1 /* 2 * Extensible Firmware Interface 3 * 4 * Based on Extensible Firmware Interface Specification version 0.9 5 * April 30, 1999 6 * 7 * Copyright (C) 1999 VA Linux Systems 8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 9 * Copyright (C) 1999-2003 Hewlett-Packard Co. 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * Stephane Eranian <eranian@hpl.hp.com> 12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. 13 * Bjorn Helgaas <bjorn.helgaas@hp.com> 14 * 15 * All EFI Runtime Services are not implemented yet as EFI only 16 * supports physical mode addressing on SoftSDV. This is to be fixed 17 * in a future version. --drummond 1999-07-20 18 * 19 * Implemented EFI runtime services and virtual mode calls. --davidm 20 * 21 * Goutham Rao: <goutham.rao@intel.com> 22 * Skip non-WB memory and ignore empty memory ranges. 23 */ 24 #include <linux/module.h> 25 #include <linux/bootmem.h> 26 #include <linux/crash_dump.h> 27 #include <linux/kernel.h> 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/time.h> 32 #include <linux/efi.h> 33 #include <linux/kexec.h> 34 #include <linux/mm.h> 35 36 #include <asm/io.h> 37 #include <asm/kregs.h> 38 #include <asm/meminit.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/mca.h> 42 #include <asm/setup.h> 43 #include <asm/tlbflush.h> 44 45 #define EFI_DEBUG 0 46 47 extern efi_status_t efi_call_phys (void *, ...); 48 49 struct efi efi; 50 EXPORT_SYMBOL(efi); 51 static efi_runtime_services_t *runtime; 52 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; 53 54 #define efi_call_virt(f, args...) (*(f))(args) 55 56 #define STUB_GET_TIME(prefix, adjust_arg) \ 57 static efi_status_t \ 58 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 59 { \ 60 struct ia64_fpreg fr[6]; \ 61 efi_time_cap_t *atc = NULL; \ 62 efi_status_t ret; \ 63 \ 64 if (tc) \ 65 atc = adjust_arg(tc); \ 66 ia64_save_scratch_fpregs(fr); \ 67 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ 68 adjust_arg(tm), atc); \ 69 ia64_load_scratch_fpregs(fr); \ 70 return ret; \ 71 } 72 73 #define STUB_SET_TIME(prefix, adjust_arg) \ 74 static efi_status_t \ 75 prefix##_set_time (efi_time_t *tm) \ 76 { \ 77 struct ia64_fpreg fr[6]; \ 78 efi_status_t ret; \ 79 \ 80 ia64_save_scratch_fpregs(fr); \ 81 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ 82 adjust_arg(tm)); \ 83 ia64_load_scratch_fpregs(fr); \ 84 return ret; \ 85 } 86 87 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 88 static efi_status_t \ 89 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ 90 efi_time_t *tm) \ 91 { \ 92 struct ia64_fpreg fr[6]; \ 93 efi_status_t ret; \ 94 \ 95 ia64_save_scratch_fpregs(fr); \ 96 ret = efi_call_##prefix( \ 97 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 98 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 99 ia64_load_scratch_fpregs(fr); \ 100 return ret; \ 101 } 102 103 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 104 static efi_status_t \ 105 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 106 { \ 107 struct ia64_fpreg fr[6]; \ 108 efi_time_t *atm = NULL; \ 109 efi_status_t ret; \ 110 \ 111 if (tm) \ 112 atm = adjust_arg(tm); \ 113 ia64_save_scratch_fpregs(fr); \ 114 ret = efi_call_##prefix( \ 115 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 116 enabled, atm); \ 117 ia64_load_scratch_fpregs(fr); \ 118 return ret; \ 119 } 120 121 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 122 static efi_status_t \ 123 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 124 unsigned long *data_size, void *data) \ 125 { \ 126 struct ia64_fpreg fr[6]; \ 127 u32 *aattr = NULL; \ 128 efi_status_t ret; \ 129 \ 130 if (attr) \ 131 aattr = adjust_arg(attr); \ 132 ia64_save_scratch_fpregs(fr); \ 133 ret = efi_call_##prefix( \ 134 (efi_get_variable_t *) __va(runtime->get_variable), \ 135 adjust_arg(name), adjust_arg(vendor), aattr, \ 136 adjust_arg(data_size), adjust_arg(data)); \ 137 ia64_load_scratch_fpregs(fr); \ 138 return ret; \ 139 } 140 141 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 142 static efi_status_t \ 143 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ 144 efi_guid_t *vendor) \ 145 { \ 146 struct ia64_fpreg fr[6]; \ 147 efi_status_t ret; \ 148 \ 149 ia64_save_scratch_fpregs(fr); \ 150 ret = efi_call_##prefix( \ 151 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 152 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 153 ia64_load_scratch_fpregs(fr); \ 154 return ret; \ 155 } 156 157 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 158 static efi_status_t \ 159 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ 160 u32 attr, unsigned long data_size, \ 161 void *data) \ 162 { \ 163 struct ia64_fpreg fr[6]; \ 164 efi_status_t ret; \ 165 \ 166 ia64_save_scratch_fpregs(fr); \ 167 ret = efi_call_##prefix( \ 168 (efi_set_variable_t *) __va(runtime->set_variable), \ 169 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 170 adjust_arg(data)); \ 171 ia64_load_scratch_fpregs(fr); \ 172 return ret; \ 173 } 174 175 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 176 static efi_status_t \ 177 prefix##_get_next_high_mono_count (u32 *count) \ 178 { \ 179 struct ia64_fpreg fr[6]; \ 180 efi_status_t ret; \ 181 \ 182 ia64_save_scratch_fpregs(fr); \ 183 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 184 __va(runtime->get_next_high_mono_count), \ 185 adjust_arg(count)); \ 186 ia64_load_scratch_fpregs(fr); \ 187 return ret; \ 188 } 189 190 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 191 static void \ 192 prefix##_reset_system (int reset_type, efi_status_t status, \ 193 unsigned long data_size, efi_char16_t *data) \ 194 { \ 195 struct ia64_fpreg fr[6]; \ 196 efi_char16_t *adata = NULL; \ 197 \ 198 if (data) \ 199 adata = adjust_arg(data); \ 200 \ 201 ia64_save_scratch_fpregs(fr); \ 202 efi_call_##prefix( \ 203 (efi_reset_system_t *) __va(runtime->reset_system), \ 204 reset_type, status, data_size, adata); \ 205 /* should not return, but just in case... */ \ 206 ia64_load_scratch_fpregs(fr); \ 207 } 208 209 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 210 211 STUB_GET_TIME(phys, phys_ptr) 212 STUB_SET_TIME(phys, phys_ptr) 213 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 214 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 215 STUB_GET_VARIABLE(phys, phys_ptr) 216 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 217 STUB_SET_VARIABLE(phys, phys_ptr) 218 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 219 STUB_RESET_SYSTEM(phys, phys_ptr) 220 221 #define id(arg) arg 222 223 STUB_GET_TIME(virt, id) 224 STUB_SET_TIME(virt, id) 225 STUB_GET_WAKEUP_TIME(virt, id) 226 STUB_SET_WAKEUP_TIME(virt, id) 227 STUB_GET_VARIABLE(virt, id) 228 STUB_GET_NEXT_VARIABLE(virt, id) 229 STUB_SET_VARIABLE(virt, id) 230 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 231 STUB_RESET_SYSTEM(virt, id) 232 233 void 234 efi_gettimeofday (struct timespec *ts) 235 { 236 efi_time_t tm; 237 238 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { 239 memset(ts, 0, sizeof(*ts)); 240 return; 241 } 242 243 ts->tv_sec = mktime(tm.year, tm.month, tm.day, 244 tm.hour, tm.minute, tm.second); 245 ts->tv_nsec = tm.nanosecond; 246 } 247 248 static int 249 is_memory_available (efi_memory_desc_t *md) 250 { 251 if (!(md->attribute & EFI_MEMORY_WB)) 252 return 0; 253 254 switch (md->type) { 255 case EFI_LOADER_CODE: 256 case EFI_LOADER_DATA: 257 case EFI_BOOT_SERVICES_CODE: 258 case EFI_BOOT_SERVICES_DATA: 259 case EFI_CONVENTIONAL_MEMORY: 260 return 1; 261 } 262 return 0; 263 } 264 265 typedef struct kern_memdesc { 266 u64 attribute; 267 u64 start; 268 u64 num_pages; 269 } kern_memdesc_t; 270 271 static kern_memdesc_t *kern_memmap; 272 273 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) 274 275 static inline u64 276 kmd_end(kern_memdesc_t *kmd) 277 { 278 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); 279 } 280 281 static inline u64 282 efi_md_end(efi_memory_desc_t *md) 283 { 284 return (md->phys_addr + efi_md_size(md)); 285 } 286 287 static inline int 288 efi_wb(efi_memory_desc_t *md) 289 { 290 return (md->attribute & EFI_MEMORY_WB); 291 } 292 293 static inline int 294 efi_uc(efi_memory_desc_t *md) 295 { 296 return (md->attribute & EFI_MEMORY_UC); 297 } 298 299 static void 300 walk (efi_freemem_callback_t callback, void *arg, u64 attr) 301 { 302 kern_memdesc_t *k; 303 u64 start, end, voff; 304 305 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; 306 for (k = kern_memmap; k->start != ~0UL; k++) { 307 if (k->attribute != attr) 308 continue; 309 start = PAGE_ALIGN(k->start); 310 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; 311 if (start < end) 312 if ((*callback)(start + voff, end + voff, arg) < 0) 313 return; 314 } 315 } 316 317 /* 318 * Walk the EFI memory map and call CALLBACK once for each EFI memory 319 * descriptor that has memory that is available for OS use. 320 */ 321 void 322 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 323 { 324 walk(callback, arg, EFI_MEMORY_WB); 325 } 326 327 /* 328 * Walk the EFI memory map and call CALLBACK once for each EFI memory 329 * descriptor that has memory that is available for uncached allocator. 