xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision e23feb16)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35 
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44 
45 #define EFI_DEBUG	0
46 
47 extern efi_status_t efi_call_phys (void *, ...);
48 
49 struct efi efi;
50 EXPORT_SYMBOL(efi);
51 static efi_runtime_services_t *runtime;
52 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
53 
54 #define efi_call_virt(f, args...)	(*(f))(args)
55 
56 #define STUB_GET_TIME(prefix, adjust_arg)				       \
57 static efi_status_t							       \
58 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
59 {									       \
60 	struct ia64_fpreg fr[6];					       \
61 	efi_time_cap_t *atc = NULL;					       \
62 	efi_status_t ret;						       \
63 									       \
64 	if (tc)								       \
65 		atc = adjust_arg(tc);					       \
66 	ia64_save_scratch_fpregs(fr);					       \
67 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
68 				adjust_arg(tm), atc);			       \
69 	ia64_load_scratch_fpregs(fr);					       \
70 	return ret;							       \
71 }
72 
73 #define STUB_SET_TIME(prefix, adjust_arg)				       \
74 static efi_status_t							       \
75 prefix##_set_time (efi_time_t *tm)					       \
76 {									       \
77 	struct ia64_fpreg fr[6];					       \
78 	efi_status_t ret;						       \
79 									       \
80 	ia64_save_scratch_fpregs(fr);					       \
81 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
82 				adjust_arg(tm));			       \
83 	ia64_load_scratch_fpregs(fr);					       \
84 	return ret;							       \
85 }
86 
87 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
88 static efi_status_t							       \
89 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
90 			  efi_time_t *tm)				       \
91 {									       \
92 	struct ia64_fpreg fr[6];					       \
93 	efi_status_t ret;						       \
94 									       \
95 	ia64_save_scratch_fpregs(fr);					       \
96 	ret = efi_call_##prefix(					       \
97 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
98 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
99 	ia64_load_scratch_fpregs(fr);					       \
100 	return ret;							       \
101 }
102 
103 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
104 static efi_status_t							       \
105 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
106 {									       \
107 	struct ia64_fpreg fr[6];					       \
108 	efi_time_t *atm = NULL;						       \
109 	efi_status_t ret;						       \
110 									       \
111 	if (tm)								       \
112 		atm = adjust_arg(tm);					       \
113 	ia64_save_scratch_fpregs(fr);					       \
114 	ret = efi_call_##prefix(					       \
115 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
116 		enabled, atm);						       \
117 	ia64_load_scratch_fpregs(fr);					       \
118 	return ret;							       \
119 }
120 
121 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
122 static efi_status_t							       \
123 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
124 		       unsigned long *data_size, void *data)		       \
125 {									       \
126 	struct ia64_fpreg fr[6];					       \
127 	u32 *aattr = NULL;						       \
128 	efi_status_t ret;						       \
129 									       \
130 	if (attr)							       \
131 		aattr = adjust_arg(attr);				       \
132 	ia64_save_scratch_fpregs(fr);					       \
133 	ret = efi_call_##prefix(					       \
134 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
135 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
136 		adjust_arg(data_size), adjust_arg(data));		       \
137 	ia64_load_scratch_fpregs(fr);					       \
138 	return ret;							       \
139 }
140 
141 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
142 static efi_status_t							       \
143 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
144 			    efi_guid_t *vendor)				       \
145 {									       \
146 	struct ia64_fpreg fr[6];					       \
147 	efi_status_t ret;						       \
148 									       \
149 	ia64_save_scratch_fpregs(fr);					       \
150 	ret = efi_call_##prefix(					       \
151 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
152 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
153 	ia64_load_scratch_fpregs(fr);					       \
154 	return ret;							       \
155 }
156 
157 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
158 static efi_status_t							       \
159 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
160 		       u32 attr, unsigned long data_size,		       \
161 		       void *data)					       \
162 {									       \
163 	struct ia64_fpreg fr[6];					       \
164 	efi_status_t ret;						       \
165 									       \
166 	ia64_save_scratch_fpregs(fr);					       \
167 	ret = efi_call_##prefix(					       \
168 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
169 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
170 		adjust_arg(data));					       \
171 	ia64_load_scratch_fpregs(fr);					       \
172 	return ret;							       \
173 }
174 
175 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
176 static efi_status_t							       \
177 prefix##_get_next_high_mono_count (u32 *count)				       \
178 {									       \
179 	struct ia64_fpreg fr[6];					       \
180 	efi_status_t ret;						       \
181 									       \
182 	ia64_save_scratch_fpregs(fr);					       \
183 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
184 				__va(runtime->get_next_high_mono_count),       \
185 				adjust_arg(count));			       \
