xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision e190bfe5)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/time.h>
31 #include <linux/efi.h>
32 #include <linux/kexec.h>
33 #include <linux/mm.h>
34 
35 #include <asm/io.h>
36 #include <asm/kregs.h>
37 #include <asm/meminit.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/mca.h>
41 #include <asm/tlbflush.h>
42 
43 #define EFI_DEBUG	0
44 
45 extern efi_status_t efi_call_phys (void *, ...);
46 
47 struct efi efi;
48 EXPORT_SYMBOL(efi);
49 static efi_runtime_services_t *runtime;
50 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
51 
52 #define efi_call_virt(f, args...)	(*(f))(args)
53 
54 #define STUB_GET_TIME(prefix, adjust_arg)				       \
55 static efi_status_t							       \
56 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
57 {									       \
58 	struct ia64_fpreg fr[6];					       \
59 	efi_time_cap_t *atc = NULL;					       \
60 	efi_status_t ret;						       \
61 									       \
62 	if (tc)								       \
63 		atc = adjust_arg(tc);					       \
64 	ia64_save_scratch_fpregs(fr);					       \
65 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
66 				adjust_arg(tm), atc);			       \
67 	ia64_load_scratch_fpregs(fr);					       \
68 	return ret;							       \
69 }
70 
71 #define STUB_SET_TIME(prefix, adjust_arg)				       \
72 static efi_status_t							       \
73 prefix##_set_time (efi_time_t *tm)					       \
74 {									       \
75 	struct ia64_fpreg fr[6];					       \
76 	efi_status_t ret;						       \
77 									       \
78 	ia64_save_scratch_fpregs(fr);					       \
79 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
80 				adjust_arg(tm));			       \
81 	ia64_load_scratch_fpregs(fr);					       \
82 	return ret;							       \
83 }
84 
85 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
86 static efi_status_t							       \
87 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
88 			  efi_time_t *tm)				       \
89 {									       \
90 	struct ia64_fpreg fr[6];					       \
91 	efi_status_t ret;						       \
92 									       \
93 	ia64_save_scratch_fpregs(fr);					       \
94 	ret = efi_call_##prefix(					       \
95 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
96 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
97 	ia64_load_scratch_fpregs(fr);					       \
98 	return ret;							       \
99 }
100 
101 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
102 static efi_status_t							       \
103 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
104 {									       \
105 	struct ia64_fpreg fr[6];					       \
106 	efi_time_t *atm = NULL;						       \
107 	efi_status_t ret;						       \
108 									       \
109 	if (tm)								       \
110 		atm = adjust_arg(tm);					       \
111 	ia64_save_scratch_fpregs(fr);					       \
112 	ret = efi_call_##prefix(					       \
113 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
114 		enabled, atm);						       \
115 	ia64_load_scratch_fpregs(fr);					       \
116 	return ret;							       \
117 }
118 
119 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
120 static efi_status_t							       \
121 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
122 		       unsigned long *data_size, void *data)		       \
123 {									       \
124 	struct ia64_fpreg fr[6];					       \
125 	u32 *aattr = NULL;						       \
126 	efi_status_t ret;						       \
127 									       \
128 	if (attr)							       \
129 		aattr = adjust_arg(attr);				       \
130 	ia64_save_scratch_fpregs(fr);					       \
131 	ret = efi_call_##prefix(					       \
132 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
133 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
134 		adjust_arg(data_size), adjust_arg(data));		       \
135 	ia64_load_scratch_fpregs(fr);					       \
136 	return ret;							       \
137 }
138 
139 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
140 static efi_status_t							       \
141 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
142 			    efi_guid_t *vendor)				       \
143 {									       \
144 	struct ia64_fpreg fr[6];					       \
145 	efi_status_t ret;						       \
146 									       \
147 	ia64_save_scratch_fpregs(fr);					       \
148 	ret = efi_call_##prefix(					       \
149 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
150 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
151 	ia64_load_scratch_fpregs(fr);					       \
152 	return ret;							       \
153 }
154 
155 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
156 static efi_status_t							       \
157 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
158 		       unsigned long attr, unsigned long data_size,	       \
159 		       void *data)					       \
160 {									       \
161 	struct ia64_fpreg fr[6];					       \
162 	efi_status_t ret;						       \
163 									       \
164 	ia64_save_scratch_fpregs(fr);					       \
165 	ret = efi_call_##prefix(					       \
166 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
167 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
168 		adjust_arg(data));					       \
169 	ia64_load_scratch_fpregs(fr);					       \
170 	return ret;							       \
171 }
172 
173 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
174 static efi_status_t							       \
175 prefix##_get_next_high_mono_count (u32 *count)				       \
176 {									       \
177 	struct ia64_fpreg fr[6];					       \
178 	efi_status_t ret;						       \
