1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Extensible Firmware Interface 4 * 5 * Based on Extensible Firmware Interface Specification version 0.9 6 * April 30, 1999 7 * 8 * Copyright (C) 1999 VA Linux Systems 9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 10 * Copyright (C) 1999-2003 Hewlett-Packard Co. 11 * David Mosberger-Tang <davidm@hpl.hp.com> 12 * Stephane Eranian <eranian@hpl.hp.com> 13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. 14 * Bjorn Helgaas <bjorn.helgaas@hp.com> 15 * 16 * All EFI Runtime Services are not implemented yet as EFI only 17 * supports physical mode addressing on SoftSDV. This is to be fixed 18 * in a future version. --drummond 1999-07-20 19 * 20 * Implemented EFI runtime services and virtual mode calls. --davidm 21 * 22 * Goutham Rao: <goutham.rao@intel.com> 23 * Skip non-WB memory and ignore empty memory ranges. 24 */ 25 #include <linux/module.h> 26 #include <linux/memblock.h> 27 #include <linux/crash_dump.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/types.h> 31 #include <linux/slab.h> 32 #include <linux/time.h> 33 #include <linux/efi.h> 34 #include <linux/kexec.h> 35 #include <linux/mm.h> 36 37 #include <asm/io.h> 38 #include <asm/kregs.h> 39 #include <asm/meminit.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 #include <asm/mca.h> 43 #include <asm/setup.h> 44 #include <asm/tlbflush.h> 45 46 #define EFI_DEBUG 0 47 48 static __initdata unsigned long palo_phys; 49 50 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR; 51 52 static __initdata efi_config_table_type_t arch_tables[] = { 53 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys}, 54 {SAL_SYSTEM_TABLE_GUID, "SALsystab", &sal_systab_phys}, 55 {NULL_GUID, NULL, 0}, 56 }; 57 58 extern efi_status_t efi_call_phys (void *, ...); 59 60 static efi_runtime_services_t *runtime; 61 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; 62 63 #define efi_call_virt(f, args...) (*(f))(args) 64 65 #define STUB_GET_TIME(prefix, adjust_arg) \ 66 static efi_status_t \ 67 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 68 { \ 69 struct ia64_fpreg fr[6]; \ 70 efi_time_cap_t *atc = NULL; \ 71 efi_status_t ret; \ 72 \ 73 if (tc) \ 74 atc = adjust_arg(tc); \ 75 ia64_save_scratch_fpregs(fr); \ 76 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ 77 adjust_arg(tm), atc); \ 78 ia64_load_scratch_fpregs(fr); \ 79 return ret; \ 80 } 81 82 #define STUB_SET_TIME(prefix, adjust_arg) \ 83 static efi_status_t \ 84 prefix##_set_time (efi_time_t *tm) \ 85 { \ 86 struct ia64_fpreg fr[6]; \ 87 efi_status_t ret; \ 88 \ 89 ia64_save_scratch_fpregs(fr); \ 90 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ 91 adjust_arg(tm)); \ 92 ia64_load_scratch_fpregs(fr); \ 93 return ret; \ 94 } 95 96 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 97 static efi_status_t \ 98 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ 99 efi_time_t *tm) \ 100 { \ 101 struct ia64_fpreg fr[6]; \ 102 efi_status_t ret; \ 103 \ 104 ia64_save_scratch_fpregs(fr); \ 105 ret = efi_call_##prefix( \ 106 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 107 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 108 ia64_load_scratch_fpregs(fr); \ 109 return ret; \ 110 } 111 112 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 113 static efi_status_t \ 114 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 115 { \ 116 struct ia64_fpreg fr[6]; \ 117 efi_time_t *atm = NULL; \ 118 efi_status_t ret; \ 119 \ 120 if (tm) \ 121 atm = adjust_arg(tm); \ 122 ia64_save_scratch_fpregs(fr); \ 123 ret = efi_call_##prefix( \ 124 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 125 enabled, atm); \ 126 ia64_load_scratch_fpregs(fr); \ 127 return ret; \ 128 } 129 130 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 131 static efi_status_t \ 132 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 133 unsigned long *data_size, void *data) \ 134 { \ 135 struct ia64_fpreg fr[6]; \ 136 u32 *aattr = NULL; \ 137 efi_status_t ret; \ 138 \ 139 if (attr) \ 140 aattr = adjust_arg(attr); \ 141 ia64_save_scratch_fpregs(fr); \ 142 ret = efi_call_##prefix( \ 143 (efi_get_variable_t *) __va(runtime->get_variable), \ 144 adjust_arg(name), adjust_arg(vendor), aattr, \ 145 adjust_arg(data_size), adjust_arg(data)); \ 146 ia64_load_scratch_fpregs(fr); \ 147 return ret; \ 148 } 149 150 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 151 static efi_status_t \ 152 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ 153 efi_guid_t *vendor) \ 154 { \ 155 struct ia64_fpreg fr[6]; \ 156 efi_status_t ret; \ 157 \ 158 ia64_save_scratch_fpregs(fr); \ 159 ret = efi_call_##prefix( \ 160 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 