186 	ia64_load_scratch_fpregs(fr);					       \
187 	return ret;							       \
188 }
189 
190 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
191 static void								       \
192 prefix##_reset_system (int reset_type, efi_status_t status,		       \
193 		       unsigned long data_size, efi_char16_t *data)	       \
194 {									       \
195 	struct ia64_fpreg fr[6];					       \
196 	efi_char16_t *adata = NULL;					       \
197 									       \
198 	if (data)							       \
199 		adata = adjust_arg(data);				       \
200 									       \
201 	ia64_save_scratch_fpregs(fr);					       \
202 	efi_call_##prefix(						       \
203 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
204 		reset_type, status, data_size, adata);			       \
205 	/* should not return, but just in case... */			       \
206 	ia64_load_scratch_fpregs(fr);					       \
207 }
208 
209 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
210 
211 STUB_GET_TIME(phys, phys_ptr)
212 STUB_SET_TIME(phys, phys_ptr)
213 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
214 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
215 STUB_GET_VARIABLE(phys, phys_ptr)
216 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
217 STUB_SET_VARIABLE(phys, phys_ptr)
218 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
219 STUB_RESET_SYSTEM(phys, phys_ptr)
220 
221 #define id(arg)	arg
222 
223 STUB_GET_TIME(virt, id)
224 STUB_SET_TIME(virt, id)
225 STUB_GET_WAKEUP_TIME(virt, id)
226 STUB_SET_WAKEUP_TIME(virt, id)
227 STUB_GET_VARIABLE(virt, id)
228 STUB_GET_NEXT_VARIABLE(virt, id)
229 STUB_SET_VARIABLE(virt, id)
230 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
231 STUB_RESET_SYSTEM(virt, id)
232 
233 void
234 efi_gettimeofday (struct timespec *ts)
235 {
236 	efi_time_t tm;
237 
238 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
239 		memset(ts, 0, sizeof(*ts));
240 		return;
241 	}
242 
243 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
244 			    tm.hour, tm.minute, tm.second);
245 	ts->tv_nsec = tm.nanosecond;
246 }
247 
248 static int
249 is_memory_available (efi_memory_desc_t *md)
250 {
251 	if (!(md->attribute & EFI_MEMORY_WB))
252 		return 0;
253 
254 	switch (md->type) {
255 	      case EFI_LOADER_CODE:
256 	      case EFI_LOADER_DATA:
257 	      case EFI_BOOT_SERVICES_CODE:
258 	      case EFI_BOOT_SERVICES_DATA:
259 	      case EFI_CONVENTIONAL_MEMORY:
260 		return 1;
261 	}
262 	return 0;
263 }
264 
265 typedef struct kern_memdesc {
266 	u64 attribute;
267 	u64 start;
268 	u64 num_pages;
269 } kern_memdesc_t;
270 
271 static kern_memdesc_t *kern_memmap;
272 
273 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
274 
275 static inline u64
276 kmd_end(kern_memdesc_t *kmd)
277 {
278 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
279 }
280 
281 static inline u64
282 efi_md_end(efi_memory_desc_t *md)
283 {
284 	return (md->phys_addr + efi_md_size(md));
285 }
286 
287 static inline int
288 efi_wb(efi_memory_desc_t *md)
289 {
290 	return (md->attribute & EFI_MEMORY_WB);
291 }
292 
293 static inline int
294 efi_uc(efi_memory_desc_t *md)
295 {
296 	return (md->attribute & EFI_MEMORY_UC);
297 }
298 
299 static void
300 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
301 {
302 	kern_memdesc_t *k;
303 	u64 start, end, voff;
304 
305 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
306 	for (k = kern_memmap; k->start != ~0UL; k++) {
307 		if (k->attribute != attr)
308 			continue;
309 		start = PAGE_ALIGN(k->start);
310 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
311 		if (start < end)
312 			if ((*callback)(start + voff, end + voff, arg) < 0)
313 				return;
314 	}
315 }
316 
317 /*
318  * Walk the EFI memory map and call CALLBACK once for each EFI memory
319  * descriptor that has memory that is available for OS use.
320  */
321 void
322 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
323 {
324 	walk(callback, arg, EFI_MEMORY_WB);
325 }
326 
327 /*
328  * Walk the EFI memory map and call CALLBACK once for each EFI memory
329  * descriptor that has memory that is available for uncached allocator.
330  */
331 void
332 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
333 {
334 	walk(callback, arg, EFI_MEMORY_UC);
335 }
336 
337 /*
338  * Look for the PAL_CODE region reported by EFI and map it using an
339  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
340  * Abstraction Layer chapter 11 in ADAG
341  */
342 void *
343 efi_get_pal_addr (void)
344 {
345 	void *efi_map_start, *efi_map_end, *p;
346 	efi_memory_desc_t *md;
347 	u64 efi_desc_size;
348 	int pal_code_count = 0;
349 	u64 vaddr, mask;
350 
351 	efi_map_start = __va(ia64_boot_param->efi_memmap);
352 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
353 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
354 
355 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
356 		md = p;
357 		if (md->type != EFI_PAL_CODE)
358 			continue;
359 
360 		if (++pal_code_count > 1) {
361 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
362 			       "dropped @ %llx\n", md->phys_addr);
363 			continue;
364 		}
365 		/*
366 		 * The only ITLB entry in region 7 that is used is the one
367 		 * installed by __start().  That entry covers a 64MB range.
368 		 */
369 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
370 		vaddr = PAGE_OFFSET + md->phys_addr;
371 
372 		/*
373 		 * We must check that the PAL mapping won't overlap with the
374 		 * kernel mapping.