179 									       \
180 	ia64_save_scratch_fpregs(fr);					       \
181 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
182 				__va(runtime->get_next_high_mono_count),       \
183 				adjust_arg(count));			       \
184 	ia64_load_scratch_fpregs(fr);					       \
185 	return ret;							       \
186 }
187 
188 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
189 static void								       \
190 prefix##_reset_system (int reset_type, efi_status_t status,		       \
191 		       unsigned long data_size, efi_char16_t *data)	       \
192 {									       \
193 	struct ia64_fpreg fr[6];					       \
194 	efi_char16_t *adata = NULL;					       \
195 									       \
196 	if (data)							       \
197 		adata = adjust_arg(data);				       \
198 									       \
199 	ia64_save_scratch_fpregs(fr);					       \
200 	efi_call_##prefix(						       \
201 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
202 		reset_type, status, data_size, adata);			       \
203 	/* should not return, but just in case... */			       \
204 	ia64_load_scratch_fpregs(fr);					       \
205 }
206 
207 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
208 
209 STUB_GET_TIME(phys, phys_ptr)
210 STUB_SET_TIME(phys, phys_ptr)
211 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
212 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
213 STUB_GET_VARIABLE(phys, phys_ptr)
214 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
215 STUB_SET_VARIABLE(phys, phys_ptr)
216 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
217 STUB_RESET_SYSTEM(phys, phys_ptr)
218 
219 #define id(arg)	arg
220 
221 STUB_GET_TIME(virt, id)
222 STUB_SET_TIME(virt, id)
223 STUB_GET_WAKEUP_TIME(virt, id)
224 STUB_SET_WAKEUP_TIME(virt, id)
225 STUB_GET_VARIABLE(virt, id)
226 STUB_GET_NEXT_VARIABLE(virt, id)
227 STUB_SET_VARIABLE(virt, id)
228 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
229 STUB_RESET_SYSTEM(virt, id)
230 
231 void
232 efi_gettimeofday (struct timespec *ts)
233 {
234 	efi_time_t tm;
235 
236 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
237 		memset(ts, 0, sizeof(*ts));
238 		return;
239 	}
240 
241 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
242 			    tm.hour, tm.minute, tm.second);
243 	ts->tv_nsec = tm.nanosecond;
244 }
245 
246 static int
247 is_memory_available (efi_memory_desc_t *md)
248 {
249 	if (!(md->attribute & EFI_MEMORY_WB))
250 		return 0;
251 
252 	switch (md->type) {
253 	      case EFI_LOADER_CODE:
254 	      case EFI_LOADER_DATA:
255 	      case EFI_BOOT_SERVICES_CODE:
256 	      case EFI_BOOT_SERVICES_DATA:
257 	      case EFI_CONVENTIONAL_MEMORY:
258 		return 1;
259 	}
260 	return 0;
261 }
262 
263 typedef struct kern_memdesc {
264 	u64 attribute;
265 	u64 start;
266 	u64 num_pages;
267 } kern_memdesc_t;
268 
269 static kern_memdesc_t *kern_memmap;
270 
271 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
272 
273 static inline u64
274 kmd_end(kern_memdesc_t *kmd)
275 {
276 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
277 }
278 
279 static inline u64
280 efi_md_end(efi_memory_desc_t *md)
281 {
282 	return (md->phys_addr + efi_md_size(md));
283 }
284 
285 static inline int
286 efi_wb(efi_memory_desc_t *md)
287 {
288 	return (md->attribute & EFI_MEMORY_WB);
289 }
290 
291 static inline int
292 efi_uc(efi_memory_desc_t *md)
293 {
294 	return (md->attribute & EFI_MEMORY_UC);
295 }
296 
297 static void
298 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
299 {
300 	kern_memdesc_t *k;
301 	u64 start, end, voff;
302 
303 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
304 	for (k = kern_memmap; k->start != ~0UL; k++) {
305 		if (k->attribute != attr)
306 			continue;
307 		start = PAGE_ALIGN(k->start);
308 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
309 		if (start < end)
310 			if ((*callback)(start + voff, end + voff, arg) < 0)
311 				return;
312 	}
313 }
314 
315 /*
316  * Walk the EFI memory map and call CALLBACK once for each EFI memory
317  * descriptor that has memory that is available for OS use.
318  */
319 void
320 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
321 {
322 	walk(callback, arg, EFI_MEMORY_WB);
323 }
324 
325 /*
326  * Walk the EFI memory map and call CALLBACK once for each EFI memory
327  * descriptor that has memory that is available for uncached allocator.
328  */
329 void
330 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
331 {
332 	walk(callback, arg, EFI_MEMORY_UC);
333 }
334 
335 /*
336  * Look for the PAL_CODE region reported by EFI and map it using an
337  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
338  * Abstraction Layer chapter 11 in ADAG
339  */
340 void *
341 efi_get_pal_addr (void)
342 {
343 	void *efi_map_start, *efi_map_end, *p;
344 	efi_memory_desc_t *md;
345 	u64 efi_desc_size;
346 	int pal_code_count = 0;
347 	u64 vaddr, mask;
348 
349 	efi_map_start = __va(ia64_boot_param->efi_memmap);
350 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
351 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
352 
353 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
354 		md = p;
355 		if (md->type != EFI_PAL_CODE)
356 			continue;
357 
358 		if (++pal_code_count > 1) {
359 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
360 			       "dropped @ %llx\n", md->phys_addr);
361 			continue;
362 		}
363 		/*
364 		 * The only ITLB entry in region 7 that is used is the one
365 		 * installed by __start().  That entry covers a 64MB range.