161 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 162 ia64_load_scratch_fpregs(fr); \ 163 return ret; \ 164 } 165 166 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 167 static efi_status_t \ 168 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ 169 u32 attr, unsigned long data_size, \ 170 void *data) \ 171 { \ 172 struct ia64_fpreg fr[6]; \ 173 efi_status_t ret; \ 174 \ 175 ia64_save_scratch_fpregs(fr); \ 176 ret = efi_call_##prefix( \ 177 (efi_set_variable_t *) __va(runtime->set_variable), \ 178 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 179 adjust_arg(data)); \ 180 ia64_load_scratch_fpregs(fr); \ 181 return ret; \ 182 } 183 184 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 185 static efi_status_t \ 186 prefix##_get_next_high_mono_count (u32 *count) \ 187 { \ 188 struct ia64_fpreg fr[6]; \ 189 efi_status_t ret; \ 190 \ 191 ia64_save_scratch_fpregs(fr); \ 192 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 193 __va(runtime->get_next_high_mono_count), \ 194 adjust_arg(count)); \ 195 ia64_load_scratch_fpregs(fr); \ 196 return ret; \ 197 } 198 199 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 200 static void \ 201 prefix##_reset_system (int reset_type, efi_status_t status, \ 202 unsigned long data_size, efi_char16_t *data) \ 203 { \ 204 struct ia64_fpreg fr[6]; \ 205 efi_char16_t *adata = NULL; \ 206 \ 207 if (data) \ 208 adata = adjust_arg(data); \ 209 \ 210 ia64_save_scratch_fpregs(fr); \ 211 efi_call_##prefix( \ 212 (efi_reset_system_t *) __va(runtime->reset_system), \ 213 reset_type, status, data_size, adata); \ 214 /* should not return, but just in case... */ \ 215 ia64_load_scratch_fpregs(fr); \ 216 } 217 218 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 219 220 STUB_GET_TIME(phys, phys_ptr) 221 STUB_SET_TIME(phys, phys_ptr) 222 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 223 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 224 STUB_GET_VARIABLE(phys, phys_ptr) 225 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 226 STUB_SET_VARIABLE(phys, phys_ptr) 227 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 228 STUB_RESET_SYSTEM(phys, phys_ptr) 229 230 #define id(arg) arg 231 232 STUB_GET_TIME(virt, id) 233 STUB_SET_TIME(virt, id) 234 STUB_GET_WAKEUP_TIME(virt, id) 235 STUB_SET_WAKEUP_TIME(virt, id) 236 STUB_GET_VARIABLE(virt, id) 237 STUB_GET_NEXT_VARIABLE(virt, id) 238 STUB_SET_VARIABLE(virt, id) 239 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 240 STUB_RESET_SYSTEM(virt, id) 241 242 void 243 efi_gettimeofday (struct timespec64 *ts) 244 { 245 efi_time_t tm; 246 247 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { 248 memset(ts, 0, sizeof(*ts)); 249 return; 250 } 251 252 ts->tv_sec = mktime64(tm.year, tm.month, tm.day, 253 tm.hour, tm.minute, tm.second); 254 ts->tv_nsec = tm.nanosecond; 255 } 256 257 static int 258 is_memory_available (efi_memory_desc_t *md) 259 { 260 if (!(md->attribute & EFI_MEMORY_WB)) 261 return 0; 262 263 switch (md->type) { 264 case EFI_LOADER_CODE: 265 case EFI_LOADER_DATA: 266 case EFI_BOOT_SERVICES_CODE: 267 case EFI_BOOT_SERVICES_DATA: 268 case EFI_CONVENTIONAL_MEMORY: 269 return 1; 270 } 271 return 0; 272 } 273 274 typedef struct kern_memdesc { 275 u64 attribute; 276 u64 start; 277 u64 num_pages; 278 } kern_memdesc_t; 279 280 static kern_memdesc_t *kern_memmap; 281 282 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) 283 284 static inline u64 285 kmd_end(kern_memdesc_t *kmd) 286 { 287 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); 288 } 289 290 static inline u64 291 efi_md_end(efi_memory_desc_t *md) 292 { 293 return (md->phys_addr + efi_md_size(md)); 294 } 295 296 static inline int 297 efi_wb(efi_memory_desc_t *md) 298 { 299 return (md->attribute & EFI_MEMORY_WB); 300 } 301 302 static inline int 303 efi_uc(efi_memory_desc_t *md) 304 { 305 return (md->attribute & EFI_MEMORY_UC); 306 } 307 308 static void 309 walk (efi_freemem_callback_t callback, void *arg, u64 attr) 310 { 311 kern_memdesc_t *k; 312 u64 start, end, voff; 313 314 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; 315 for (k = kern_memmap; k->start != ~0UL; k++) { 316 if (k->attribute != attr) 317 continue; 318 start = PAGE_ALIGN(k->start); 319 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; 320 if (start < end) 321 if ((*callback)(start + voff, end + voff, arg) < 0) 322 return; 323 } 324 } 325 326 /* 327 * Walk the EFI memory map and call CALLBACK once for each EFI memory 328 * descriptor that has memory that is available for OS use. 329 */ 330 void 331 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 332 { 333 walk(callback, arg, EFI_MEMORY_WB); 334 } 335 336 /* 337 * Walk the EFI memory map and call CALLBACK once for each EFI memory 338 * descriptor that has memory that is available for uncached allocator. 