330 */ 331 void 332 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) 333 { 334 walk(callback, arg, EFI_MEMORY_UC); 335 } 336 337 /* 338 * Look for the PAL_CODE region reported by EFI and map it using an 339 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 340 * Abstraction Layer chapter 11 in ADAG 341 */ 342 void * 343 efi_get_pal_addr (void) 344 { 345 void *efi_map_start, *efi_map_end, *p; 346 efi_memory_desc_t *md; 347 u64 efi_desc_size; 348 int pal_code_count = 0; 349 u64 vaddr, mask; 350 351 efi_map_start = __va(ia64_boot_param->efi_memmap); 352 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 353 efi_desc_size = ia64_boot_param->efi_memdesc_size; 354 355 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 356 md = p; 357 if (md->type != EFI_PAL_CODE) 358 continue; 359 360 if (++pal_code_count > 1) { 361 printk(KERN_ERR "Too many EFI Pal Code memory ranges, " 362 "dropped @ %llx\n", md->phys_addr); 363 continue; 364 } 365 /* 366 * The only ITLB entry in region 7 that is used is the one 367 * installed by __start(). That entry covers a 64MB range. 368 */ 369 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 370 vaddr = PAGE_OFFSET + md->phys_addr; 371 372 /* 373 * We must check that the PAL mapping won't overlap with the 374 * kernel mapping. 375 * 376 * PAL code is guaranteed to be aligned on a power of 2 between 377 * 4k and 256KB and that only one ITR is needed to map it. This 378 * implies that the PAL code is always aligned on its size, 379 * i.e., the closest matching page size supported by the TLB. 380 * Therefore PAL code is guaranteed never to cross a 64MB unless 381 * it is bigger than 64MB (very unlikely!). So for now the 382 * following test is enough to determine whether or not we need 383 * a dedicated ITR for the PAL code. 384 */ 385 if ((vaddr & mask) == (KERNEL_START & mask)) { 386 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 387 __func__); 388 continue; 389 } 390 391 if (efi_md_size(md) > IA64_GRANULE_SIZE) 392 panic("Whoa! PAL code size bigger than a granule!"); 393 394 #if EFI_DEBUG 395 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 396 397 printk(KERN_INFO "CPU %d: mapping PAL code " 398 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 399 smp_processor_id(), md->phys_addr, 400 md->phys_addr + efi_md_size(md), 401 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 402 #endif 403 return __va(md->phys_addr); 404 } 405 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", 406 __func__); 407 return NULL; 408 } 409 410 411 static u8 __init palo_checksum(u8 *buffer, u32 length) 412 { 413 u8 sum = 0; 414 u8 *end = buffer + length; 415 416 while (buffer < end) 417 sum = (u8) (sum + *(buffer++)); 418 419 return sum; 420 } 421 422 /* 423 * Parse and handle PALO table which is published at: 424 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf 425 */ 426 static void __init handle_palo(unsigned long palo_phys) 427 { 428 struct palo_table *palo = __va(palo_phys); 429 u8 checksum; 430 431 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { 432 printk(KERN_INFO "PALO signature incorrect.\n"); 433 return; 434 } 435 436 checksum = palo_checksum((u8 *)palo, palo->length); 437 if (checksum) { 438 printk(KERN_INFO "PALO checksum incorrect.\n"); 439 return; 440 } 441 442 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); 443 } 444 445 void 446 efi_map_pal_code (void) 447 { 448 void *pal_vaddr = efi_get_pal_addr (); 449 u64 psr; 450 451 if (!pal_vaddr) 452 return; 453 454 /* 455 * Cannot write to CRx with PSR.ic=1 456 */ 457 psr = ia64_clear_ic(); 458 ia64_itr(0x1, IA64_TR_PALCODE, 459 GRANULEROUNDDOWN((unsigned long) pal_vaddr), 460 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 461 IA64_GRANULE_SHIFT); 462 paravirt_dv_serialize_data(); 463 ia64_set_psr(psr); /* restore psr */ 464 } 465 466 void __init 467 efi_init (void) 468 { 469 void *efi_map_start, *efi_map_end; 470 efi_config_table_t *config_tables; 471 efi_char16_t *c16; 472 u64 efi_desc_size; 473 char *cp, vendor[100] = "unknown"; 474 int i; 475 unsigned long palo_phys; 476 477 /* 478 * It's too early to be able to use the standard kernel command line 479 * support... 480 */ 481 for (cp = boot_command_line; *cp; ) { 482 if (memcmp(cp, "mem=", 4) == 0) { 483 mem_limit = memparse(cp + 4, &cp); 484 } else if (memcmp(cp, "max_addr=", 9) == 0) { 485 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 486 } else if (memcmp(cp, "min_addr=", 9) == 0) { 487 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 488 } else { 489 while (*cp != ' ' && *cp) 490 ++cp; 491 while (*cp == ' ') 492 ++cp; 493 } 494 } 495 if (min_addr != 0UL) 496 printk(KERN_INFO "Ignoring memory below %lluMB\n", 497 min_addr >> 20); 498 if (max_addr != ~0UL) 499 printk(KERN_INFO "Ignoring memory above %lluMB\n", 500 max_addr >> 20); 501 502 efi.systab = __va(ia64_boot_param->efi_systab); 503 504 /* 505 * Verify the EFI Table 506 */ 507 if (efi.systab == NULL) 508 panic("Whoa! Can't find EFI system table.\n"); 509 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 510 panic("Whoa! EFI system table signature incorrect\n"); 511 if ((efi.systab->hdr.revision >> 16) == 0) 512 printk(KERN_WARNING "Warning: EFI system table version " 513 "%d.