init
475 efi_init (void)
476 {
477 	void *efi_map_start, *efi_map_end;
478 	efi_char16_t *c16;
479 	u64 efi_desc_size;
480 	char *cp, vendor[100] = "unknown";
481 	int i;
482 
483 	set_bit(EFI_BOOT, &efi.flags);
484 	set_bit(EFI_64BIT, &efi.flags);
485 
486 	/*
487 	 * It's too early to be able to use the standard kernel command line
488 	 * support...
489 	 */
490 	for (cp = boot_command_line; *cp; ) {
491 		if (memcmp(cp, "mem=", 4) == 0) {
492 			mem_limit = memparse(cp + 4, &cp);
493 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
494 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
495 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
496 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
497 		} else {
498 			while (*cp != ' ' && *cp)
499 				++cp;
500 			while (*cp == ' ')
501 				++cp;
502 		}
503 	}
504 	if (min_addr != 0UL)
505 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
506 		       min_addr >> 20);
507 	if (max_addr != ~0UL)
508 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
509 		       max_addr >> 20);
510 
511 	efi.systab = __va(ia64_boot_param->efi_systab);
512 
513 	/*
514 	 * Verify the EFI Table
515 	 */
516 	if (efi.systab == NULL)
517 		panic("Whoa! Can't find EFI system table.\n");
518 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
519 		panic("Whoa! EFI system table signature incorrect\n");
520 	if ((efi.systab->hdr.revision >> 16) == 0)
521 		printk(KERN_WARNING "Warning: EFI system table version "
522 		       "%d.%02d, expected 1.00 or greater\n",
523 		       efi.systab->hdr.revision >> 16,
524 		       efi.systab->hdr.revision & 0xffff);
525 
526 	/* Show what we know for posterity */
527 	c16 = __va(efi.systab->fw_vendor);
528 	if (c16) {
529 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
530 			vendor[i] = *c16++;
531 		vendor[i] = '\0';
532 	}
533 
534 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
535 	       efi.systab->hdr.revision >> 16,
536 	       efi.systab->hdr.revision & 0xffff, vendor);
537 
538 	palo_phys      = EFI_INVALID_TABLE_ADDR;
539 
540 	if (efi_config_init(arch_tables) != 0)
541 		return;
542 
543 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
544 		handle_palo(palo_phys);
545 
546 	runtime = __va(efi.systab->runtime);
547 	efi.get_time = phys_get_time;
548 	efi.set_time = phys_set_time;
549 	efi.get_wakeup_time = phys_get_wakeup_time;
550 	efi.set_wakeup_time = phys_set_wakeup_time;
551 	efi.get_variable = phys_get_variable;
552 	efi.get_next_variable = phys_get_next_variable;
553 	efi.set_variable = phys_set_variable;
554 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
555 	efi.reset_system = phys_reset_system;
556 
557 	efi_map_start = __va(ia64_boot_param->efi_memmap);
558 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
559 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
560 
561 #if EFI_DEBUG
562 	/* print EFI memory map: */
563 	{
564 		efi_memory_desc_t *md;
565 		void *p;
566 
567 		for (i = 0, p = efi_map_start; p < efi_map_end;
568 		     ++i, p += efi_desc_size)
569 		{
570 			const char *unit;
571 			unsigned long size;
572 			char buf[64];
573 
574 			md = p;
575 			size = md->num_pages << EFI_PAGE_SHIFT;
576 
577 			if ((size >> 40) > 0) {
578 				size >>= 40;
579 				unit = "TB";
580 			} else if ((size >> 30) > 0) {
581 				size >>= 30;
582 				unit = "GB";
583 			} else if ((size >> 20) > 0) {
584 				size >>= 20;
585 				unit = "MB";
586 			} else {
587 				size >>= 10;
588 				unit = "KB";
589 			}
590 
591 			printk("mem%02d: %s "
592 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
593 			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
594 			       md->phys_addr,
595 			       md->phys_addr + efi_md_size(md), size, unit);
596 		}
597 	}
598 #endif
599 
600 	efi_map_pal_code();
601 	efi_enter_virtual_mode();
602 }
603 
604 void
605 efi_enter_virtual_mode (void)
606 {
607 	void *efi_map_start, *efi_map_end, *p;
608 	efi_memory_desc_t *md;
609 	efi_status_t status;
610 	u64 efi_desc_size;
611 
612 	efi_map_start = __va(ia64_boot_param->efi_memmap);
613 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
614 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
615 
616 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
617 		md = p;
618 		if (md->attribute & EFI_MEMORY_RUNTIME) {
619 			/*
620 			 * Some descriptors have multiple bits set, so the
621 			 * order of the tests is relevant.