339 */ 340 void 341 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) 342 { 343 walk(callback, arg, EFI_MEMORY_UC); 344 } 345 346 /* 347 * Look for the PAL_CODE region reported by EFI and map it using an 348 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 349 * Abstraction Layer chapter 11 in ADAG 350 */ 351 void * 352 efi_get_pal_addr (void) 353 { 354 void *efi_map_start, *efi_map_end, *p; 355 efi_memory_desc_t *md; 356 u64 efi_desc_size; 357 int pal_code_count = 0; 358 u64 vaddr, mask; 359 360 efi_map_start = __va(ia64_boot_param->efi_memmap); 361 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 362 efi_desc_size = ia64_boot_param->efi_memdesc_size; 363 364 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 365 md = p; 366 if (md->type != EFI_PAL_CODE) 367 continue; 368 369 if (++pal_code_count > 1) { 370 printk(KERN_ERR "Too many EFI Pal Code memory ranges, " 371 "dropped @ %llx\n", md->phys_addr); 372 continue; 373 } 374 /* 375 * The only ITLB entry in region 7 that is used is the one 376 * installed by __start(). That entry covers a 64MB range. 377 */ 378 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 379 vaddr = PAGE_OFFSET + md->phys_addr; 380 381 /* 382 * We must check that the PAL mapping won't overlap with the 383 * kernel mapping. 384 * 385 * PAL code is guaranteed to be aligned on a power of 2 between 386 * 4k and 256KB and that only one ITR is needed to map it. This 387 * implies that the PAL code is always aligned on its size, 388 * i.e., the closest matching page size supported by the TLB. 389 * Therefore PAL code is guaranteed never to cross a 64MB unless 390 * it is bigger than 64MB (very unlikely!). So for now the 391 * following test is enough to determine whether or not we need 392 * a dedicated ITR for the PAL code. 393 */ 394 if ((vaddr & mask) == (KERNEL_START & mask)) { 395 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 396 __func__); 397 continue; 398 } 399 400 if (efi_md_size(md) > IA64_GRANULE_SIZE) 401 panic("Whoa! PAL code size bigger than a granule!"); 402 403 #if EFI_DEBUG 404 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 405 406 printk(KERN_INFO "CPU %d: mapping PAL code " 407 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 408 smp_processor_id(), md->phys_addr, 409 md->phys_addr + efi_md_size(md), 410 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 411 #endif 412 return __va(md->phys_addr); 413 } 414 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", 415 __func__); 416 return NULL; 417 } 418 419 420 static u8 __init palo_checksum(u8 *buffer, u32 length) 421 { 422 u8 sum = 0; 423 u8 *end = buffer + length; 424 425 while (buffer < end) 426 sum = (u8) (sum + *(buffer++)); 427 428 return sum; 429 } 430 431 /* 432 * Parse and handle PALO table which is published at: 433 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf 434 */ 435 static void __init handle_palo(unsigned long phys_addr) 436 { 437 struct palo_table *palo = __va(phys_addr); 438 u8 checksum; 439 440 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { 441 printk(KERN_INFO "PALO signature incorrect.\n"); 442 return; 443 } 444 445 checksum = palo_checksum((u8 *)palo, palo->length); 446 if (checksum) { 447 printk(KERN_INFO "PALO checksum incorrect.\n"); 448 return; 449 } 450 451 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); 452 } 453 454 void 455 efi_map_pal_code (void) 456 { 457 void *pal_vaddr = efi_get_pal_addr (); 458 u64 psr; 459 460 if (!pal_vaddr) 461 return; 462 463 /* 464 * Cannot write to CRx with PSR.ic=1 465 */ 466 psr = ia64_clear_ic(); 467 ia64_itr(0x1, IA64_TR_PALCODE, 468 GRANULEROUNDDOWN((unsigned long) pal_vaddr), 469 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 470 IA64_GRANULE_SHIFT); 471 ia64_set_psr(psr); /* restore psr */ 472 } 473 474 void __init 475 efi_init (void) 476 { 477 void *efi_map_start, *efi_map_end; 478 efi_char16_t *c16; 479 u64 efi_desc_size; 480 char *cp, vendor[100] = "unknown"; 481 int i; 482 483 set_bit(EFI_BOOT, &efi.flags); 484 set_bit(EFI_64BIT, &efi.flags); 485 486 /* 487 * It's too early to be able to use the standard kernel command line 488 * support... 