%02d, expected 1.00 or greater\n", 514 efi.systab->hdr.revision >> 16, 515 efi.systab->hdr.revision & 0xffff); 516 517 config_tables = __va(efi.systab->tables); 518 519 /* Show what we know for posterity */ 520 c16 = __va(efi.systab->fw_vendor); 521 if (c16) { 522 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) 523 vendor[i] = *c16++; 524 vendor[i] = '\0'; 525 } 526 527 printk(KERN_INFO "EFI v%u.%.02u by %s:", 528 efi.systab->hdr.revision >> 16, 529 efi.systab->hdr.revision & 0xffff, vendor); 530 531 efi.mps = EFI_INVALID_TABLE_ADDR; 532 efi.acpi = EFI_INVALID_TABLE_ADDR; 533 efi.acpi20 = EFI_INVALID_TABLE_ADDR; 534 efi.smbios = EFI_INVALID_TABLE_ADDR; 535 efi.sal_systab = EFI_INVALID_TABLE_ADDR; 536 efi.boot_info = EFI_INVALID_TABLE_ADDR; 537 efi.hcdp = EFI_INVALID_TABLE_ADDR; 538 efi.uga = EFI_INVALID_TABLE_ADDR; 539 540 palo_phys = EFI_INVALID_TABLE_ADDR; 541 542 for (i = 0; i < (int) efi.systab->nr_tables; i++) { 543 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { 544 efi.mps = config_tables[i].table; 545 printk(" MPS=0x%lx", config_tables[i].table); 546 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { 547 efi.acpi20 = config_tables[i].table; 548 printk(" ACPI 2.0=0x%lx", config_tables[i].table); 549 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { 550 efi.acpi = config_tables[i].table; 551 printk(" ACPI=0x%lx", config_tables[i].table); 552 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { 553 efi.smbios = config_tables[i].table; 554 printk(" SMBIOS=0x%lx", config_tables[i].table); 555 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { 556 efi.sal_systab = config_tables[i].table; 557 printk(" SALsystab=0x%lx", config_tables[i].table); 558 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { 559 efi.hcdp = config_tables[i].table; 560 printk(" HCDP=0x%lx", config_tables[i].table); 561 } else if (efi_guidcmp(config_tables[i].guid, 562 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) { 563 palo_phys = config_tables[i].table; 564 printk(" PALO=0x%lx", config_tables[i].table); 565 } 566 } 567 printk("\n"); 568 569 if (palo_phys != EFI_INVALID_TABLE_ADDR) 570 handle_palo(palo_phys); 571 572 runtime = __va(efi.systab->runtime); 573 efi.get_time = phys_get_time; 574 efi.set_time = phys_set_time; 575 efi.get_wakeup_time = phys_get_wakeup_time; 576 efi.set_wakeup_time = phys_set_wakeup_time; 577 efi.get_variable = phys_get_variable; 578 efi.get_next_variable = phys_get_next_variable; 579 efi.set_variable = phys_set_variable; 580 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 581 efi.reset_system = phys_reset_system; 582 583 efi_map_start = __va(ia64_boot_param->efi_memmap); 584 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 585 efi_desc_size = ia64_boot_param->efi_memdesc_size; 586 587 #if EFI_DEBUG 588 /* print EFI memory map: */ 589 { 590 efi_memory_desc_t *md; 591 void *p; 592 593 for (i = 0, p = efi_map_start; p < efi_map_end; 594 ++i, p += efi_desc_size) 595 { 596 const char *unit; 597 unsigned long size; 598 599 md = p; 600 size = md->num_pages << EFI_PAGE_SHIFT; 601 602 if ((size >> 40) > 0) { 603 size >>= 40; 604 unit = "TB"; 605 } else if ((size >> 30) > 0) { 606 size >>= 30; 607 unit = "GB"; 608 } else if ((size >> 20) > 0) { 609 size >>= 20; 610 unit = "MB"; 611 } else { 612 size >>= 10; 613 unit = "KB"; 614 } 615 616 printk("mem%02d: type=%2u, attr=0x%016lx, " 617 "range=[0x%016lx-0x%016lx) (%4lu%s)\n", 618 i, md->type, md->attribute, md->phys_addr, 619 md->phys_addr + efi_md_size(md), size, unit); 620 } 621 } 622 #endif 623 624 efi_map_pal_code(); 625 efi_enter_virtual_mode(); 626 } 627 628 void 629 efi_enter_virtual_mode (void) 630 { 631 void *efi_map_start, *efi_map_end, *p; 632 efi_memory_desc_t *md; 633 efi_status_t status; 634 u64 efi_desc_size; 635 636 efi_map_start = __va(ia64_boot_param->efi_memmap); 637 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 638 efi_desc_size = ia64_boot_param->efi_memdesc_size; 639 640 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 641 md = p; 642 if (md->attribute & EFI_MEMORY_RUNTIME) { 643 /* 644 * Some descriptors have multiple bits set, so the 645 * order of the tests is relevant. 