366 		 */
367 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
368 		vaddr = PAGE_OFFSET + md->phys_addr;
369 
370 		/*
371 		 * We must check that the PAL mapping won't overlap with the
372 		 * kernel mapping.
373 		 *
374 		 * PAL code is guaranteed to be aligned on a power of 2 between
375 		 * 4k and 256KB and that only one ITR is needed to map it. This
376 		 * implies that the PAL code is always aligned on its size,
377 		 * i.e., the closest matching page size supported by the TLB.
378 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
379 		 * it is bigger than 64MB (very unlikely!).  So for now the
380 		 * following test is enough to determine whether or not we need
381 		 * a dedicated ITR for the PAL code.
382 		 */
383 		if ((vaddr & mask) == (KERNEL_START & mask)) {
384 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
385 			       __func__);
386 			continue;
387 		}
388 
389 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
390 			panic("Whoa!  PAL code size bigger than a granule!");
391 
392 #if EFI_DEBUG
393 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
394 
395 		printk(KERN_INFO "CPU %d: mapping PAL code "
396                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
397                        smp_processor_id(), md->phys_addr,
398                        md->phys_addr + efi_md_size(md),
399                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
400 #endif
401 		return __va(md->phys_addr);
402 	}
403 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
404 	       __func__);
405 	return NULL;
406 }
407 
408 
409 static u8 __init palo_checksum(u8 *buffer, u32 length)
410 {
411 	u8 sum = 0;
412 	u8 *end = buffer + length;
413 
414 	while (buffer < end)
415 		sum = (u8) (sum + *(buffer++));
416 
417 	return sum;
418 }
419 
420 /*
421  * Parse and handle PALO table which is published at:
422  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
423  */
424 static void __init handle_palo(unsigned long palo_phys)
425 {
426 	struct palo_table *palo = __va(palo_phys);
427 	u8  checksum;
428 
429 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
430 		printk(KERN_INFO "PALO signature incorrect.\n");
431 		return;
432 	}
433 
434 	checksum = palo_checksum((u8 *)palo, palo->length);
435 	if (checksum) {
436 		printk(KERN_INFO "PALO checksum incorrect.\n");
437 		return;
438 	}
439 
440 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
441 }
442 
443 void
444 efi_map_pal_code (void)
445 {
446 	void *pal_vaddr = efi_get_pal_addr ();
447 	u64 psr;
448 
449 	if (!pal_vaddr)
450 		return;
451 
452 	/*
453 	 * Cannot write to CRx with PSR.ic=1
454 	 */
455 	psr = ia64_clear_ic();
456 	ia64_itr(0x1, IA64_TR_PALCODE,
457 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
458 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
459 		 IA64_GRANULE_SHIFT);
460 	paravirt_dv_serialize_data();
461 	ia64_set_psr(psr);		/* restore psr */
462 }
463 
464 void __init
465 efi_init (void)
466 {
467 	void *efi_map_start, *efi_map_end;
468 	efi_config_table_t *config_tables;
469 	efi_char16_t *c16;
470 	u64 efi_desc_size;
471 	char *cp, vendor[100] = "unknown";
472 	int i;
473 	unsigned long palo_phys;
474 
475 	/*
476 	 * It's too early to be able to use the standard kernel command line
477 	 * support...