489 */ 490 for (cp = boot_command_line; *cp; ) { 491 if (memcmp(cp, "mem=", 4) == 0) { 492 mem_limit = memparse(cp + 4, &cp); 493 } else if (memcmp(cp, "max_addr=", 9) == 0) { 494 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 495 } else if (memcmp(cp, "min_addr=", 9) == 0) { 496 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 497 } else { 498 while (*cp != ' ' && *cp) 499 ++cp; 500 while (*cp == ' ') 501 ++cp; 502 } 503 } 504 if (min_addr != 0UL) 505 printk(KERN_INFO "Ignoring memory below %lluMB\n", 506 min_addr >> 20); 507 if (max_addr != ~0UL) 508 printk(KERN_INFO "Ignoring memory above %lluMB\n", 509 max_addr >> 20); 510 511 efi.systab = __va(ia64_boot_param->efi_systab); 512 513 /* 514 * Verify the EFI Table 515 */ 516 if (efi.systab == NULL) 517 panic("Whoa! Can't find EFI system table.\n"); 518 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 519 panic("Whoa! EFI system table signature incorrect\n"); 520 if ((efi.systab->hdr.revision >> 16) == 0) 521 printk(KERN_WARNING "Warning: EFI system table version " 522 "%d.%02d, expected 1.00 or greater\n", 523 efi.systab->hdr.revision >> 16, 524 efi.systab->hdr.revision & 0xffff); 525 526 /* Show what we know for posterity */ 527 c16 = __va(efi.systab->fw_vendor); 528 if (c16) { 529 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) 530 vendor[i] = *c16++; 531 vendor[i] = '\0'; 532 } 533 534 printk(KERN_INFO "EFI v%u.%.02u by %s:", 535 efi.systab->hdr.revision >> 16, 536 efi.systab->hdr.revision & 0xffff, vendor); 537 538 palo_phys = EFI_INVALID_TABLE_ADDR; 539 540 if (efi_config_init(arch_tables) != 0) 541 return; 542 543 if (palo_phys != EFI_INVALID_TABLE_ADDR) 544 handle_palo(palo_phys); 545 546 runtime = __va(efi.systab->runtime); 547 efi.get_time = phys_get_time; 548 efi.set_time = phys_set_time; 549 efi.get_wakeup_time = phys_get_wakeup_time; 550 efi.set_wakeup_time = phys_set_wakeup_time; 551 efi.get_variable = phys_get_variable; 552 efi.get_next_variable = phys_get_next_variable; 553 efi.set_variable = phys_set_variable; 554 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 555 efi.reset_system = phys_reset_system; 556 557 efi_map_start = __va(ia64_boot_param->efi_memmap); 558 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 559 efi_desc_size = ia64_boot_param->efi_memdesc_size; 560 561 #if EFI_DEBUG 562 /* print EFI memory map: */ 563 { 564 efi_memory_desc_t *md; 565 void *p; 566 567 for (i = 0, p = efi_map_start; p < efi_map_end; 568 ++i, p += efi_desc_size) 569 { 570 const char *unit; 571 unsigned long size; 572 char buf[64]; 573 574 md = p; 575 size = md->num_pages << EFI_PAGE_SHIFT; 576 577 if ((size >> 40) > 0) { 578 size >>= 40; 579 unit = "TB"; 580 } else if ((size >> 30) > 0) { 581 size >>= 30; 582 unit = "GB"; 583 } else if ((size >> 20) > 0) { 584 size >>= 20; 585 unit = "MB"; 586 } else { 587 size >>= 10; 588 unit = "KB"; 589 } 590 591 printk("mem%02d: %s " 592 "range=[0x%016lx-0x%016lx) (%4lu%s)\n", 593 i, efi_md_typeattr_format(buf, sizeof(buf), md), 594 md->phys_addr, 595 md->phys_addr + efi_md_size(md), size, unit); 596 } 597 } 598 #endif 599 600 efi_map_pal_code(); 601 efi_enter_virtual_mode(); 602 } 603 604 void 605 efi_enter_virtual_mode (void) 606 { 607 void *efi_map_start, *efi_map_end, *p; 608 efi_memory_desc_t *md; 609 efi_status_t status; 610 u64 efi_desc_size; 611 612 efi_map_start = __va(ia64_boot_param->efi_memmap); 613 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 614 efi_desc_size = ia64_boot_param->efi_memdesc_size; 615 616 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 617 md = p; 618 if (md->attribute & EFI_MEMORY_RUNTIME) { 619 /* 620 * Some descriptors have multiple bits set, so the 621 * order of the tests is relevant. 622 */ 623 if (md->attribute & EFI_MEMORY_WB) { 624 md->virt_addr = (u64) __va(md->phys_addr); 625 } else if (md->attribute & EFI_MEMORY_UC) { 626 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 627 } else if (md->attribute & EFI_MEMORY_WC) { 628 #if 0 629 md->virt_addr = ia64_remap(md->phys_addr, 630 (_PAGE_A | 631 _PAGE_P | 632 _PAGE_D | 633 _PAGE_MA_WC | 634 _PAGE_PL_0 | 635 _PAGE_AR_RW)); 636 #else 637 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 638 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 639 #endif 640 } else if (md->attribute & EFI_MEMORY_WT) { 641 #if 0 642 md->virt_addr = ia64_remap(md->phys_addr, 643 (_PAGE_A | 644 _PAGE_P | 645 _PAGE_D | 646 _PAGE_MA_WT | 647 _PAGE_PL_0 | 648 _PAGE_AR_RW)); 649 #else 650 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 651 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 652 #endif 653 } 654 } 655 } 656 657 status = efi_call_phys(__va(runtime->set_virtual_address_map), 658 ia64_boot_param->efi_memmap_size, 659 efi_desc_size, 660 ia64_boot_param->efi_memdesc_version, 661 ia64_boot_param->efi_memmap); 662 if (status != EFI_SUCCESS) { 663 printk(KERN_WARNING "warning: unable to switch EFI into " 664 "virtual mode (status=%lu)\n", status); 665 return; 666 } 667 668 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 669 670 /* 671 * Now that EFI is in