375 		 *
376 		 * PAL code is guaranteed to be aligned on a power of 2 between
377 		 * 4k and 256KB and that only one ITR is needed to map it. This
378 		 * implies that the PAL code is always aligned on its size,
379 		 * i.e., the closest matching page size supported by the TLB.
380 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
381 		 * it is bigger than 64MB (very unlikely!).  So for now the
382 		 * following test is enough to determine whether or not we need
383 		 * a dedicated ITR for the PAL code.
384 		 */
385 		if ((vaddr & mask) == (KERNEL_START & mask)) {
386 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
387 			       __func__);
388 			continue;
389 		}
390 
391 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
392 			panic("Whoa!  PAL code size bigger than a granule!");
393 
394 #if EFI_DEBUG
395 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
396 
397 		printk(KERN_INFO "CPU %d: mapping PAL code "
398                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
399                        smp_processor_id(), md->phys_addr,
400                        md->phys_addr + efi_md_size(md),
401                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
402 #endif
403 		return __va(md->phys_addr);
404 	}
405 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
406 	       __func__);
407 	return NULL;
408 }
409 
410 
411 static u8 __init palo_checksum(u8 *buffer, u32 length)
412 {
413 	u8 sum = 0;
414 	u8 *end = buffer + length;
415 
416 	while (buffer < end)
417 		sum = (u8) (sum + *(buffer++));
418 
419 	return sum;
420 }
421 
422 /*
423  * Parse and handle PALO table which is published at:
424  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
425  */
426 static void __init handle_palo(unsigned long palo_phys)
427 {
428 	struct palo_table *palo = __va(palo_phys);
429 	u8  checksum;
430 
431 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
432 		printk(KERN_INFO "PALO signature incorrect.\n");
433 		return;
434 	}
435 
436 	checksum = palo_checksum((u8 *)palo, palo->length);
437 	if (checksum) {
438 		printk(KERN_INFO "PALO checksum incorrect.\n");
439 		return;
440 	}
441 
442 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
443 }
444 
445 void
446 efi_map_pal_code (void)
447 {
448 	void *pal_vaddr = efi_get_pal_addr ();
449 	u64 psr;
450 
451 	if (!pal_vaddr)
452 		return;
453 
454 	/*
455 	 * Cannot write to CRx with PSR.ic=1
456 	 */
457 	psr = ia64_clear_ic();
458 	ia64_itr(0x1, IA64_TR_PALCODE,
459 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
460 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
461 		 IA64_GRANULE_SHIFT);
462 	paravirt_dv_serialize_data();
463 	ia64_set_psr(psr);		/* restore psr */
464 }
465 
466 void __init
467 efi_init (void)
468 {
469 	void *efi_map_start, *efi_map_end;
470 	efi_config_table_t *config_tables;
471 	efi_char16_t *c16;
472 	u64 efi_desc_size;
473 	char *cp, vendor[100] = "unknown";
474 	int i;
475 	unsigned long palo_phys;
476 
477 	/*
478 	 * It's too early to be able to use the standard kernel command line
479 	 * support...
480 	 */
481 	for (cp = boot_command_line; *cp; ) {
482 		if (memcmp(cp, "mem=", 4) == 0) {
483 			mem_limit = memparse(cp + 4, &cp);
484 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
485 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
486 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
487 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
488 		} else {
489 			while (*cp != ' ' && *cp)
490 				++cp;
491 			while (*cp == ' ')
492 				++cp;
493 		}
494 	}
495 	if (min_addr != 0UL)
496 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
497 		       min_addr >> 20);
498 	if (max_addr != ~0UL)
499 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
500 		       max_addr >> 20);
501 
502 	efi.systab = __va(ia64_boot_param->efi_systab);
503 
504 	/*
505 	 * Verify the EFI Table
506 	 */
507 	if (efi.systab == NULL)
508 		panic("Whoa! Can't find EFI system table.\n");
509 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
510 		panic("Whoa! EFI system table signature incorrect\n");
511 	if ((efi.systab->hdr.revision >> 16) == 0)
512 		printk(KERN_WARNING "Warning: EFI system table version "
513 		       "%d.%02d, expected 1.00 or greater\n",
514 		       efi.systab->hdr.revision >> 16,
515 		       efi.systab->hdr.revision & 0xffff);
516 
517 	config_tables = __va(efi.systab->tables);
518 
519 	/* Show what we know for posterity */
520 	c16 = __va(efi.systab->fw_vendor);
521 	if (c16) {
522 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
523 			vendor[i] = *c16++;
524 		vendor[i] = '\0';
525 	}
526 
527 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
528 	       efi.systab->hdr.revision >> 16,
529 	       efi.systab->hdr.revision & 0xffff, vendor);
530 
531 	efi.mps        = EFI_INVALID_TABLE_ADDR;
532 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
533 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
534 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
535 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
536 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
537 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
538 	efi.uga        = EFI_INVALID_TABLE_ADDR;
539 
540 	palo_phys      = EFI_INVALID_TABLE_ADDR;
541 
542 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
543 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
544 			efi.mps = config_tables[i].table;
545 			printk(" MPS=0x%lx", config_tables[i].table);