622 			 */
623 			if (md->attribute & EFI_MEMORY_WB) {
624 				md->virt_addr = (u64) __va(md->phys_addr);
625 			} else if (md->attribute & EFI_MEMORY_UC) {
626 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
627 			} else if (md->attribute & EFI_MEMORY_WC) {
628 #if 0
629 				md->virt_addr = ia64_remap(md->phys_addr,
630 							   (_PAGE_A |
631 							    _PAGE_P |
632 							    _PAGE_D |
633 							    _PAGE_MA_WC |
634 							    _PAGE_PL_0 |
635 							    _PAGE_AR_RW));
636 #else
637 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
638 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
639 #endif
640 			} else if (md->attribute & EFI_MEMORY_WT) {
641 #if 0
642 				md->virt_addr = ia64_remap(md->phys_addr,
643 							   (_PAGE_A |
644 							    _PAGE_P |
645 							    _PAGE_D |
646 							    _PAGE_MA_WT |
647 							    _PAGE_PL_0 |
648 							    _PAGE_AR_RW));
649 #else
650 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
651 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
652 #endif
653 			}
654 		}
655 	}
656 
657 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
658 			       ia64_boot_param->efi_memmap_size,
659 			       efi_desc_size,
660 			       ia64_boot_param->efi_memdesc_version,
661 			       ia64_boot_param->efi_memmap);
662 	if (status != EFI_SUCCESS) {
663 		printk(KERN_WARNING "warning: unable to switch EFI into "
664 		       "virtual mode (status=%lu)\n", status);
665 		return;
666 	}
667 
668 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
669 
670 	/*
671 	 * Now that EFI is in virtual mode, we call the EFI functions more
672 	 * efficiently:
673 	 */
674 	efi.get_time = virt_get_time;
675 	efi.set_time = virt_set_time;
676 	efi.get_wakeup_time = virt_get_wakeup_time;
677 	efi.set_wakeup_time = virt_set_wakeup_time;
678 	efi.get_variable = virt_get_variable;
679 	efi.get_next_variable = virt_get_next_variable;
680 	efi.set_variable = virt_set_variable;
681 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
682 	efi.reset_system = virt_reset_system;
683 }
684 
685 /*
686  * Walk the EFI memory map looking for the I/O port range.  There can only be
687  * one entry of this type, other I/O port ranges should be described via ACPI.