virtual mode, we call the EFI functions more 672 * efficiently: 673 */ 674 efi.get_time = virt_get_time; 675 efi.set_time = virt_set_time; 676 efi.get_wakeup_time = virt_get_wakeup_time; 677 efi.set_wakeup_time = virt_set_wakeup_time; 678 efi.get_variable = virt_get_variable; 679 efi.get_next_variable = virt_get_next_variable; 680 efi.set_variable = virt_set_variable; 681 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 682 efi.reset_system = virt_reset_system; 683 } 684 685 /* 686 * Walk the EFI memory map looking for the I/O port range. There can only be 687 * one entry of this type, other I/O port ranges should be described via ACPI. 688 */ 689 u64 690 efi_get_iobase (void) 691 { 692 void *efi_map_start, *efi_map_end, *p; 693 efi_memory_desc_t *md; 694 u64 efi_desc_size; 695 696 efi_map_start = __va(ia64_boot_param->efi_memmap); 697 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 698 efi_desc_size = ia64_boot_param->efi_memdesc_size; 699 700 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 701 md = p; 702 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 703 if (md->attribute & EFI_MEMORY_UC) 704 return md->phys_addr; 705 } 706 } 707 return 0; 708 } 709 710 static struct kern_memdesc * 711 kern_memory_descriptor (unsigned long phys_addr) 712 { 713 struct kern_memdesc *md; 714 715 for (md = kern_memmap; md->start != ~0UL; md++) { 716 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) 717 return md; 718 } 719 return NULL; 720 } 721 722 static efi_memory_desc_t * 723 efi_memory_descriptor (unsigned long phys_addr) 724 { 725 void *efi_map_start, *efi_map_end, *p; 726 efi_memory_desc_t *md; 727 u64 efi_desc_size; 728 729 efi_map_start = __va(ia64_boot_param->efi_memmap); 730 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 731 efi_desc_size = ia64_boot_param->efi_memdesc_size; 732 733 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 734 md = p; 735 736 if (phys_addr - md->phys_addr < efi_md_size(md)) 737 return md; 738 } 739 return NULL; 740 } 741 742 static int 743 efi_memmap_intersects (unsigned long phys_addr, unsigned long size) 744 { 745 void *efi_map_start, *efi_map_end, *p; 746 efi_memory_desc_t *md; 747 u64 efi_desc_size; 748 unsigned long end; 749 750 efi_map_start = __va(ia64_boot_param->efi_memmap); 751 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 752 efi_desc_size = ia64_boot_param->efi_memdesc_size; 753 754 end = phys_addr + size; 755 756 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 757 md = p; 758 if (md->phys_addr < end && efi_md_end(md) > phys_addr) 759 return 1; 760 } 761 return 0; 762 } 763 764 int 765 efi_mem_type (unsigned long phys_addr) 766 { 767 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 768 769 if (md) 770 return md->type; 771 return -EINVAL; 772 } 773 774 u64 775 efi_mem_attributes (unsigned long phys_addr) 776 { 777 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 778 779 if (md) 780 return md->attribute; 781 return 0; 782 } 783 EXPORT_SYMBOL(efi_mem_attributes); 784 785 u64 786 efi_mem_attribute (unsigned long phys_addr, unsigned long size) 787 { 788 unsigned long end = phys_addr + size; 789 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 790 u64 attr; 791 792 if (!md) 793 return 0; 794 795 /* 796 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells 797 * the kernel that firmware needs this region mapped. 798 */ 799 attr = md->attribute & ~EFI_MEMORY_RUNTIME; 800 do { 801 unsigned long md_end = efi_md_end(md); 802 803 if (end <= md_end) 804 return attr; 805 806 md = efi_memory_descriptor(md_end); 807 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) 808 return 0; 809 } while (md); 810 return 0; /* never reached */ 811 } 812 813 u64 814 kern_mem_attribute (unsigned long phys_addr, unsigned long size) 815 { 816 unsigned long end = phys_addr + size; 817 struct kern_memdesc *md; 818 u64 attr; 819 820 /* 821 * This is a hack for ioremap calls before we set up kern_memmap. 822 * Maybe we should do efi_memmap_init() earlier instead. 