546 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
547 			efi.acpi20 = config_tables[i].table;
548 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
549 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
550 			efi.acpi = config_tables[i].table;
551 			printk(" ACPI=0x%lx", config_tables[i].table);
552 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
553 			efi.smbios = config_tables[i].table;
554 			printk(" SMBIOS=0x%lx", config_tables[i].table);
555 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
556 			efi.sal_systab = config_tables[i].table;
557 			printk(" SALsystab=0x%lx", config_tables[i].table);
558 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
559 			efi.hcdp = config_tables[i].table;
560 			printk(" HCDP=0x%lx", config_tables[i].table);
561 		} else if (efi_guidcmp(config_tables[i].guid,
562 			 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
563 			palo_phys = config_tables[i].table;
564 			printk(" PALO=0x%lx", config_tables[i].table);
565 		}
566 	}
567 	printk("\n");
568 
569 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
570 		handle_palo(palo_phys);
571 
572 	runtime = __va(efi.systab->runtime);
573 	efi.get_time = phys_get_time;
574 	efi.set_time = phys_set_time;
575 	efi.get_wakeup_time = phys_get_wakeup_time;
576 	efi.set_wakeup_time = phys_set_wakeup_time;
577 	efi.get_variable = phys_get_variable;
578 	efi.get_next_variable = phys_get_next_variable;
579 	efi.set_variable = phys_set_variable;
580 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
581 	efi.reset_system = phys_reset_system;
582 
583 	efi_map_start = __va(ia64_boot_param->efi_memmap);
584 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
585 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
586 
587 #if EFI_DEBUG
588 	/* print EFI memory map: */
589 	{
590 		efi_memory_desc_t *md;
591 		void *p;
592 
593 		for (i = 0, p = efi_map_start; p < efi_map_end;
594 		     ++i, p += efi_desc_size)
595 		{
596 			const char *unit;
597 			unsigned long size;
598 
599 			md = p;
600 			size = md->num_pages << EFI_PAGE_SHIFT;
601 
602 			if ((size >> 40) > 0) {
603 				size >>= 40;
604 				unit = "TB";
605 			} else if ((size >> 30) > 0) {
606 				size >>= 30;
607 				unit = "GB";
608 			} else if ((size >> 20) > 0) {
609 				size >>= 20;
610 				unit = "MB";
611 			} else {
612 				size >>= 10;
613 				unit = "KB";
614 			}
615 
616 			printk("mem%02d: type=%2u, attr=0x%016lx, "
617 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
618 			       i, md->type, md->attribute, md->phys_addr,
619 			       md->phys_addr + efi_md_size(md), size, unit);
620 		}
621 	}
622 #endif
623 
624 	efi_map_pal_code();
625 	efi_enter_virtual_mode();
626 }
627 
628 void
629 efi_enter_virtual_mode (void)
630 {
631 	void *efi_map_start, *efi_map_end, *p;
632 	efi_memory_desc_t *md;
633 	efi_status_t status;
634 	u64 efi_desc_size;
635 
636 	efi_map_start = __va(ia64_boot_param->efi_memmap);
637 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
638 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
639 
640 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
641 		md = p;
642 		if (md->attribute & EFI_MEMORY_RUNTIME) {
643 			/*
644 			 * Some descriptors have multiple bits set, so the
645 			 * order of the tests is relevant.
646 			 */
647 			if (md->attribute & EFI_MEMORY_WB) {
648 				md->virt_addr = (u64) __va(md->phys_addr);
649 			} else if (md->attribute & EFI_MEMORY_UC) {
650 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
651 			} else if (md->attribute & EFI_MEMORY_WC) {
652 #if 0
653 				md->virt_addr = ia64_remap(md->phys_addr,
654 							   (_PAGE_A |
655 							    _PAGE_P |
656 							    _PAGE_D |
657 							    _PAGE_MA_WC |
658 							    _PAGE_PL_0 |
659 							    _PAGE_AR_RW));
660 #else
661 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
662 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
663 #endif
664 			} else if (md->attribute & EFI_MEMORY_WT) {
665 #if 0
666 				md->virt_addr = ia64_remap(md->phys_addr,
667 							   (_PAGE_A |
668 							    _PAGE_P |
669 							    _PAGE_D |
670 							    _PAGE_MA_WT |
671 							    _PAGE_PL_0 |
672 							    _PAGE_AR_RW));
673 #else
674 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
675 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
676 #endif
677 			}
678 		}
679 	}
680 
681 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
682 			       ia64_boot_param->efi_memmap_size,
683 			       efi_desc_size,
684 			       ia64_boot_param->efi_memdesc_version,
685 			       ia64_boot_param->efi_memmap);
686 	if (status != EFI_SUCCESS) {
687 		printk(KERN_WARNING "warning: unable to switch EFI into "
688 		       "virtual mode (status=%lu)\n", status);
689 		return;
690 	}
691 
692 	/*
693 	 * Now that EFI is in virtual mode, we call the EFI functions more
694 	 * efficiently:
695 	 */
696 	efi.get_time = virt_get_time;
697 	efi.set_time = virt_set_time;
698 	efi.get_wakeup_time = virt_get_wakeup_time;
699 	efi.set_wakeup_time = virt_set_wakeup_time;
700 	efi.get_variable = virt_get_variable;
701 	efi.get_next_variable = virt_get_next_variable;
702 	efi.set_variable = virt_set_variable;
703 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
704 	efi.reset_system = virt_reset_system;
705 }
706 
707 /*
708  * Walk the EFI memory map looking for the I/O port range.  There can only be
709  * one entry of this type, other I/O port ranges should be described via ACPI.