688  */
689 u64
690 efi_get_iobase (void)
691 {
692 	void *efi_map_start, *efi_map_end, *p;
693 	efi_memory_desc_t *md;
694 	u64 efi_desc_size;
695 
696 	efi_map_start = __va(ia64_boot_param->efi_memmap);
697 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
698 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
699 
700 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
701 		md = p;
702 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
703 			if (md->attribute & EFI_MEMORY_UC)
704 				return md->phys_addr;
705 		}
706 	}
707 	return 0;
708 }
709 
710 static struct kern_memdesc *
711 kern_memory_descriptor (unsigned long phys_addr)
712 {
713 	struct kern_memdesc *md;
714 
715 	for (md = kern_memmap; md->start != ~0UL; md++) {
716 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
717 			 return md;
718 	}
719 	return NULL;
720 }
721 
722 static efi_memory_desc_t *
723 efi_memory_descriptor (unsigned long phys_addr)
724 {
725 	void *efi_map_start, *efi_map_end, *p;
726 	efi_memory_desc_t *md;
727 	u64 efi_desc_size;
728 
729 	efi_map_start = __va(ia64_boot_param->efi_memmap);
730 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
731 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
732 
733 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
734 		md = p;
735 
736 		if (phys_addr - md->phys_addr < efi_md_size(md))
737 			 return md;
738 	}
739 	return NULL;
740 }
741 
742 static int
743 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
744 {
745 	void *efi_map_start, *efi_map_end, *p;
746 	efi_memory_desc_t *md;
747 	u64 efi_desc_size;
748 	unsigned long end;
749 
750 	efi_map_start = __va(ia64_boot_param->efi_memmap);
751 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
752 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
753 
754 	end = phys_addr + size;
755 
756 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
757 		md = p;
758 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
759 			return 1;
760 	}
761 	return 0;
762 }
763 
764 int
765 efi_mem_type (unsigned long phys_addr)
766 {
767 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
768 
769 	if (md)
770 		return md->type;
771 	return -EINVAL;
772 }
773 
774 u64
775 efi_mem_attributes (unsigned long phys_addr)
776 {
777 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
778 
779 	if (md)
780 		return md->attribute;
781 	return 0;
782 }
783 EXPORT_SYMBOL(efi_mem_attributes);
784 
785 u64
786 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
787 {
788 	unsigned long end = phys_addr + size;
789 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
790 	u64 attr;
791 
792 	if (!md)
793 		return 0;
794 
795 	/*
796 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
797 	 * the kernel that firmware needs this region mapped.
798 	 */
799 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
800 	do {
801 		unsigned long md_end = efi_md_end(md);
802 
803 		if (end <= md_end)
804 			return attr;
805 
806 		md = efi_memory_descriptor(md_end);
807 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
808 			return 0;
809 	} while (md);
810 	return 0;	/* never reached */
811 }
812 
813 u64
814 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
815 {
816 	unsigned long end = phys_addr + size;
817 	struct kern_memdesc *md;
818 	u64 attr;
819 
820 	/*
821 	 * This is a hack for ioremap calls before we set up kern_memmap.
822 	 * Maybe we should do efi_memmap_init() earlier instead.
823 	 */
824 	if (!kern_memmap) {
825 		attr = efi_mem_attribute(phys_addr, size);
826 		if (attr & EFI_MEMORY_WB)
827 			return EFI_MEMORY_WB;
828 		return 0;
829 	}
830 
831 	md = kern_memory_descriptor(phys_addr);
832 	if (!md)
833 		return 0;
834 
835 	attr = md->attribute;
836 	do {
837 		unsigned long md_end = kmd_end(md);
838 
839 		if (end <= md_end)
840 			return attr;
841 
842 		md = kern_memory_descriptor(md_end);
843 		if (!md || md->attribute != attr)
844 			return 0;
845 	} while (md);
846 	return 0;	/* never reached */
847 }
848 
849 int
850 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
851 {
852 	u64 attr;
853 
854 	/*
855 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
856 	 * uses a granule-sized kernel identity mapping.  It's really
857 	 * only safe to do this for regions in kern_memmap.  For more
858 	 * details, see Documentation/ia64/aliasing.rst.
859 	 */
860 	attr = kern_mem_attribute(phys_addr, size);
861 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
862 		return 1;
863 	return 0;
864 }
865 
866 int
867 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
868 {
869 	unsigned long phys_addr = pfn << PAGE_SHIFT;
870 	u64 attr;
871 
872 	attr = efi_mem_attribute(phys_addr, size);
873 
874 	/*
875 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
876 	 * granule, but the entire region we're mapping must support the same
877 	 * attribute.
878 	 */
879 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
880 		return 1;
881 
882 	/*
883 	 * Intel firmware doesn't tell us about all the MMIO regions, so
884 	 * in general we have to allow mmap requests.  But if EFI *does*
885 	 * tell us about anything inside this region, we should deny it.