823 */ 824 if (!kern_memmap) { 825 attr = efi_mem_attribute(phys_addr, size); 826 if (attr & EFI_MEMORY_WB) 827 return EFI_MEMORY_WB; 828 return 0; 829 } 830 831 md = kern_memory_descriptor(phys_addr); 832 if (!md) 833 return 0; 834 835 attr = md->attribute; 836 do { 837 unsigned long md_end = kmd_end(md); 838 839 if (end <= md_end) 840 return attr; 841 842 md = kern_memory_descriptor(md_end); 843 if (!md || md->attribute != attr) 844 return 0; 845 } while (md); 846 return 0; /* never reached */ 847 } 848 849 int 850 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size) 851 { 852 u64 attr; 853 854 /* 855 * /dev/mem reads and writes use copy_to_user(), which implicitly 856 * uses a granule-sized kernel identity mapping. It's really 857 * only safe to do this for regions in kern_memmap. For more 858 * details, see Documentation/ia64/aliasing.rst. 859 */ 860 attr = kern_mem_attribute(phys_addr, size); 861 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 862 return 1; 863 return 0; 864 } 865 866 int 867 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) 868 { 869 unsigned long phys_addr = pfn << PAGE_SHIFT; 870 u64 attr; 871 872 attr = efi_mem_attribute(phys_addr, size); 873 874 /* 875 * /dev/mem mmap uses normal user pages, so we don't need the entire 876 * granule, but the entire region we're mapping must support the same 877 * attribute. 878 */ 879 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 880 return 1; 881 882 /* 883 * Intel firmware doesn't tell us about all the MMIO regions, so 884 * in general we have to allow mmap requests. But if EFI *does* 885 * tell us about anything inside this region, we should deny it. 886 * The user can always map a smaller region to avoid the overlap. 887 */ 888 if (efi_memmap_intersects(phys_addr, size)) 889 return 0; 890 891 return 1; 892 } 893 894 pgprot_t 895 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, 896 pgprot_t vma_prot) 897 { 898 unsigned long phys_addr = pfn << PAGE_SHIFT; 899 u64 attr; 900 901 /* 902 * For /dev/mem mmap, we use user mappings, but if the region is 903 * in kern_memmap (and hence may be covered by a kernel mapping), 904 * we must use the same attribute as the kernel mapping. 905 */ 906 attr = kern_mem_attribute(phys_addr, size); 907 if (attr & EFI_MEMORY_WB) 908 return pgprot_cacheable(vma_prot); 909 else if (attr & EFI_MEMORY_UC) 910 return pgprot_noncached(vma_prot); 911 912 /* 913 * Some chipsets don't support UC access to memory. If 914 * WB is supported, we prefer that. 915 */ 916 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) 917 return pgprot_cacheable(vma_prot); 918 919 return pgprot_noncached(vma_prot); 920 } 921 922 int __init 923 efi_uart_console_only(void) 924 { 925 efi_status_t status; 926 char *s, name[] = "ConOut"; 927 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 928 efi_char16_t *utf16, name_utf16[32]; 929 unsigned char data[1024]; 930 unsigned long size = sizeof(data); 931 struct efi_generic_dev_path *hdr, *end_addr; 932 int uart = 0; 933 934 /* Convert to UTF-16 */ 935 utf16 = name_utf16; 936 s = name; 937 while (*s) 938 *utf16++ = *s++ & 0x7f; 939 *utf16 = 0; 940 941 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 942 if (status != EFI_SUCCESS) { 943 printk(KERN_ERR "No EFI %s variable?\n", name); 944 return 0; 945 } 946 947 hdr = (struct efi_generic_dev_path *) data; 948 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 949 while (hdr < end_addr) { 950 if (hdr->type == EFI_DEV_MSG && 951 hdr->sub_type == EFI_DEV_MSG_UART) 952 uart = 1; 953 else if (hdr->type == EFI_DEV_END_PATH || 954 hdr->type == EFI_DEV_END_PATH2) { 955 if (!uart) 956 return 0; 957 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 958 return 1; 959 uart = 0; 960 } 961 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); 962 } 963 printk(KERN_ERR "Malformed %s value\n", name); 964 return 0; 965 } 966 967 /* 968 * Look for the first granule aligned memory descriptor memory 969 * that is big enough to hold EFI memory map. Make sure this 970 * descriptor is at least granule sized so it does not get trimmed 971 */ 972 struct kern_memdesc * 973 find_memmap_space (void) 974 { 975 u64 contig_low=0, contig_high=0; 976 u64 as = 0, ae; 977 void *efi_map_start, *efi_map_end, *p, *q; 978 efi_memory_desc_t *md, *pmd = NULL, *check_md; 979 u64 space_needed, efi_desc_size; 980 unsigned long total_mem = 0; 981 982 efi_map_start = __va(ia64_boot_param->efi_memmap); 983 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 984 efi_desc_size = ia64_boot_param->efi_memdesc_size; 985 986 /* 987 * Worst case: we need 3 kernel descriptors for each efi descriptor 988 * (if every entry has a WB part in the middle, and UC head and tail), 989 * plus one for the end marker. 