646 */ 647 if (md->attribute & EFI_MEMORY_WB) { 648 md->virt_addr = (u64) __va(md->phys_addr); 649 } else if (md->attribute & EFI_MEMORY_UC) { 650 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 651 } else if (md->attribute & EFI_MEMORY_WC) { 652 #if 0 653 md->virt_addr = ia64_remap(md->phys_addr, 654 (_PAGE_A | 655 _PAGE_P | 656 _PAGE_D | 657 _PAGE_MA_WC | 658 _PAGE_PL_0 | 659 _PAGE_AR_RW)); 660 #else 661 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 662 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 663 #endif 664 } else if (md->attribute & EFI_MEMORY_WT) { 665 #if 0 666 md->virt_addr = ia64_remap(md->phys_addr, 667 (_PAGE_A | 668 _PAGE_P | 669 _PAGE_D | 670 _PAGE_MA_WT | 671 _PAGE_PL_0 | 672 _PAGE_AR_RW)); 673 #else 674 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 675 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 676 #endif 677 } 678 } 679 } 680 681 status = efi_call_phys(__va(runtime->set_virtual_address_map), 682 ia64_boot_param->efi_memmap_size, 683 efi_desc_size, 684 ia64_boot_param->efi_memdesc_version, 685 ia64_boot_param->efi_memmap); 686 if (status != EFI_SUCCESS) { 687 printk(KERN_WARNING "warning: unable to switch EFI into " 688 "virtual mode (status=%lu)\n", status); 689 return; 690 } 691 692 /* 693 * Now that EFI is in virtual mode, we call the EFI functions more 694 * efficiently: 695 */ 696 efi.get_time = virt_get_time; 697 efi.set_time = virt_set_time; 698 efi.get_wakeup_time = virt_get_wakeup_time; 699 efi.set_wakeup_time = virt_set_wakeup_time; 700 efi.get_variable = virt_get_variable; 701 efi.get_next_variable = virt_get_next_variable; 702 efi.set_variable = virt_set_variable; 703 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 704 efi.reset_system = virt_reset_system; 705 } 706 707 /* 708 * Walk the EFI memory map looking for the I/O port range. There can only be 709 * one entry of this type, other I/O port ranges should be described via ACPI. 710 */ 711 u64 712 efi_get_iobase (void) 713 { 714 void *efi_map_start, *efi_map_end, *p; 715 efi_memory_desc_t *md; 716 u64 efi_desc_size; 717 718 efi_map_start = __va(ia64_boot_param->efi_memmap); 719 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 720 efi_desc_size = ia64_boot_param->efi_memdesc_size; 721 722 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 723 md = p; 724 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 725 if (md->attribute & EFI_MEMORY_UC) 726 return md->phys_addr; 727 } 728 } 729 return 0; 730 } 731 732 static struct kern_memdesc * 733 kern_memory_descriptor (unsigned long phys_addr) 734 { 735 struct kern_memdesc *md; 736 737 for (md = kern_memmap; md->start != ~0UL; md++) { 738 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) 739 return md; 740 } 741 return NULL; 742 } 743 744 static efi_memory_desc_t * 745 efi_memory_descriptor (unsigned long phys_addr) 746 { 747 void *efi_map_start, *efi_map_end, *p; 748 efi_memory_desc_t *md; 749 u64 efi_desc_size; 750 751 efi_map_start = __va(ia64_boot_param->efi_memmap); 752 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 753 efi_desc_size = ia64_boot_param->efi_memdesc_size; 754 755 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 756 md = p; 757 758 if (phys_addr - md->phys_addr < efi_md_size(md)) 759 return md; 760 } 761 return NULL; 762 } 763 764 static int 765 efi_memmap_intersects (unsigned long phys_addr, unsigned long size) 766 { 767 void *efi_map_start, *efi_map_end, *p; 768 efi_memory_desc_t *md; 769 u64 efi_desc_size; 770 unsigned long end; 771 772 efi_map_start = __va(ia64_boot_param->efi_memmap); 773 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 774 efi_desc_size = ia64_boot_param->efi_memdesc_size; 775 776 end = phys_addr + size; 777 778 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 779 md = p; 780 if (md->phys_addr < end && efi_md_end(md) > phys_addr) 781 return 1; 782 } 783 return 0; 784 } 785 786 u32 787 efi_mem_type (unsigned long phys_addr) 788 { 789 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 790 791 if (md) 792 return md->type; 793 return 0; 794 } 795 796 u64 797 efi_mem_attributes (unsigned long phys_addr) 798 { 799 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 800 801 if (md) 802 return md->attribute; 803 return 0; 804 } 805 EXPORT_SYMBOL(efi_mem_attributes); 806 807 u64 808 efi_mem_attribute (unsigned long phys_addr, unsigned long size) 809 { 810 unsigned long end = phys_addr + size; 811 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 812 u64 attr; 813 814 if (!md) 815 return 0; 816 817 /* 818 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells 819 * the kernel that firmware needs this region mapped. 820 */ 821 attr = md->attribute & ~EFI_MEMORY_RUNTIME; 822 do { 823 unsigned long md_end = efi_md_end(md); 824 825 if (end <= md_end) 826 return attr; 827 828 md = efi_memory_descriptor(md_end); 829 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) 830 return 0; 831 } while (md); 832 return 0; /* never reached */ 833 } 834 835 u64 836 kern_mem_attribute (unsigned long phys_addr, unsigned long size) 837 { 838 unsigned long end = phys_addr + size; 839 struct kern_memdesc *md; 840 u64 attr; 841 842 /* 843 * This is a hack for ioremap calls before we set up kern_memmap. 844 * Maybe we should do efi_memmap_init() earlier instead. 