886 	 * The user can always map a smaller region to avoid the overlap.
887 	 */
888 	if (efi_memmap_intersects(phys_addr, size))
889 		return 0;
890 
891 	return 1;
892 }
893 
894 pgprot_t
895 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
896 		     pgprot_t vma_prot)
897 {
898 	unsigned long phys_addr = pfn << PAGE_SHIFT;
899 	u64 attr;
900 
901 	/*
902 	 * For /dev/mem mmap, we use user mappings, but if the region is
903 	 * in kern_memmap (and hence may be covered by a kernel mapping),
904 	 * we must use the same attribute as the kernel mapping.
905 	 */
906 	attr = kern_mem_attribute(phys_addr, size);
907 	if (attr & EFI_MEMORY_WB)
908 		return pgprot_cacheable(vma_prot);
909 	else if (attr & EFI_MEMORY_UC)
910 		return pgprot_noncached(vma_prot);
911 
912 	/*
913 	 * Some chipsets don't support UC access to memory.  If
914 	 * WB is supported, we prefer that.
915 	 */
916 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
917 		return pgprot_cacheable(vma_prot);
918 
919 	return pgprot_noncached(vma_prot);
920 }
921 
922 int __init
923 efi_uart_console_only(void)
924 {
925 	efi_status_t status;
926 	char *s, name[] = "ConOut";
927 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
928 	efi_char16_t *utf16, name_utf16[32];
929 	unsigned char data[1024];
930 	unsigned long size = sizeof(data);
931 	struct efi_generic_dev_path *hdr, *end_addr;
932 	int uart = 0;
933 
934 	/* Convert to UTF-16 */
935 	utf16 = name_utf16;
936 	s = name;
937 	while (*s)
938 		*utf16++ = *s++ & 0x7f;
939 	*utf16 = 0;
940 
941 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
942 	if (status != EFI_SUCCESS) {
943 		printk(KERN_ERR "No EFI %s variable?\n", name);
944 		return 0;
945 	}
946 
947 	hdr = (struct efi_generic_dev_path *) data;
948 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
949 	while (hdr < end_addr) {
950 		if (hdr->type == EFI_DEV_MSG &&
951 		    hdr->sub_type == EFI_DEV_MSG_UART)
952 			uart = 1;
953 		else if (hdr->type == EFI_DEV_END_PATH ||
954 			  hdr->type == EFI_DEV_END_PATH2) {
955 			if (!uart)
956 				return 0;
957 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
958 				return 1;
959 			uart = 0;
960 		}
961 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
962 	}
963 	printk(KERN_ERR "Malformed %s value\n", name);
964 	return 0;
965 }
966 
967 /*
968  * Look for the first granule aligned memory descriptor memory
969  * that is big enough to hold EFI memory map. Make sure this
970  * descriptor is at least granule sized so it does not get trimmed
971  */
972 struct kern_memdesc *
973 find_memmap_space (void)
974 {
975 	u64	contig_low=0, contig_high=0;
976 	u64	as = 0, ae;
977 	void *efi_map_start, *efi_map_end, *p, *q;
978 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
979 	u64	space_needed, efi_desc_size;
980 	unsigned long total_mem = 0;
981 
982 	efi_map_start = __va(ia64_boot_param->efi_memmap);
983 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
984 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
985 
986 	/*
987 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
988 	 * (if every entry has a WB part in the middle, and UC head and tail),
989 	 * plus one for the end marker.