710  */
711 u64
712 efi_get_iobase (void)
713 {
714 	void *efi_map_start, *efi_map_end, *p;
715 	efi_memory_desc_t *md;
716 	u64 efi_desc_size;
717 
718 	efi_map_start = __va(ia64_boot_param->efi_memmap);
719 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
720 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
721 
722 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
723 		md = p;
724 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
725 			if (md->attribute & EFI_MEMORY_UC)
726 				return md->phys_addr;
727 		}
728 	}
729 	return 0;
730 }
731 
732 static struct kern_memdesc *
733 kern_memory_descriptor (unsigned long phys_addr)
734 {
735 	struct kern_memdesc *md;
736 
737 	for (md = kern_memmap; md->start != ~0UL; md++) {
738 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
739 			 return md;
740 	}
741 	return NULL;
742 }
743 
744 static efi_memory_desc_t *
745 efi_memory_descriptor (unsigned long phys_addr)
746 {
747 	void *efi_map_start, *efi_map_end, *p;
748 	efi_memory_desc_t *md;
749 	u64 efi_desc_size;
750 
751 	efi_map_start = __va(ia64_boot_param->efi_memmap);
752 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
753 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
754 
755 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
756 		md = p;
757 
758 		if (phys_addr - md->phys_addr < efi_md_size(md))
759 			 return md;
760 	}
761 	return NULL;
762 }
763 
764 static int
765 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
766 {
767 	void *efi_map_start, *efi_map_end, *p;
768 	efi_memory_desc_t *md;
769 	u64 efi_desc_size;
770 	unsigned long end;
771 
772 	efi_map_start = __va(ia64_boot_param->efi_memmap);
773 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
774 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
775 
776 	end = phys_addr + size;
777 
778 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
779 		md = p;
780 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
781 			return 1;
782 	}
783 	return 0;
784 }
785 
786 u32
787 efi_mem_type (unsigned long phys_addr)
788 {
789 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
790 
791 	if (md)
792 		return md->type;
793 	return 0;
794 }
795 
796 u64
797 efi_mem_attributes (unsigned long phys_addr)
798 {
799 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
800 
801 	if (md)
802 		return md->attribute;
803 	return 0;
804 }
805 EXPORT_SYMBOL(efi_mem_attributes);
806 
807 u64
808 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
809 {
810 	unsigned long end = phys_addr + size;
811 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
812 	u64 attr;
813 
814 	if (!md)
815 		return 0;
816 
817 	/*
818 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
819 	 * the kernel that firmware needs this region mapped.
820 	 */
821 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
822 	do {
823 		unsigned long md_end = efi_md_end(md);
824 
825 		if (end <= md_end)
826 			return attr;
827 
828 		md = efi_memory_descriptor(md_end);
829 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
830 			return 0;
831 	} while (md);
832 	return 0;	/* never reached */
833 }
834 
835 u64
836 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
837 {
838 	unsigned long end = phys_addr + size;
839 	struct kern_memdesc *md;
840 	u64 attr;
841 
842 	/*
843 	 * This is a hack for ioremap calls before we set up kern_memmap.
844 	 * Maybe we should do efi_memmap_init() earlier instead.
845 	 */
846 	if (!kern_memmap) {
847 		attr = efi_mem_attribute(phys_addr, size);
848 		if (attr & EFI_MEMORY_WB)
849 			return EFI_MEMORY_WB;
850 		return 0;
851 	}
852 
853 	md = kern_memory_descriptor(phys_addr);
854 	if (!md)
855 		return 0;
856 
857 	attr = md->attribute;
858 	do {
859 		unsigned long md_end = kmd_end(md);
860 
861 		if (end <= md_end)
862 			return attr;
863 
864 		md = kern_memory_descriptor(md_end);
865 		if (!md || md->attribute != attr)
866 			return 0;
867 	} while (md);
868 	return 0;	/* never reached */
869 }
870 EXPORT_SYMBOL(kern_mem_attribute);
871 
872 int
873 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
874 {
875 	u64 attr;
876 
877 	/*
878 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
879 	 * uses a granule-sized kernel identity mapping.  It's really
880 	 * only safe to do this for regions in kern_memmap.  For more
881 	 * details, see Documentation/ia64/aliasing.txt.
882 	 */
883 	attr = kern_mem_attribute(phys_addr, size);
884 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
885 		return 1;
886 	return 0;
887 }
888 
889 int
890 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
891 {
892 	unsigned long phys_addr = pfn << PAGE_SHIFT;
893 	u64 attr;
894 
895 	attr = efi_mem_attribute(phys_addr, size);
896 
897 	/*
898 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
899 	 * granule, but the entire region we're mapping must support the same
900 	 * attribute.