845 */ 846 if (!kern_memmap) { 847 attr = efi_mem_attribute(phys_addr, size); 848 if (attr & EFI_MEMORY_WB) 849 return EFI_MEMORY_WB; 850 return 0; 851 } 852 853 md = kern_memory_descriptor(phys_addr); 854 if (!md) 855 return 0; 856 857 attr = md->attribute; 858 do { 859 unsigned long md_end = kmd_end(md); 860 861 if (end <= md_end) 862 return attr; 863 864 md = kern_memory_descriptor(md_end); 865 if (!md || md->attribute != attr) 866 return 0; 867 } while (md); 868 return 0; /* never reached */ 869 } 870 EXPORT_SYMBOL(kern_mem_attribute); 871 872 int 873 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size) 874 { 875 u64 attr; 876 877 /* 878 * /dev/mem reads and writes use copy_to_user(), which implicitly 879 * uses a granule-sized kernel identity mapping. It's really 880 * only safe to do this for regions in kern_memmap. For more 881 * details, see Documentation/ia64/aliasing.txt. 882 */ 883 attr = kern_mem_attribute(phys_addr, size); 884 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 885 return 1; 886 return 0; 887 } 888 889 int 890 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) 891 { 892 unsigned long phys_addr = pfn << PAGE_SHIFT; 893 u64 attr; 894 895 attr = efi_mem_attribute(phys_addr, size); 896 897 /* 898 * /dev/mem mmap uses normal user pages, so we don't need the entire 899 * granule, but the entire region we're mapping must support the same 900 * attribute. 901 */ 902 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 903 return 1; 904 905 /* 906 * Intel firmware doesn't tell us about all the MMIO regions, so 907 * in general we have to allow mmap requests. But if EFI *does* 908 * tell us about anything inside this region, we should deny it. 909 * The user can always map a smaller region to avoid the overlap. 910 */ 911 if (efi_memmap_intersects(phys_addr, size)) 912 return 0; 913 914 return 1; 915 } 916 917 pgprot_t 918 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, 919 pgprot_t vma_prot) 920 { 921 unsigned long phys_addr = pfn << PAGE_SHIFT; 922 u64 attr; 923 924 /* 925 * For /dev/mem mmap, we use user mappings, but if the region is 926 * in kern_memmap (and hence may be covered by a kernel mapping), 927 * we must use the same attribute as the kernel mapping. 928 */ 929 attr = kern_mem_attribute(phys_addr, size); 930 if (attr & EFI_MEMORY_WB) 931 return pgprot_cacheable(vma_prot); 932 else if (attr & EFI_MEMORY_UC) 933 return pgprot_noncached(vma_prot); 934 935 /* 936 * Some chipsets don't support UC access to memory. If 937 * WB is supported, we prefer that. 938 */ 939 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) 940 return pgprot_cacheable(vma_prot); 941 942 return pgprot_noncached(vma_prot); 943 } 944 945 int __init 946 efi_uart_console_only(void) 947 { 948 efi_status_t status; 949 char *s, name[] = "ConOut"; 950 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 951 efi_char16_t *utf16, name_utf16[32]; 952 unsigned char data[1024]; 953 unsigned long size = sizeof(data); 954 struct efi_generic_dev_path *hdr, *end_addr; 955 int uart = 0; 956 957 /* Convert to UTF-16 */ 958 utf16 = name_utf16; 959 s = name; 960 while (*s) 961 *utf16++ = *s++ & 0x7f; 962 *utf16 = 0; 963 964 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 965 if (status != EFI_SUCCESS) { 966 printk(KERN_ERR "No EFI %s variable?\n", name); 967 return 0; 968 } 969 970 hdr = (struct efi_generic_dev_path *) data; 971 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 972 while (hdr < end_addr) { 973 if (hdr->type == EFI_DEV_MSG && 974 hdr->sub_type == EFI_DEV_MSG_UART) 975 uart = 1; 976 else if (hdr->type == EFI_DEV_END_PATH || 977 hdr->type == EFI_DEV_END_PATH2) { 978 if (!uart) 979 return 0; 980 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 981 return 1; 982 uart = 0; 983 } 984 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); 985 } 986 printk(KERN_ERR "Malformed %s value\n", name); 987 return 0; 988 } 989 990 /* 991 * Look for the first granule aligned memory descriptor memory 992 * that is big enough to hold EFI memory map. Make sure this 993 * descriptor is atleast granule sized so it does not get trimmed 994 */ 995 struct kern_memdesc * 996 find_memmap_space (void) 997 { 998 u64 contig_low=0, contig_high=0; 999 u64 as = 0, ae; 1000 void *efi_map_start, *efi_map_end, *p, *q; 1001 efi_memory_desc_t *md, *pmd = NULL, *check_md; 1002 u64 space_needed, efi_desc_size; 1003 unsigned long total_mem = 0; 1004 1005 efi_map_start = __va(ia64_boot_param->efi_memmap); 1006 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1007 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1008 1009 /* 1010 * Worst case: we need 3 kernel descriptors for each efi descriptor 1011 * (if every entry has a WB part in the middle, and UC head and tail), 1012 * plus one for the end marker. 