990 	 */
991 	space_needed = sizeof(kern_memdesc_t) *
992 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
993 
994 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
995 		md = p;
996 		if (!efi_wb(md)) {
997 			continue;
998 		}
999 		if (pmd == NULL || !efi_wb(pmd) ||
1000 		    efi_md_end(pmd) != md->phys_addr) {
1001 			contig_low = GRANULEROUNDUP(md->phys_addr);
1002 			contig_high = efi_md_end(md);
1003 			for (q = p + efi_desc_size; q < efi_map_end;
1004 			     q += efi_desc_size) {
1005 				check_md = q;
1006 				if (!efi_wb(check_md))
1007 					break;
1008 				if (contig_high != check_md->phys_addr)
1009 					break;
1010 				contig_high = efi_md_end(check_md);
1011 			}
1012 			contig_high = GRANULEROUNDDOWN(contig_high);
1013 		}
1014 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1015 			continue;
1016 
1017 		/* Round ends inward to granule boundaries */
1018 		as = max(contig_low, md->phys_addr);
1019 		ae = min(contig_high, efi_md_end(md));
1020 
1021 		/* keep within max_addr= and min_addr= command line arg */
1022 		as = max(as, min_addr);
1023 		ae = min(ae, max_addr);
1024 		if (ae <= as)
1025 			continue;
1026 
1027 		/* avoid going over mem= command line arg */
1028 		if (total_mem + (ae - as) > mem_limit)
1029 			ae -= total_mem + (ae - as) - mem_limit;
1030 
1031 		if (ae <= as)
1032 			continue;
1033 
1034 		if (ae - as > space_needed)
1035 			break;
1036 	}
1037 	if (p >= efi_map_end)
1038 		panic("Can't allocate space for kernel memory descriptors");
1039 
1040 	return __va(as);
1041 }
1042 
1043 /*
1044  * Walk the EFI memory map and gather all memory available for kernel
1045  * to use.  We can allocate partial granules only if the unavailable
1046  * parts exist, and are WB.
1047  */
1048 unsigned long
1049 efi_memmap_init(u64 *s, u64 *e)
1050 {
1051 	struct kern_memdesc *k, *prev = NULL;
1052 	u64	contig_low=0, contig_high=0;
1053 	u64	as, ae, lim;
1054 	void *efi_map_start, *efi_map_end, *p, *q;
1055 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1056 	u64	efi_desc_size;
1057 	unsigned long total_mem = 0;
1058 
1059 	k = kern_memmap = find_memmap_space();
1060 
1061 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1062 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1063 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1064 
1065 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1066 		md = p;
1067 		if (!efi_wb(md)) {
1068 			if (efi_uc(md) &&
1069 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1070 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1071 				k->attribute = EFI_MEMORY_UC;
1072 				k->start = md->phys_addr;
1073 				k->num_pages = md->num_pages;
1074 				k++;
1075 			}
1076 			continue;
1077 		}
1078 		if (pmd == NULL || !efi_wb(pmd) ||
1079 		    efi_md_end(pmd) != md->phys_addr) {
1080 			contig_low = GRANULEROUNDUP(md->phys_addr);
1081 			contig_high = efi_md_end(md);
1082 			for (q = p + efi_desc_size; q < efi_map_end;
1083 			     q += efi_desc_size) {
1084 				check_md = q;
1085 				if (!efi_wb(check_md))
1086 					break;
1087 				if (contig_high != check_md->phys_addr)
1088 					break;
1089 				contig_high = efi_md_end(check_md);
1090 			}
1091 			contig_high = GRANULEROUNDDOWN(contig_high);
1092 		}
1093 		if (!is_memory_available(md))
1094 			continue;
1095 
1096 		/*
1097 		 * Round ends inward to granule boundaries
1098 		 * Give trimmings to uncached allocator
1099 		 */
1100 		if (md->phys_addr < contig_low) {
1101 			lim = min(efi_md_end(md), contig_low);
1102 			if (efi_uc(md)) {
1103 				if (k > kern_memmap &&
1104 				    (k-1)->attribute == EFI_MEMORY_UC &&