901 	 */
902 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
903 		return 1;
904 
905 	/*
906 	 * Intel firmware doesn't tell us about all the MMIO regions, so
907 	 * in general we have to allow mmap requests.  But if EFI *does*
908 	 * tell us about anything inside this region, we should deny it.
909 	 * The user can always map a smaller region to avoid the overlap.
910 	 */
911 	if (efi_memmap_intersects(phys_addr, size))
912 		return 0;
913 
914 	return 1;
915 }
916 
917 pgprot_t
918 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
919 		     pgprot_t vma_prot)
920 {
921 	unsigned long phys_addr = pfn << PAGE_SHIFT;
922 	u64 attr;
923 
924 	/*
925 	 * For /dev/mem mmap, we use user mappings, but if the region is
926 	 * in kern_memmap (and hence may be covered by a kernel mapping),
927 	 * we must use the same attribute as the kernel mapping.
928 	 */
929 	attr = kern_mem_attribute(phys_addr, size);
930 	if (attr & EFI_MEMORY_WB)
931 		return pgprot_cacheable(vma_prot);
932 	else if (attr & EFI_MEMORY_UC)
933 		return pgprot_noncached(vma_prot);
934 
935 	/*
936 	 * Some chipsets don't support UC access to memory.  If
937 	 * WB is supported, we prefer that.
938 	 */
939 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
940 		return pgprot_cacheable(vma_prot);
941 
942 	return pgprot_noncached(vma_prot);
943 }
944 
945 int __init
946 efi_uart_console_only(void)
947 {
948 	efi_status_t status;
949 	char *s, name[] = "ConOut";
950 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
951 	efi_char16_t *utf16, name_utf16[32];
952 	unsigned char data[1024];
953 	unsigned long size = sizeof(data);
954 	struct efi_generic_dev_path *hdr, *end_addr;
955 	int uart = 0;
956 
957 	/* Convert to UTF-16 */
958 	utf16 = name_utf16;
959 	s = name;
960 	while (*s)
961 		*utf16++ = *s++ & 0x7f;
962 	*utf16 = 0;
963 
964 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
965 	if (status != EFI_SUCCESS) {
966 		printk(KERN_ERR "No EFI %s variable?\n", name);
967 		return 0;
968 	}
969 
970 	hdr = (struct efi_generic_dev_path *) data;
971 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
972 	while (hdr < end_addr) {
973 		if (hdr->type == EFI_DEV_MSG &&
974 		    hdr->sub_type == EFI_DEV_MSG_UART)
975 			uart = 1;
976 		else if (hdr->type == EFI_DEV_END_PATH ||
977 			  hdr->type == EFI_DEV_END_PATH2) {
978 			if (!uart)
979 				return 0;
980 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
981 				return 1;
982 			uart = 0;
983 		}
984 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
985 	}
986 	printk(KERN_ERR "Malformed %s value\n", name);
987 	return 0;
988 }
989 
990 /*
991  * Look for the first granule aligned memory descriptor memory
992  * that is big enough to hold EFI memory map. Make sure this
993  * descriptor is atleast granule sized so it does not get trimmed
994  */
995 struct kern_memdesc *
996 find_memmap_space (void)
997 {
998 	u64	contig_low=0, contig_high=0;
999 	u64	as = 0, ae;
1000 	void *efi_map_start, *efi_map_end, *p, *q;
1001 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1002 	u64	space_needed, efi_desc_size;
1003 	unsigned long total_mem = 0;
1004 
1005 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1006 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1007 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1008 
1009 	/*
1010 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
1011 	 * (if every entry has a WB part in the middle, and UC head and tail),
1012 	 * plus one for the end marker.
1013 	 */
1014 	space_needed = sizeof(kern_memdesc_t) *
1015 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1016 
1017 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1018 		md = p;
1019 		if (!efi_wb(md)) {
1020 			continue;
1021 		}
1022 		if (pmd == NULL || !efi_wb(pmd) ||
1023 		    efi_md_end(pmd) != md->phys_addr) {
1024 			contig_low = GRANULEROUNDUP(md->phys_addr);
1025 			contig_high = efi_md_end(md);
1026 			for (q = p + efi_desc_size; q < efi_map_end;
1027 			     q += efi_desc_size) {
1028 				check_md = q;
1029 				if (!efi_wb(check_md))
1030 					break;
1031 				if (contig_high != check_md->phys_addr)
1032 					break;
1033 				contig_high = efi_md_end(check_md);
1034 			}
1035 			contig_high = GRANULEROUNDDOWN(contig_high);
1036 		}
1037 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1038 			continue;
1039 
1040 		/* Round ends inward to granule boundaries */
1041 		as = max(contig_low, md->phys_addr);
1042 		ae = min(contig_high, efi_md_end(md));
1043 
1044 		/* keep within max_addr= and min_addr= command line arg */
1045 		as = max(as, min_addr);
1046 		ae = min(ae, max_addr);
1047 		if (ae <= as)
1048 			continue;
1049 
1050 		/* avoid going over mem= command line arg */
1051 		if (total_mem + (ae - as) > mem_limit)
1052 			ae -= total_mem + (ae - as) - mem_limit;
1053 
1054 		if (ae <= as)
1055 			continue;
1056 
1057 		if (ae - as > space_needed)
1058 			break;
1059 	}
1060 	if (p >= efi_map_end)
1061 		panic("Can't allocate space for kernel memory descriptors");
1062 
1063 	return __va(as);
1064 }
1065 
1066 /*
1067  * Walk the EFI memory map and gather all memory available for kernel
1068  * to use.  We can allocate partial granules only if the unavailable
1069  * parts exist, and are WB.