1013 */ 1014 space_needed = sizeof(kern_memdesc_t) * 1015 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); 1016 1017 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 1018 md = p; 1019 if (!efi_wb(md)) { 1020 continue; 1021 } 1022 if (pmd == NULL || !efi_wb(pmd) || 1023 efi_md_end(pmd) != md->phys_addr) { 1024 contig_low = GRANULEROUNDUP(md->phys_addr); 1025 contig_high = efi_md_end(md); 1026 for (q = p + efi_desc_size; q < efi_map_end; 1027 q += efi_desc_size) { 1028 check_md = q; 1029 if (!efi_wb(check_md)) 1030 break; 1031 if (contig_high != check_md->phys_addr) 1032 break; 1033 contig_high = efi_md_end(check_md); 1034 } 1035 contig_high = GRANULEROUNDDOWN(contig_high); 1036 } 1037 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) 1038 continue; 1039 1040 /* Round ends inward to granule boundaries */ 1041 as = max(contig_low, md->phys_addr); 1042 ae = min(contig_high, efi_md_end(md)); 1043 1044 /* keep within max_addr= and min_addr= command line arg */ 1045 as = max(as, min_addr); 1046 ae = min(ae, max_addr); 1047 if (ae <= as) 1048 continue; 1049 1050 /* avoid going over mem= command line arg */ 1051 if (total_mem + (ae - as) > mem_limit) 1052 ae -= total_mem + (ae - as) - mem_limit; 1053 1054 if (ae <= as) 1055 continue; 1056 1057 if (ae - as > space_needed) 1058 break; 1059 } 1060 if (p >= efi_map_end) 1061 panic("Can't allocate space for kernel memory descriptors"); 1062 1063 return __va(as); 1064 } 1065 1066 /* 1067 * Walk the EFI memory map and gather all memory available for kernel 1068 * to use. We can allocate partial granules only if the unavailable 1069 * parts exist, and are WB. 1070 */ 1071 unsigned long 1072 efi_memmap_init(u64 *s, u64 *e) 1073 { 1074 struct kern_memdesc *k, *prev = NULL; 1075 u64 contig_low=0, contig_high=0; 1076 u64 as, ae, lim; 1077 void *efi_map_start, *efi_map_end, *p, *q; 1078 efi_memory_desc_t *md, *pmd = NULL, *check_md; 1079 u64 efi_desc_size; 1080 unsigned long total_mem = 0; 1081 1082 k = kern_memmap = find_memmap_space(); 1083 1084 efi_map_start = __va(ia64_boot_param->efi_memmap); 1085 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1086 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1087 1088 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 1089 md = p; 1090 if (!efi_wb(md)) { 1091 if (efi_uc(md) && 1092 (md->type == EFI_CONVENTIONAL_MEMORY || 1093 md->type == EFI_BOOT_SERVICES_DATA)) { 1094 k->attribute = EFI_MEMORY_UC; 1095 k->start = md->phys_addr; 1096 k->num_pages = md->num_pages; 1097 k++; 1098 } 1099 continue; 1100 } 1101 if (pmd == NULL || !efi_wb(pmd) || 1102 efi_md_end(pmd) != md->phys_addr) { 1103 contig_low = GRANULEROUNDUP(md->phys_addr); 1104 contig_high = efi_md_end(md); 1105 for (q = p + efi_desc_size; q < efi_map_end; 1106 q += efi_desc_size) { 1107 check_md = q; 1108 if (!efi_wb(check_md)) 1109 break; 1110 if (contig_high != check_md->phys_addr) 1111 break; 1112 contig_high = efi_md_end(check_md); 1113 } 1114 contig_high = GRANULEROUNDDOWN(contig_high); 1115 } 1116 if (!is_memory_available(md)) 1117 continue; 1118 1119 /* 1120 * Round ends inward to granule boundaries 1121 * Give trimmings to uncached allocator 1122 */ 1123 if (md->phys_addr < contig_low) { 1124 lim = min(efi_md_end(md), contig_low); 1125 if (efi_uc(md)) { 1126 if (k > kern_memmap && 1127 (k-1)->attribute == EFI_MEMORY_UC && 1128 kmd_end(k-1) == md->phys_addr) { 1129 (k-1)->num_pages += 1130 (lim - md->phys_addr) 1131 >> EFI_PAGE_SHIFT; 1132 } else { 1133 k->attribute = EFI_MEMORY_UC; 1134 k->start = md->phys_addr; 1135 k->num_pages = (lim - md->phys_addr) 1136 >> EFI_PAGE_SHIFT; 1137 k++; 1138 } 1139 } 1140 as = contig_low; 1141 } else 1142 as = md->phys_addr; 1143 1144 if (efi_md_end(md) > contig_high) { 1145 lim = max(md->phys_addr, contig_high); 1146 if (efi_uc(md)) { 1147 if (lim == md->phys_addr && k > kern_memmap && 1148 (k-1)->attribute == EFI_MEMORY_UC && 1149 kmd_end(k-1) == md->phys_addr) { 1150 (k-1)->num_pages += md->num_pages; 1151 } else { 1152 k->attribute = EFI_MEMORY_UC; 1153 k->start = lim; 1154 k->num_pages = (efi_md_end(md) - lim) 1155 >> EFI_PAGE_SHIFT; 1156 k++; 1157 } 1158 } 1159 ae = contig_high; 1160 } else 1161 ae = efi_md_end(md); 1162 1163 /* keep within max_addr= and min_addr= command line arg */ 1164 as = max(as, min_addr); 1165 ae = min(ae, max_addr); 1166 if (ae <= as) 1167 continue; 1168 1169 /* avoid going over mem= command line arg */ 1170 if (total_mem + (ae - as) > mem_limit) 1171 ae -= total_mem + (ae - as) - mem_limit; 1172 1173 if (ae <= as) 1174 continue; 1175 if (prev && kmd_end(prev) == md->phys_addr) { 1176 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; 1177 total_mem += ae - as; 1178 continue; 1179 } 1180 k->attribute = EFI_MEMORY_WB; 1181 k->start = as; 1182 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; 1183 total_mem += ae - as; 1184 prev = k++; 1185 } 1186 k->start = ~0L; /* end-marker */ 1187 1188 /* reserve the