1105 				    kmd_end(k-1) == md->phys_addr) {
1106 					(k-1)->num_pages +=
1107 						(lim - md->phys_addr)
1108 						>> EFI_PAGE_SHIFT;
1109 				} else {
1110 					k->attribute = EFI_MEMORY_UC;
1111 					k->start = md->phys_addr;
1112 					k->num_pages = (lim - md->phys_addr)
1113 						>> EFI_PAGE_SHIFT;
1114 					k++;
1115 				}
1116 			}
1117 			as = contig_low;
1118 		} else
1119 			as = md->phys_addr;
1120 
1121 		if (efi_md_end(md) > contig_high) {
1122 			lim = max(md->phys_addr, contig_high);
1123 			if (efi_uc(md)) {
1124 				if (lim == md->phys_addr && k > kern_memmap &&
1125 				    (k-1)->attribute == EFI_MEMORY_UC &&
1126 				    kmd_end(k-1) == md->phys_addr) {
1127 					(k-1)->num_pages += md->num_pages;
1128 				} else {
1129 					k->attribute = EFI_MEMORY_UC;
1130 					k->start = lim;
1131 					k->num_pages = (efi_md_end(md) - lim)
1132 						>> EFI_PAGE_SHIFT;
1133 					k++;
1134 				}
1135 			}
1136 			ae = contig_high;
1137 		} else
1138 			ae = efi_md_end(md);
1139 
1140 		/* keep within max_addr= and min_addr= command line arg */
1141 		as = max(as, min_addr);
1142 		ae = min(ae, max_addr);
1143 		if (ae <= as)
1144 			continue;
1145 
1146 		/* avoid going over mem= command line arg */
1147 		if (total_mem + (ae - as) > mem_limit)
1148 			ae -= total_mem + (ae - as) - mem_limit;
1149 
1150 		if (ae <= as)
1151 			continue;
1152 		if (prev && kmd_end(prev) == md->phys_addr) {
1153 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1154 			total_mem += ae - as;
1155 			continue;
1156 		}
1157 		k->attribute = EFI_MEMORY_WB;
1158 		k->start = as;
1159 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1160 		total_mem += ae - as;
1161 		prev = k++;
1162 	}
1163 	k->start = ~0L; /* end-marker */
1164 
1165 	/* reserve the memory we are using for kern_memmap */
1166 	*s = (u64)kern_memmap;
1167 	*e = (u64)++k;
1168 
1169 	return total_mem;
1170 }
1171 
1172 void
1173 efi_initialize_iomem_resources(struct resource *code_resource,
1174 			       struct resource *data_resource,
1175 			       struct resource *bss_resource)
1176 {
1177 	struct resource *res;
1178 	void *efi_map_start, *efi_map_end, *p;
1179 	efi_memory_desc_t *md;
1180 	u64 efi_desc_size;
1181 	char *name;
1182 	unsigned long flags, desc;
1183 
1184 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1185 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1186 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1187 
1188 	res = NULL;
1189 
1190 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1191 		md = p;
1192 
1193 		if (md->num_pages == 0) /* should not happen */
1194 			continue;
1195 
1196 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1197 		desc = IORES_DESC_NONE;
1198 
1199 		switch (md->type) {
1200 
1201 			case EFI_MEMORY_MAPPED_IO:
1202 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1203 				continue;
1204 
1205 			case EFI_LOADER_CODE:
1206 			case EFI_LOADER_DATA:
1207 			case EFI_BOOT_SERVICES_DATA:
1208 			case EFI_BOOT_SERVICES_CODE:
1209 			case EFI_CONVENTIONAL_MEMORY:
1210 				if (md->attribute & EFI_MEMORY_WP) {
1211 					name = "System ROM";
1212 					flags |= IORESOURCE_READONLY;
1213 				} else if (md->attribute == EFI_MEMORY_UC) {
1214 					name = "Uncached RAM";
1215 				} else {
1216 					name = "System RAM";
1217 					flags |= IORESOURCE_SYSRAM;
1218 				}
1219 				break;
1220 
1221 			case EFI_ACPI_MEMORY_NVS:
1222 				name = "ACPI Non-volatile Storage";
1223 				desc = IORES_DESC_ACPI_NV_STORAGE;
1224 				break;
1225 
1226 			case EFI_UNUSABLE_MEMORY:
1227 				name = "reserved";
1228 				flags |= IORESOURCE_DISABLED;
1229 				break;
1230 