990 */ 991 space_needed = sizeof(kern_memdesc_t) * 992 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); 993 994 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 995 md = p; 996 if (!efi_wb(md)) { 997 continue; 998 } 999 if (pmd == NULL || !efi_wb(pmd) || 1000 efi_md_end(pmd) != md->phys_addr) { 1001 contig_low = GRANULEROUNDUP(md->phys_addr); 1002 contig_high = efi_md_end(md); 1003 for (q = p + efi_desc_size; q < efi_map_end; 1004 q += efi_desc_size) { 1005 check_md = q; 1006 if (!efi_wb(check_md)) 1007 break; 1008 if (contig_high != check_md->phys_addr) 1009 break; 1010 contig_high = efi_md_end(check_md); 1011 } 1012 contig_high = GRANULEROUNDDOWN(contig_high); 1013 } 1014 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) 1015 continue; 1016 1017 /* Round ends inward to granule boundaries */ 1018 as = max(contig_low, md->phys_addr); 1019 ae = min(contig_high, efi_md_end(md)); 1020 1021 /* keep within max_addr= and min_addr= command line arg */ 1022 as = max(as, min_addr); 1023 ae = min(ae, max_addr); 1024 if (ae <= as) 1025 continue; 1026 1027 /* avoid going over mem= command line arg */ 1028 if (total_mem + (ae - as) > mem_limit) 1029 ae -= total_mem + (ae - as) - mem_limit; 1030 1031 if (ae <= as) 1032 continue; 1033 1034 if (ae - as > space_needed) 1035 break; 1036 } 1037 if (p >= efi_map_end) 1038 panic("Can't allocate space for kernel memory descriptors"); 1039 1040 return __va(as); 1041 } 1042 1043 /* 1044 * Walk the EFI memory map and gather all memory available for kernel 1045 * to use. We can allocate partial granules only if the unavailable 1046 * parts exist, and are WB. 1047 */ 1048 unsigned long 1049 efi_memmap_init(u64 *s, u64 *e) 1050 { 1051 struct kern_memdesc *k, *prev = NULL; 1052 u64 contig_low=0, contig_high=0; 1053 u64 as, ae, lim; 1054 void *efi_map_start, *efi_map_end, *p, *q; 1055 efi_memory_desc_t *md, *pmd = NULL, *check_md; 1056 u64 efi_desc_size; 1057 unsigned long total_mem = 0; 1058 1059 k = kern_memmap = find_memmap_space(); 1060 1061 efi_map_start = __va(ia64_boot_param->efi_memmap); 1062 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1063 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1064 1065 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 1066 md = p; 1067 if (!efi_wb(md)) { 1068 if (efi_uc(md) && 1069 (md->type == EFI_CONVENTIONAL_MEMORY || 1070 md->type == EFI_BOOT_SERVICES_DATA)) { 1071 k->attribute = EFI_MEMORY_UC; 1072 k->start = md->phys_addr; 1073 k->num_pages = md->num_pages; 1074 k++; 1075 } 1076 continue; 1077 } 1078 if (pmd == NULL || !efi_wb(pmd) || 1079 efi_md_end(pmd) != md->phys_addr) { 1080 contig_low = GRANULEROUNDUP(md->phys_addr); 1081 contig_high = efi_md_end(md); 1082 for (q = p + efi_desc_size; q < efi_map_end; 1083 q += efi_desc_size) { 1084 check_md = q; 1085 if (!efi_wb(check_md)) 1086 break; 1087 if (contig_high != check_md->phys_addr) 1088 break; 1089 contig_high = efi_md_end(check_md); 1090 } 1091 contig_high = GRANULEROUNDDOWN(contig_high); 1092 } 1093 if (!is_memory_available(md)) 1094 continue; 1095 1096 /* 1097 * Round ends inward to granule boundaries 1098 * Give trimmings to uncached allocator 1099 */ 1100 if (md->phys_addr < contig_low) { 1101 lim = min(efi_md_end(md), contig_low); 1102 if (efi_uc(md)) { 1103 if (k > kern_memmap && 1104 (k-1)->attribute == EFI_MEMORY_UC && 1105 kmd_end(k-1) == md->phys_addr) { 1106 (k-1)->num_pages += 1107 (lim - md->phys_addr) 1108 >> EFI_PAGE_SHIFT; 1109 } else { 1110 k->attribute = EFI_MEMORY_UC; 1111 k->start = md->phys_addr; 1112 k->num_pages = (lim - md->phys_addr) 1113 >> EFI_PAGE_SHIFT; 1114 k++; 1115 } 1116 } 1117 as = contig_low; 1118 } else 1119 as = md->phys_addr; 1120 1121 if (efi_md_end(md) > contig_high) { 1122 lim = max(md->phys_addr, contig_high); 1123 if (efi_uc(md)) { 1124 if (lim == md->phys_addr && k > kern_memmap && 1125 (k-1)->attribute == EFI_MEMORY_UC && 1126 kmd_end(k-1) == md->phys_addr) { 1127 (k-1)->num_pages += md->num_pages; 1128 } else { 1129 k->attribute = EFI_MEMORY_UC; 1130 k->start = lim; 1131 k->num_pages = (efi_md_end(md) - lim) 1132 >> EFI_PAGE_SHIFT; 1133 k++; 1134 } 1135 } 1136 ae = contig_high; 1137 } else 1138 ae = efi_md_end(md); 1139 1140 /* keep within max_addr= and min_addr= command line arg */ 1141 as = max(as, min_addr); 1142 ae = min(ae, max_addr); 1143 if (ae <= as) 1144 continue; 1145 1146 /* avoid going over mem= command line arg */ 1147 if (total_mem + (ae - as) > mem_limit) 1148 ae -= total_mem + (ae - as) - mem_limit; 1149 1150 if (ae <= as) 1151 continue; 1152 if (prev && kmd_end(prev) == md->phys_addr) { 1153 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; 1154 total_mem += ae - as; 1155 continue; 1156 } 1157 k->attribute = EFI_MEMORY_WB; 1158 k->start = as; 1159 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; 1160 total_mem += ae - as; 1161 prev = k++; 1162 } 1163 k->start = ~0L; /* end-marker */ 1164 1165 /* reserve the memory we are using for kern_memmap */ 1166 *s = (u64)kern_memmap; 1167 *e = (u64)++k; 1168 1169 return total_mem; 1170 } 1171 1172 void 1173 efi_initialize_iomem_resources(struct resource *code_resource, 1174 struct resource *data_resource, 1175 struct resource *bss_resource) 1176 { 1177 struct resource *res; 1178 void *efi_map_start, *efi_map_end, *p; 1179 efi_memory_desc_t *md; 