memory we are using for kern_memmap */ 1189 *s = (u64)kern_memmap; 1190 *e = (u64)++k; 1191 1192 return total_mem; 1193 } 1194 1195 void 1196 efi_initialize_iomem_resources(struct resource *code_resource, 1197 struct resource *data_resource, 1198 struct resource *bss_resource) 1199 { 1200 struct resource *res; 1201 void *efi_map_start, *efi_map_end, *p; 1202 efi_memory_desc_t *md; 1203 u64 efi_desc_size; 1204 char *name; 1205 unsigned long flags; 1206 1207 efi_map_start = __va(ia64_boot_param->efi_memmap); 1208 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1209 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1210 1211 res = NULL; 1212 1213 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1214 md = p; 1215 1216 if (md->num_pages == 0) /* should not happen */ 1217 continue; 1218 1219 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 1220 switch (md->type) { 1221 1222 case EFI_MEMORY_MAPPED_IO: 1223 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 1224 continue; 1225 1226 case EFI_LOADER_CODE: 1227 case EFI_LOADER_DATA: 1228 case EFI_BOOT_SERVICES_DATA: 1229 case EFI_BOOT_SERVICES_CODE: 1230 case EFI_CONVENTIONAL_MEMORY: 1231 if (md->attribute & EFI_MEMORY_WP) { 1232 name = "System ROM"; 1233 flags |= IORESOURCE_READONLY; 1234 } else if (md->attribute == EFI_MEMORY_UC) 1235 name = "Uncached RAM"; 1236 else 1237 name = "System RAM"; 1238 break; 1239 1240 case EFI_ACPI_MEMORY_NVS: 1241 name = "ACPI Non-volatile Storage"; 1242 break; 1243 1244 case EFI_UNUSABLE_MEMORY: 1245 name = "reserved"; 1246 flags |= IORESOURCE_DISABLED; 1247 break; 1248 1249 case EFI_RESERVED_TYPE: 1250 case EFI_RUNTIME_SERVICES_CODE: 1251 case EFI_RUNTIME_SERVICES_DATA: 1252 case EFI_ACPI_RECLAIM_MEMORY: 1253 default: 1254 name = "reserved"; 1255 break; 1256 } 1257 1258 if ((res = kzalloc(sizeof(struct resource), 1259 GFP_KERNEL)) == NULL) { 1260 printk(KERN_ERR 1261 "failed to allocate resource for iomem\n"); 1262 return; 1263 } 1264 1265 res->name = name; 1266 res->start = md->phys_addr; 1267 res->end = md->phys_addr + efi_md_size(md) - 1; 1268 res->flags = flags; 1269 1270 if (insert_resource(&iomem_resource, res) < 0) 1271 kfree(res); 1272 else { 1273 /* 1274 * We don't know which region contains 1275 * kernel data so we try it repeatedly and 1276 * let the resource manager test it. 1277 */ 1278 insert_resource(res, code_resource); 1279 insert_resource(res, data_resource); 1280 insert_resource(res, bss_resource); 1281 #ifdef CONFIG_KEXEC 1282 insert_resource(res, &efi_memmap_res); 1283 insert_resource(res, &boot_param_res); 1284 if (crashk_res.end > crashk_res.start) 1285 insert_resource(res, &crashk_res); 1286 #endif 1287 } 1288 } 1289 } 1290 1291 #ifdef CONFIG_KEXEC 1292 /* find a block of memory aligned to 64M exclude reserved regions 1293 rsvd_regions are sorted 1294 */ 1295 unsigned long __init 1296 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) 1297 { 1298 int i; 1299 u64 start, end; 1300 u64 alignment = 1UL << _PAGE_SIZE_64M; 1301 void *efi_map_start, *efi_map_end, *p; 1302 efi_memory_desc_t *md; 1303 u64 efi_desc_size; 1304 1305 efi_map_start = __va(ia64_boot_param->efi_memmap); 1306 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1307 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1308 1309 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1310 md = p; 1311 if (!efi_wb(md)) 1312 continue; 1313 start = ALIGN(md->phys_addr, alignment); 1314 end = efi_md_end(md); 1315 for (i = 0; i < n; i++) { 1316 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { 1317 if (__pa(r[i].start) > start + size) 1318 return start; 1319 start = ALIGN(__pa(r[i].end), alignment); 1320 if (i < n-1 && 1321 __pa(r[i+1].start) < start + size) 1322 continue; 1323 else 1324 break; 1325 } 1326 } 1327 if (end > start + size) 1328 return start; 1329 } 1330 1331 printk(KERN_WARNING 1332 "Cannot reserve 0x%lx byte of memory for crashdump\n", size); 1333 return ~0UL; 1334 } 1335 #endif 1336 1337 #ifdef CONFIG_CRASH_DUMP 1338 /* locate the size find a the descriptor at a certain address */ 1339 unsigned long __init 1340 vmcore_find_descriptor_size (unsigned long address) 1341 { 1342 void *efi_map_start, *efi_map_end, *p; 1343 efi_memory_desc_t *md; 1344 u64 efi_desc_size; 1345 unsigned long ret = 0; 1346 1347 efi_map_start = __va(ia64_boot_param->efi_memmap); 1348 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1349 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1350 1351 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1352 md = p; 1353 if (efi_wb(md) && md->type == EFI_LOADER_DATA 1354 && md->phys_addr == address) { 1355 ret = efi_md_size(md); 1356 break; 1357 } 1358 } 1359 1360 if (ret == 0) 1361 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); 1362 1363 return ret; 1364 } 1365 #endif 1366