478 	 */
479 	for (cp = boot_command_line; *cp; ) {
480 		if (memcmp(cp, "mem=", 4) == 0) {
481 			mem_limit = memparse(cp + 4, &cp);
482 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
483 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
484 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
485 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
486 		} else {
487 			while (*cp != ' ' && *cp)
488 				++cp;
489 			while (*cp == ' ')
490 				++cp;
491 		}
492 	}
493 	if (min_addr != 0UL)
494 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
495 		       min_addr >> 20);
496 	if (max_addr != ~0UL)
497 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
498 		       max_addr >> 20);
499 
500 	efi.systab = __va(ia64_boot_param->efi_systab);
501 
502 	/*
503 	 * Verify the EFI Table
504 	 */
505 	if (efi.systab == NULL)
506 		panic("Whoa! Can't find EFI system table.\n");
507 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
508 		panic("Whoa! EFI system table signature incorrect\n");
509 	if ((efi.systab->hdr.revision >> 16) == 0)
510 		printk(KERN_WARNING "Warning: EFI system table version "
511 		       "%d.%02d, expected 1.00 or greater\n",
512 		       efi.systab->hdr.revision >> 16,
513 		       efi.systab->hdr.revision & 0xffff);
514 
515 	config_tables = __va(efi.systab->tables);
516 
517 	/* Show what we know for posterity */
518 	c16 = __va(efi.systab->fw_vendor);
519 	if (c16) {
520 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
521 			vendor[i] = *c16++;
522 		vendor[i] = '\0';
523 	}
524 
525 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
526 	       efi.systab->hdr.revision >> 16,
527 	       efi.systab->hdr.revision & 0xffff, vendor);
528 
529 	efi.mps        = EFI_INVALID_TABLE_ADDR;
530 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
531 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
532 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
533 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
534 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
535 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
536 	efi.uga        = EFI_INVALID_TABLE_ADDR;
537 
538 	palo_phys      = EFI_INVALID_TABLE_ADDR;
539 
540 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
541 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
542 			efi.mps = config_tables[i].table;
543 			printk(" MPS=0x%lx", config_tables[i].table);
544 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
545 			efi.acpi20 = config_tables[i].table;
546 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
547 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
548 			efi.acpi = config_tables[i].table;
549 			printk(" ACPI=0x%lx", config_tables[i].table);
550 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
551 			efi.smbios = config_tables[i].table;
552 			printk(" SMBIOS=0x%lx", config_tables[i].table);
553 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
554 			efi.sal_systab = config_tables[i].table;
555 			printk(" SALsystab=0x%lx", config_tables[i].table);
556 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
557 			efi.hcdp = config_tables[i].table;
558 			printk(" HCDP=0x%lx", config_tables[i].table);
559 		} else if (efi_guidcmp(config_tables[i].guid,
560 			 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
561 			palo_phys = config_tables[i].table;
562 			printk(" PALO=0x%lx", config_tables[i].table);
563 		}
564 	}
565 	printk("\n");
566 
567 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
568 		handle_palo(palo_phys);
569 
570 	runtime = __va(efi.systab->runtime);
571 	efi.get_time = phys_get_time;
572 	efi.set_time = phys_set_time;
573 	efi.get_wakeup_time = phys_get_wakeup_time;
574 	efi.set_wakeup_time = phys_set_wakeup_time;
575 	efi.get_variable = phys_get_variable;
576 	efi.get_next_variable = phys_get_next_variable;
577 	efi.set_variable = phys_set_variable;
578 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
579 	efi.reset_system = phys_reset_system;
580 
581 	efi_map_start = __va(ia64_boot_param->efi_memmap);
582 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
583 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
584 
585 #if EFI_DEBUG
586 	/* print EFI memory map: */
587 	{
588 		efi_memory_desc_t *md;
589 		void *p;
590 
591 		for (i = 0, p = efi_map_start; p < efi_map_end;
592 		     ++i, p += efi_desc_size)
593 		{
594 			const char *unit;
595 			unsigned long size;
596 
597 			md = p;
598 			size = md->num_pages << EFI_PAGE_SHIFT;
599 
600 			if ((size >> 40) > 0) {
601 				size >>= 40;
602 				unit = "TB";
603 			} else if ((size >> 30) > 0) {
604 				size >>= 30;
605 				unit = "GB";
606 			} else if ((size >> 20) > 0) {
607 				size >>= 20;
608 				unit = "MB";
609 			} else {
610 				size >>= 10;
611 				unit = "KB";
612 			}
613 
614 			printk("mem%02d: type=%2u, attr=0x%016lx, "
615 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
616 			       i, md->type, md->attribute, md->phys_addr,
617 			       md->phys_addr + efi_md_size(md), size, unit);
618 		}
619 	}
620 #endif
621 
622 	efi_map_pal_code();
623 	efi_enter_virtual_mode();
624 }
625 
626 void
627 efi_enter_virtual_mode (void)
628 {
629 	void *efi_map_start, *efi_map_end, *p;
630 	efi_memory_desc_t *md;
631 	efi_status_t status;
632 	u64 efi_desc_size;
633 
634 	efi_map_start = __va(ia64_boot_param->efi_memmap);
635 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
636 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
637 
638 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
639 		md = p;
640 		if (md->attribute & EFI_MEMORY_RUNTIME) {
641 			/*
642 			 * Some descriptors have multiple bits set, so the
643 			 * order of the tests is relevant.