1180 u64 efi_desc_size; 1181 char *name; 1182 unsigned long flags, desc; 1183 1184 efi_map_start = __va(ia64_boot_param->efi_memmap); 1185 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1186 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1187 1188 res = NULL; 1189 1190 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1191 md = p; 1192 1193 if (md->num_pages == 0) /* should not happen */ 1194 continue; 1195 1196 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 1197 desc = IORES_DESC_NONE; 1198 1199 switch (md->type) { 1200 1201 case EFI_MEMORY_MAPPED_IO: 1202 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 1203 continue; 1204 1205 case EFI_LOADER_CODE: 1206 case EFI_LOADER_DATA: 1207 case EFI_BOOT_SERVICES_DATA: 1208 case EFI_BOOT_SERVICES_CODE: 1209 case EFI_CONVENTIONAL_MEMORY: 1210 if (md->attribute & EFI_MEMORY_WP) { 1211 name = "System ROM"; 1212 flags |= IORESOURCE_READONLY; 1213 } else if (md->attribute == EFI_MEMORY_UC) { 1214 name = "Uncached RAM"; 1215 } else { 1216 name = "System RAM"; 1217 flags |= IORESOURCE_SYSRAM; 1218 } 1219 break; 1220 1221 case EFI_ACPI_MEMORY_NVS: 1222 name = "ACPI Non-volatile Storage"; 1223 desc = IORES_DESC_ACPI_NV_STORAGE; 1224 break; 1225 1226 case EFI_UNUSABLE_MEMORY: 1227 name = "reserved"; 1228 flags |= IORESOURCE_DISABLED; 1229 break; 1230 1231 case EFI_PERSISTENT_MEMORY: 1232 name = "Persistent Memory"; 1233 desc = IORES_DESC_PERSISTENT_MEMORY; 1234 break; 1235 1236 case EFI_RESERVED_TYPE: 1237 case EFI_RUNTIME_SERVICES_CODE: 1238 case EFI_RUNTIME_SERVICES_DATA: 1239 case EFI_ACPI_RECLAIM_MEMORY: 1240 default: 1241 name = "reserved"; 1242 break; 1243 } 1244 1245 if ((res = kzalloc(sizeof(struct resource), 1246 GFP_KERNEL)) == NULL) { 1247 printk(KERN_ERR 1248 "failed to allocate resource for iomem\n"); 1249 return; 1250 } 1251 1252 res->name = name; 1253 res->start = md->phys_addr; 1254 res->end = md->phys_addr + efi_md_size(md) - 1; 1255 res->flags = flags; 1256 res->desc = desc; 1257 1258 if (insert_resource(&iomem_resource, res) < 0) 1259 kfree(res); 1260 else { 1261 /* 1262 * We don't know which region contains 1263 * kernel data so we try it repeatedly and 1264 * let the resource manager test it. 1265 */ 1266 insert_resource(res, code_resource); 1267 insert_resource(res, data_resource); 1268 insert_resource(res, bss_resource); 1269 #ifdef CONFIG_KEXEC 1270 insert_resource(res, &efi_memmap_res); 1271 insert_resource(res, &boot_param_res); 1272 if (crashk_res.end > crashk_res.start) 1273 insert_resource(res, &crashk_res); 1274 #endif 1275 } 1276 } 1277 } 1278 1279 #ifdef CONFIG_KEXEC 1280 /* find a block of memory aligned to 64M exclude reserved regions 1281 rsvd_regions are sorted 1282 */ 1283 unsigned long __init 1284 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) 1285 { 1286 int i; 1287 u64 start, end; 1288 u64 alignment = 1UL << _PAGE_SIZE_64M; 1289 void *efi_map_start, *efi_map_end, *p; 1290 efi_memory_desc_t *md; 1291 u64 efi_desc_size; 1292 1293 efi_map_start = __va(ia64_boot_param->efi_memmap); 1294 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1295 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1296 1297 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1298 md = p; 1299 if (!efi_wb(md)) 1300 continue; 1301 start = ALIGN(md->phys_addr, alignment); 1302 end = efi_md_end(md); 1303 for (i = 0; i < n; i++) { 1304 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { 1305 if (__pa(r[i].start) > start + size) 1306 return start; 1307 start = ALIGN(__pa(r[i].end), alignment); 1308 if (i < n-1 && 1309 __pa(r[i+1].start) < start + size) 1310 continue; 1311 else 1312 break; 1313 } 1314 } 1315 if (end > start + size) 1316 return start; 1317 } 1318 1319 printk(KERN_WARNING 1320 "Cannot reserve 0x%lx byte of memory for crashdump\n", size); 1321 return ~0UL; 1322 } 1323 #endif 1324 1325 #ifdef CONFIG_CRASH_DUMP 1326 /* locate the size find a the descriptor at a certain address */ 1327 unsigned long __init 1328 vmcore_find_descriptor_size (unsigned long address) 1329 { 1330 void *efi_map_start, *efi_map_end, *p; 1331 efi_memory_desc_t *md; 1332 u64 efi_desc_size; 1333 unsigned long ret = 0; 1334 1335 efi_map_start = __va(ia64_boot_param->efi_memmap); 1336 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1337 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1338 1339 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1340 md = p; 1341 if (efi_wb(md) && md->type == EFI_LOADER_DATA 1342 && md->phys_addr == address) { 1343 ret = efi_md_size(md); 1344 break; 1345 } 1346 } 1347 1348 if (ret == 0) 1349 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); 1350 1351 return ret; 1352 } 1353 #endif 1354