1231 			case EFI_PERSISTENT_MEMORY:
1232 				name = "Persistent Memory";
1233 				desc = IORES_DESC_PERSISTENT_MEMORY;
1234 				break;
1235 
1236 			case EFI_RESERVED_TYPE:
1237 			case EFI_RUNTIME_SERVICES_CODE:
1238 			case EFI_RUNTIME_SERVICES_DATA:
1239 			case EFI_ACPI_RECLAIM_MEMORY:
1240 			default:
1241 				name = "reserved";
1242 				break;
1243 		}
1244 
1245 		if ((res = kzalloc(sizeof(struct resource),
1246 				   GFP_KERNEL)) == NULL) {
1247 			printk(KERN_ERR
1248 			       "failed to allocate resource for iomem\n");
1249 			return;
1250 		}
1251 
1252 		res->name = name;
1253 		res->start = md->phys_addr;
1254 		res->end = md->phys_addr + efi_md_size(md) - 1;
1255 		res->flags = flags;
1256 		res->desc = desc;
1257 
1258 		if (insert_resource(&iomem_resource, res) < 0)
1259 			kfree(res);
1260 		else {
1261 			/*
1262 			 * We don't know which region contains
1263 			 * kernel data so we try it repeatedly and
1264 			 * let the resource manager test it.
1265 			 */
1266 			insert_resource(res, code_resource);
1267 			insert_resource(res, data_resource);
1268 			insert_resource(res, bss_resource);
1269 #ifdef CONFIG_KEXEC
1270                         insert_resource(res, &efi_memmap_res);
1271                         insert_resource(res, &boot_param_res);
1272 			if (crashk_res.end > crashk_res.start)
1273 				insert_resource(res, &crashk_res);
1274 #endif
1275 		}
1276 	}
1277 }
1278 
1279 #ifdef CONFIG_KEXEC
1280 /* find a block of memory aligned to 64M exclude reserved regions
1281    rsvd_regions are sorted
1282  */
1283 unsigned long __init
1284 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1285 {
1286 	int i;
1287 	u64 start, end;
1288 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1289 	void *efi_map_start, *efi_map_end, *p;
1290 	efi_memory_desc_t *md;
1291 	u64 efi_desc_size;
1292 
1293 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1294 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1295 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1296 
1297 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1298 		md = p;
1299 		if (!efi_wb(md))
1300 			continue;
1301 		start = ALIGN(md->phys_addr, alignment);
1302 		end = efi_md_end(md);
1303 		for (i = 0; i < n; i++) {
1304 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1305 				if (__pa(r[i].start) > start + size)
1306 					return start;
1307 				start = ALIGN(__pa(r[i].end), alignment);
1308 				if (i < n-1 &&
1309 				    __pa(r[i+1].start) < start + size)
1310 					continue;
1311 				else
1312 					break;
1313 			}
1314 		}
1315 		if (end > start + size)
1316 			return start;
1317 	}
1318 
1319 	printk(KERN_WARNING
1320 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1321 	return ~0UL;
1322 }
1323 #endif
1324 
1325 #ifdef CONFIG_CRASH_DUMP
1326 /* locate the size find a the descriptor at a certain address */
1327 unsigned long __init
1328 vmcore_find_descriptor_size (unsigned long address)
1329 {
1330 	void *efi_map_start, *efi_map_end, *p;
1331 	efi_memory_desc_t *md;
1332 	u64 efi_desc_size;
1333 	unsigned long ret = 0;
1334 
1335 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1336 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1337 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1338 
1339 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1340 		md = p;
1341 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1342 		    && md->phys_addr == address) {
1343 			ret = efi_md_size(md);
1344 			break;
1345 		}
1346 	}
1347 
1348 	if (ret == 0)
1349 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1350 
1351 	return ret;
1352 }
1353 #endif
1354