644 			 */
645 			if (md->attribute & EFI_MEMORY_WB) {
646 				md->virt_addr = (u64) __va(md->phys_addr);
647 			} else if (md->attribute & EFI_MEMORY_UC) {
648 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
649 			} else if (md->attribute & EFI_MEMORY_WC) {
650 #if 0
651 				md->virt_addr = ia64_remap(md->phys_addr,
652 							   (_PAGE_A |
653 							    _PAGE_P |
654 							    _PAGE_D |
655 							    _PAGE_MA_WC |
656 							    _PAGE_PL_0 |
657 							    _PAGE_AR_RW));
658 #else
659 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
660 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
661 #endif
662 			} else if (md->attribute & EFI_MEMORY_WT) {
663 #if 0
664 				md->virt_addr = ia64_remap(md->phys_addr,
665 							   (_PAGE_A |
666 							    _PAGE_P |
667 							    _PAGE_D |
668 							    _PAGE_MA_WT |
669 							    _PAGE_PL_0 |
670 							    _PAGE_AR_RW));
671 #else
672 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
673 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
674 #endif
675 			}
676 		}
677 	}
678 
679 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
680 			       ia64_boot_param->efi_memmap_size,
681 			       efi_desc_size,
682 			       ia64_boot_param->efi_memdesc_version,
683 			       ia64_boot_param->efi_memmap);
684 	if (status != EFI_SUCCESS) {
685 		printk(KERN_WARNING "warning: unable to switch EFI into "
686 		       "virtual mode (status=%lu)\n", status);
687 		return;
688 	}
689 
690 	/*
691 	 * Now that EFI is in virtual mode, we call the EFI functions more
692 	 * efficiently:
693 	 */
694 	efi.get_time = virt_get_time;
695 	efi.set_time = virt_set_time;
696 	efi.get_wakeup_time = virt_get_wakeup_time;
697 	efi.set_wakeup_time = virt_set_wakeup_time;
698 	efi.get_variable = virt_get_variable;
699 	efi.get_next_variable = virt_get_next_variable;
700 	efi.set_variable = virt_set_variable;
701 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
702 	efi.reset_system = virt_reset_system;
703 }
704 
705 /*
706  * Walk the EFI memory map looking for the I/O port range.  There can only be
707  * one entry of this type, other I/O port ranges should be described via ACPI.
708  */
709 u64
710 efi_get_iobase (void)
711 {
712 	void *efi_map_start, *efi_map_end, *p;
713 	efi_memory_desc_t *md;
714 	u64 efi_desc_size;
715 
716 	efi_map_start = __va(ia64_boot_param->efi_memmap);
717 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
718 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
719 
720 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
721 		md = p;
722 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
723 			if (md->attribute & EFI_MEMORY_UC)
724 				return md->phys_addr;
725 		}
726 	}
727 	return 0;
728 }
729 
730 static struct kern_memdesc *
731 kern_memory_descriptor (unsigned long phys_addr)
732 {
733 	struct kern_memdesc *md;
734 
735 	for (md = kern_memmap; md->start != ~0UL; md++) {
736 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
737 			 return md;
738 	}
739 	return NULL;
740 }
741 
742 static efi_memory_desc_t *
743 efi_memory_descriptor (unsigned long phys_addr)
744 {
745 	void *efi_map_start, *efi_map_end, *p;
746 	efi_memory_desc_t *md;
747 	u64 efi_desc_size;
748 
749 	efi_map_start = __va(ia64_boot_param->efi_memmap);
750 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
751 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
752 
753 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
754 		md = p;
755 
756 		if (phys_addr - md->phys_addr < efi_md_size(md))
757 			 return md;
758 	}
759 	return NULL;
760 }
761 
762 static int
763 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
764 {
765 	void *efi_map_start, *efi_map_end, *p;
766 	efi_memory_desc_t *md;
767 	u64 efi_desc_size;
768 	unsigned long end;
769 
770 	efi_map_start = __va(ia64_boot_param->efi_memmap);
771 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
772 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
773 
774 	end = phys_addr + size;
775 
776 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
777 		md = p;
778 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
779 			return 1;
780 	}
781 	return 0;
782 }
783 
784 u32
785 efi_mem_type (unsigned long phys_addr)
786 {
787 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
788 
789 	if (md)
790 		return md->type;
791 	return 0;
792 }
793 
794 u64
795 efi_mem_attributes (unsigned long phys_addr)
796 {
797 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
798 
799 	if (md)
800 		return md->attribute;
801 	return 0;
802 }
803 EXPORT_SYMBOL(efi_mem_attributes);
804 
805 u64
806 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
807 {
808 	unsigned long end = phys_addr + size;
809 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
810 	u64 attr;
811 
812 	if (!md)
813 		return 0;
814 
815 	/*
816 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
817 	 * the kernel that firmware needs this region mapped.
818 	 */
819 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
820 	do {
821 		unsigned long md_end = efi_md_end(md);
822 
823 		if (end <= md_end)
824 			return attr;
825 
826 		md = efi_memory_descriptor(md_end);
827 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
828 			return 0;
829 	} while (md);
830 	return 0;	/* never reached */
831 }
832 
833 u64
834 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
835 {
836 	unsigned long end = phys_addr + size;
837 	struct kern_memdesc *md;
838 	u64 attr;
839 
840 	/*
841 	 * This is a hack for ioremap calls before we set up kern_memmap.
842 	 * Maybe we should do efi_memmap_init() earlier instead.