1070  */
1071 unsigned long
1072 efi_memmap_init(u64 *s, u64 *e)
1073 {
1074 	struct kern_memdesc *k, *prev = NULL;
1075 	u64	contig_low=0, contig_high=0;
1076 	u64	as, ae, lim;
1077 	void *efi_map_start, *efi_map_end, *p, *q;
1078 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1079 	u64	efi_desc_size;
1080 	unsigned long total_mem = 0;
1081 
1082 	k = kern_memmap = find_memmap_space();
1083 
1084 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1085 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1086 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1087 
1088 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1089 		md = p;
1090 		if (!efi_wb(md)) {
1091 			if (efi_uc(md) &&
1092 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1093 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1094 				k->attribute = EFI_MEMORY_UC;
1095 				k->start = md->phys_addr;
1096 				k->num_pages = md->num_pages;
1097 				k++;
1098 			}
1099 			continue;
1100 		}
1101 		if (pmd == NULL || !efi_wb(pmd) ||
1102 		    efi_md_end(pmd) != md->phys_addr) {
1103 			contig_low = GRANULEROUNDUP(md->phys_addr);
1104 			contig_high = efi_md_end(md);
1105 			for (q = p + efi_desc_size; q < efi_map_end;
1106 			     q += efi_desc_size) {
1107 				check_md = q;
1108 				if (!efi_wb(check_md))
1109 					break;
1110 				if (contig_high != check_md->phys_addr)
1111 					break;
1112 				contig_high = efi_md_end(check_md);
1113 			}
1114 			contig_high = GRANULEROUNDDOWN(contig_high);
1115 		}
1116 		if (!is_memory_available(md))
1117 			continue;
1118 
1119 		/*
1120 		 * Round ends inward to granule boundaries
1121 		 * Give trimmings to uncached allocator
1122 		 */
1123 		if (md->phys_addr < contig_low) {
1124 			lim = min(efi_md_end(md), contig_low);
1125 			if (efi_uc(md)) {
1126 				if (k > kern_memmap &&
1127 				    (k-1)->attribute == EFI_MEMORY_UC &&
1128 				    kmd_end(k-1) == md->phys_addr) {
1129 					(k-1)->num_pages +=
1130 						(lim - md->phys_addr)
1131 						>> EFI_PAGE_SHIFT;
1132 				} else {
1133 					k->attribute = EFI_MEMORY_UC;
1134 					k->start = md->phys_addr;
1135 					k->num_pages = (lim - md->phys_addr)
1136 						>> EFI_PAGE_SHIFT;
1137 					k++;
1138 				}
1139 			}
1140 			as = contig_low;
1141 		} else
1142 			as = md->phys_addr;
1143 
1144 		if (efi_md_end(md) > contig_high) {
1145 			lim = max(md->phys_addr, contig_high);
1146 			if (efi_uc(md)) {
1147 				if (lim == md->phys_addr && k > kern_memmap &&
1148 				    (k-1)->attribute == EFI_MEMORY_UC &&
1149 				    kmd_end(k-1) == md->phys_addr) {
1150 					(k-1)->num_pages += md->num_pages;
1151 				} else {
1152 					k->attribute = EFI_MEMORY_UC;
1153 					k->start = lim;
1154 					k->num_pages = (efi_md_end(md) - lim)
1155 						>> EFI_PAGE_SHIFT;
1156 					k++;
1157 				}
1158 			}
1159 			ae = contig_high;
1160 		} else
1161 			ae = efi_md_end(md);
1162 
1163 		/* keep within max_addr= and min_addr= command line arg */
1164 		as = max(as, min_addr);
1165 		ae = min(ae, max_addr);
1166 		if (ae <= as)
1167 			continue;
1168 
1169 		/* avoid going over mem= command line arg */
1170 		if (total_mem + (ae - as) > mem_limit)
1171 			ae -= total_mem + (ae - as) - mem_limit;
1172 
1173 		if (ae <= as)
1174 			continue;
1175 		if (prev && kmd_end(prev) == md->phys_addr) {
1176 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1177 			total_mem += ae - as;
1178 			continue;
1179 		}
1180 		k->attribute = EFI_MEMORY_WB;
1181 		k->start = as;
1182 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1183 		total_mem += ae - as;
1184 		prev = k++;
1185 	}
1186 	k->start = ~0L; /* end-marker */
1187 
1188 	/* reserve the memory we are using for kern_memmap */
1189 	*s = (u64)kern_memmap;
1190 	*e = (u64)++k;
1191 
1192 	return total_mem;
1193 }
1194 
1195 void
1196 efi_initialize_iomem_resources(struct resource *code_resource,
1197 			       struct resource *data_resource,
1198 			       struct resource *bss_resource)
1199 {
1200 	struct resource *res;
1201 	void *efi_map_start, *efi_map_end, *p;
1202 	efi_memory_desc_t *md;
1203 	u64 efi_desc_size;
1204 	char *name;
1205 	unsigned long flags;
1206 
1207 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1208 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1209 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1210 
1211 	res = NULL;
1212 
1213 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1214 		md = p;
1215 