843 	 */
844 	if (!kern_memmap) {
845 		attr = efi_mem_attribute(phys_addr, size);
846 		if (attr & EFI_MEMORY_WB)
847 			return EFI_MEMORY_WB;
848 		return 0;
849 	}
850 
851 	md = kern_memory_descriptor(phys_addr);
852 	if (!md)
853 		return 0;
854 
855 	attr = md->attribute;
856 	do {
857 		unsigned long md_end = kmd_end(md);
858 
859 		if (end <= md_end)
860 			return attr;
861 
862 		md = kern_memory_descriptor(md_end);
863 		if (!md || md->attribute != attr)
864 			return 0;
865 	} while (md);
866 	return 0;	/* never reached */
867 }
868 EXPORT_SYMBOL(kern_mem_attribute);
869 
870 int
871 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
872 {
873 	u64 attr;
874 
875 	/*
876 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
877 	 * uses a granule-sized kernel identity mapping.  It's really
878 	 * only safe to do this for regions in kern_memmap.  For more
879 	 * details, see Documentation/ia64/aliasing.txt.
880 	 */
881 	attr = kern_mem_attribute(phys_addr, size);
882 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
883 		return 1;
884 	return 0;
885 }
886 
887 int
888 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
889 {
890 	unsigned long phys_addr = pfn << PAGE_SHIFT;
891 	u64 attr;
892 
893 	attr = efi_mem_attribute(phys_addr, size);
894 
895 	/*
896 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
897 	 * granule, but the entire region we're mapping must support the same
898 	 * attribute.
899 	 */
900 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
901 		return 1;
902 
903 	/*
904 	 * Intel firmware doesn't tell us about all the MMIO regions, so
905 	 * in general we have to allow mmap requests.  But if EFI *does*
906 	 * tell us about anything inside this region, we should deny it.
907 	 * The user can always map a smaller region to avoid the overlap.
908 	 */
909 	if (efi_memmap_intersects(phys_addr, size))
910 		return 0;
911 
912 	return 1;
913 }
914 
915 pgprot_t
916 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
917 		     pgprot_t vma_prot)
918 {
919 	unsigned long phys_addr = pfn << PAGE_SHIFT;
920 	u64 attr;
921 
922 	/*
923 	 * For /dev/mem mmap, we use user mappings, but if the region is
924 	 * in kern_memmap (and hence may be covered by a kernel mapping),
925 	 * we must use the same attribute as the kernel mapping.
926 	 */
927 	attr = kern_mem_attribute(phys_addr, size);
928 	if (attr & EFI_MEMORY_WB)
929 		return pgprot_cacheable(vma_prot);
930 	else if (attr & EFI_MEMORY_UC)
931 		return pgprot_noncached(vma_prot);
932 
933 	/*
934 	 * Some chipsets don't support UC access to memory.  If
935 	 * WB is supported, we prefer that.
936 	 */
937 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
938 		return pgprot_cacheable(vma_prot);
939 
940 	return pgprot_noncached(vma_prot);
941 }
942 
943 int __init
944 efi_uart_console_only(void)
945 {
946 	efi_status_t status;
947 	char *s, name[] = "ConOut";
948 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
949 	efi_char16_t *utf16, name_utf16[32];
950 	unsigned char data[1024];
951 	unsigned long size = sizeof(data);
952 	struct efi_generic_dev_path *hdr, *end_addr;
953 	int uart = 0;
954 
955 	/* Convert to UTF-16 */
956 	utf16 = name_utf16;
957 	s = name;
958 	while (*s)
959 		*utf16++ = *s++ & 0x7f;
960 	*utf16 = 0;
961 
962 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
963 	if (status != EFI_SUCCESS) {
964 		printk(KERN_ERR "No EFI %s variable?\n", name);
965 		return 0;
966 	}
967 
968 	hdr = (struct efi_generic_dev_path *) data;
969 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
970 	while (hdr < end_addr) {
971 		if (hdr->type == EFI_DEV_MSG &&
972 		    hdr->sub_type == EFI_DEV_MSG_UART)
973 			uart = 1;
974 		else if (hdr->type == EFI_DEV_END_PATH ||
975 			  hdr->type == EFI_DEV_END_PATH2) {
976 			if (!uart)
977 				return 0;
978 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
979 				return 1;
980 			uart = 0;
981 		}
982 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
983 	}
984 	printk(KERN_ERR "Malformed %s value\n", name);
985 	return 0;
986 }
987 
988 /*
989  * Look for the first granule aligned memory descriptor memory
990  * that is big enough to hold EFI memory map. Make sure this
991  * descriptor is atleast granule sized so it does not get trimmed
992  */
993 struct kern_memdesc *
994 find_memmap_space (void)
995 {
996 	u64	contig_low=0, contig_high=0;
997 	u64	as = 0, ae;
998 	void *efi_map_start, *efi_map_end, *p, *q;
999 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1000 	u64	space_needed, efi_desc_size;
1001 	unsigned long total_mem = 0;
1002 
1003 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1004 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1005 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1006 
1007 	/*
1008 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
1009 	 * (if every entry has a WB part in the middle, and UC head and tail),
1010 	 * plus one for the end marker.
1011 	 */
1012 	space_needed = sizeof(kern_memdesc_t) *
1013 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1014 
1015 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1016 		md = p;
1017 		if (!efi_wb(md)) {
1018 			continue;
1019 		}
1020 		if (pmd == NULL || !efi_wb(pmd) ||
1021 		    efi_md_end(pmd) != md->phys_addr) {
1022 			contig_low = GRANULEROUNDUP(md->phys_addr);
1023 			contig_high = efi_md_end(md);
1024 			for (q = p + efi_desc_size; q < efi_map_end;
1025 			     q += efi_desc_size) {
1026 				check_md = q;
1027 				if (!efi_wb(check_md))
1028 					break;
1029 				if (contig_high != check_md->phys_addr)
1030 					break;
1031 				contig_high = efi_md_end(check_md);
1032 			}
1033 			contig_high = GRANULEROUNDDOWN(contig_high);
1034 		}
1035 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1036 			continue;
1037 
1038 		/* Round ends inward to granule boundaries */
1039 		as = max(contig_low, md->phys_addr);
1040 		ae = min(contig_high, efi_md_end(md));
1041 
1042 		/* keep within max_addr= and min_addr= command line arg */
1043 		as = max(as, min_addr);
1044 		ae = min(ae, max_addr);
1045 		if (ae <= as)
1046 			continue;
1047 
1048 		/* avoid going over mem= command line arg */
1049 		if (total_mem + (ae - as) > mem_limit)
1050 			ae -= total_mem + (ae - as) - mem_limit;
1051 
1052 		if (ae <= as)
1053 			continue;
1054 
1055 		if (ae - as > space_needed)
1056 			break;
1057 	}
1058 	if (p >= efi_map_end)
1059 		panic("Can't allocate space for kernel memory descriptors");
1060 
1061 	return __va(as);
1062 }
1063 
1064 /*
1065  * Walk the EFI memory map and gather all memory available for kernel
1066  * to use.  We can allocate partial granules only if the unavailable
1067  * parts exist, and are WB.
1068  */
1069 unsigned long
1070 efi_memmap_init(u64 *s, u64 *e)
1071 {
1072 	struct kern_memdesc *k, *prev = NULL;
1073 	u64	contig_low=0, contig_high=0;
1074 	u64	as, ae, lim;
1075 	void *efi_map_start, *efi_map_end, *p, *q;
1076 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1077 	u64	efi_desc_size;
1078 	unsigned long total_mem = 0;
1079 
1080 	k = kern_memmap = find_memmap_space();
1081 
1082 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1083 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1084 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1085 
1086 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1087 		md = p;
1088 		if (!efi_wb(md)) {
1089 			if (efi_uc(md) &&
1090 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1091 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1092 				k->attribute = EFI_MEMORY_UC;
1093 				k->start = md->phys_addr;
1094 				k->num_pages = md->num_pages;
1095 				k++;
1096 			}
1097 			continue;
1098 		}
1099 		if (pmd == NULL || !efi_wb(pmd) ||
1100 		    efi_md_end(pmd) != md->phys_addr) {
1101 			contig_low = GRANULEROUNDUP(md->phys_addr);
1102 			contig_high = efi_md_end(md);
1103 			for (q = p + efi_desc_size; q < efi_map_end;
1104 			     q += efi_desc_size) {
1105 				check_md = q;
1106 				if (!efi_wb(check_md))
1107 					break;
1108 				if (contig_high != check_md->phys_addr)
1109 					break;
1110 				contig_high = efi_md_end(check_md);
1111 			}
1112 			contig_high = GRANULEROUNDDOWN(contig_high);
1113 		}
1114 		if (!is_memory_available(md))
1115 			continue;
1116 
1117 #ifdef CONFIG_CRASH_DUMP
1118 		/* saved_max_pfn should ignore max_addr= command line arg */
1119 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1120 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1121 #endif
1122 		/*
1123 		 * Round ends inward to granule boundaries
1124 		 * Give trimmings to uncached allocator
1125 		 */
1126 		if (md->phys_addr < contig_low) {
1127 			lim = min(efi_md_end(md), contig_low);
1128 			if (efi_uc(md)) {
1129 				if (k > kern_memmap &&
1130 				    (k-1)->attribute == EFI_MEMORY_UC &&
1131 				    kmd_end(k-1) == md->phys_addr) {
1132 					(k-1)->num_pages +=
1133 						(lim - md->phys_addr)
1134 						>> EFI_PAGE_SHIFT;
1135 				} else {
1136 					k->attribute = EFI_MEMORY_UC;
1137 					k->start = md->phys_addr;
1138 					k->num_pages = (lim - md->phys_addr)
1139 						>> EFI_PAGE_SHIFT;
1140 					k++;
1141 				}
1142 			}
1143 			as = contig_low;
1144 		} else
1145 			as = md->phys_addr;
1146 
1147 		if (efi_md_end(md) > contig_high) {
1148 			lim = max(md->phys_addr, contig_high);
1149 			if (efi_uc(md)) {
1150 				if (lim == md->phys_addr && k > kern_memmap &&