1216 		if (md->num_pages == 0) /* should not happen */
1217 			continue;
1218 
1219 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1220 		switch (md->type) {
1221 
1222 			case EFI_MEMORY_MAPPED_IO:
1223 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1224 				continue;
1225 
1226 			case EFI_LOADER_CODE:
1227 			case EFI_LOADER_DATA:
1228 			case EFI_BOOT_SERVICES_DATA:
1229 			case EFI_BOOT_SERVICES_CODE:
1230 			case EFI_CONVENTIONAL_MEMORY:
1231 				if (md->attribute & EFI_MEMORY_WP) {
1232 					name = "System ROM";
1233 					flags |= IORESOURCE_READONLY;
1234 				} else if (md->attribute == EFI_MEMORY_UC)
1235 					name = "Uncached RAM";
1236 				else
1237 					name = "System RAM";
1238 				break;
1239 
1240 			case EFI_ACPI_MEMORY_NVS:
1241 				name = "ACPI Non-volatile Storage";
1242 				break;
1243 
1244 			case EFI_UNUSABLE_MEMORY:
1245 				name = "reserved";
1246 				flags |= IORESOURCE_DISABLED;
1247 				break;
1248 
1249 			case EFI_RESERVED_TYPE:
1250 			case EFI_RUNTIME_SERVICES_CODE:
1251 			case EFI_RUNTIME_SERVICES_DATA:
1252 			case EFI_ACPI_RECLAIM_MEMORY:
1253 			default:
1254 				name = "reserved";
1255 				break;
1256 		}
1257 
1258 		if ((res = kzalloc(sizeof(struct resource),
1259 				   GFP_KERNEL)) == NULL) {
1260 			printk(KERN_ERR
1261 			       "failed to allocate resource for iomem\n");
1262 			return;
1263 		}
1264 
1265 		res->name = name;
1266 		res->start = md->phys_addr;
1267 		res->end = md->phys_addr + efi_md_size(md) - 1;
1268 		res->flags = flags;
1269 
1270 		if (insert_resource(&iomem_resource, res) < 0)
1271 			kfree(res);
1272 		else {
1273 			/*
1274 			 * We don't know which region contains
1275 			 * kernel data so we try it repeatedly and
1276 			 * let the resource manager test it.
1277 			 */
1278 			insert_resource(res, code_resource);
1279 			insert_resource(res, data_resource);
1280 			insert_resource(res, bss_resource);
1281 #ifdef CONFIG_KEXEC
1282                         insert_resource(res, &efi_memmap_res);
1283                         insert_resource(res, &boot_param_res);
1284 			if (crashk_res.end > crashk_res.start)
1285 				insert_resource(res, &crashk_res);
1286 #endif
1287 		}
1288 	}
1289 }
1290 
1291 #ifdef CONFIG_KEXEC
1292 /* find a block of memory aligned to 64M exclude reserved regions
1293    rsvd_regions are sorted
1294  */
1295 unsigned long __init
1296 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1297 {
1298 	int i;
1299 	u64 start, end;
1300 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1301 	void *efi_map_start, *efi_map_end, *p;
1302 	efi_memory_desc_t *md;
1303 	u64 efi_desc_size;
1304 
1305 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1306 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1307 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1308 
1309 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1310 		md = p;
1311 		if (!efi_wb(md))
1312 			continue;
1313 		start = ALIGN(md->phys_addr, alignment);
1314 		end = efi_md_end(md);
1315 		for (i = 0; i < n; i++) {
1316 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1317 				if (__pa(r[i].start) > start + size)
1318 					return start;
1319 				start = ALIGN(__pa(r[i].end), alignment);
1320 				if (i < n-1 &&
1321 				    __pa(r[i+1].start) < start + size)
1322 					continue;
1323 				else
1324 					break;
1325 			}
1326 		}
1327 		if (end > start + size)
1328 			return start;
1329 	}
1330 
1331 	printk(KERN_WARNING
1332 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1333 	return ~0UL;
1334 }
1335 #endif
1336 
1337 #ifdef CONFIG_CRASH_DUMP
1338 /* locate the size find a the descriptor at a certain address */
1339 unsigned long __init
1340 vmcore_find_descriptor_size (unsigned long address)
1341 {
1342 	void *efi_map_start, *efi_map_end, *p;
1343 	efi_memory_desc_t *md;
1344 	u64 efi_desc_size;
1345 	unsigned long ret = 0;
1346 
1347 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1348 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1349 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1350 
1351 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1352 		md = p;
1353 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1354 		    && md->phys_addr == address) {
1355 			ret = efi_md_size(md);
1356 			break;
1357 		}
1358 	}
1359 
1360 	if (ret == 0)
1361 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1362 
1363 	return ret;
1364 }
1365 #endif
1366