1151 				    (k-1)->attribute == EFI_MEMORY_UC &&
1152 				    kmd_end(k-1) == md->phys_addr) {
1153 					(k-1)->num_pages += md->num_pages;
1154 				} else {
1155 					k->attribute = EFI_MEMORY_UC;
1156 					k->start = lim;
1157 					k->num_pages = (efi_md_end(md) - lim)
1158 						>> EFI_PAGE_SHIFT;
1159 					k++;
1160 				}
1161 			}
1162 			ae = contig_high;
1163 		} else
1164 			ae = efi_md_end(md);
1165 
1166 		/* keep within max_addr= and min_addr= command line arg */
1167 		as = max(as, min_addr);
1168 		ae = min(ae, max_addr);
1169 		if (ae <= as)
1170 			continue;
1171 
1172 		/* avoid going over mem= command line arg */
1173 		if (total_mem + (ae - as) > mem_limit)
1174 			ae -= total_mem + (ae - as) - mem_limit;
1175 
1176 		if (ae <= as)
1177 			continue;
1178 		if (prev && kmd_end(prev) == md->phys_addr) {
1179 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1180 			total_mem += ae - as;
1181 			continue;
1182 		}
1183 		k->attribute = EFI_MEMORY_WB;
1184 		k->start = as;
1185 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1186 		total_mem += ae - as;
1187 		prev = k++;
1188 	}
1189 	k->start = ~0L; /* end-marker */
1190 
1191 	/* reserve the memory we are using for kern_memmap */
1192 	*s = (u64)kern_memmap;
1193 	*e = (u64)++k;
1194 
1195 	return total_mem;
1196 }
1197 
1198 void
1199 efi_initialize_iomem_resources(struct resource *code_resource,
1200 			       struct resource *data_resource,
1201 			       struct resource *bss_resource)
1202 {
1203 	struct resource *res;
1204 	void *efi_map_start, *efi_map_end, *p;
1205 	efi_memory_desc_t *md;
1206 	u64 efi_desc_size;
1207 	char *name;
1208 	unsigned long flags;
1209 
1210 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1211 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1212 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1213 
1214 	res = NULL;
1215 
1216 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1217 		md = p;
1218 
1219 		if (md->num_pages == 0) /* should not happen */
1220 			continue;
1221 
1222 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1223 		switch (md->type) {
1224 
1225 			case EFI_MEMORY_MAPPED_IO:
1226 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1227 				continue;
1228 
1229 			case EFI_LOADER_CODE:
1230 			case EFI_LOADER_DATA:
1231 			case EFI_BOOT_SERVICES_DATA:
1232 			case EFI_BOOT_SERVICES_CODE:
1233 			case EFI_CONVENTIONAL_MEMORY:
1234 				if (md->attribute & EFI_MEMORY_WP) {
1235 					name = "System ROM";
1236 					flags |= IORESOURCE_READONLY;
1237 				} else if (md->attribute == EFI_MEMORY_UC)
1238 					name = "Uncached RAM";
1239 				else
1240 					name = "System RAM";
1241 				break;
1242 
1243 			case EFI_ACPI_MEMORY_NVS:
1244 				name = "ACPI Non-volatile Storage";
1245 				break;
1246 
1247 			case EFI_UNUSABLE_MEMORY:
1248 				name = "reserved";
1249 				flags |= IORESOURCE_DISABLED;
1250 				break;
1251 
1252 			case EFI_RESERVED_TYPE:
1253 			case EFI_RUNTIME_SERVICES_CODE:
1254 			case EFI_RUNTIME_SERVICES_DATA:
1255 			case EFI_ACPI_RECLAIM_MEMORY:
1256 			default:
1257 				name = "reserved";
1258 				break;
1259 		}
1260 
1261 		if ((res = kzalloc(sizeof(struct resource),
1262 				   GFP_KERNEL)) == NULL) {
1263 			printk(KERN_ERR
1264 			       "failed to allocate resource for iomem\n");
1265 			return;
1266 		}
1267 
1268 		res->name = name;
1269 		res->start = md->phys_addr;
1270 		res->end = md->phys_addr + efi_md_size(md) - 1;
1271 		res->flags = flags;
1272 
1273 		if (insert_resource(&iomem_resource, res) < 0)
1274 			kfree(res);
1275 		else {
1276 			/*
1277 			 * We don't know which region contains
1278 			 * kernel data so we try it repeatedly and
1279 			 * let the resource manager test it.
1280 			 */
1281 			insert_resource(res, code_resource);
1282 			insert_resource(res, data_resource);
1283 			insert_resource(res, bss_resource);
1284 #ifdef CONFIG_KEXEC
1285                         insert_resource(res, &efi_memmap_res);
1286                         insert_resource(res, &boot_param_res);
1287 			if (crashk_res.end > crashk_res.start)
1288 				insert_resource(res, &crashk_res);
1289 #endif
1290 		}
1291 	}
1292 }
1293 
1294 #ifdef CONFIG_KEXEC
1295 /* find a block of memory aligned to 64M exclude reserved regions
1296    rsvd_regions are sorted
1297  */
1298 unsigned long __init
1299 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1300 {
1301 	int i;
1302 	u64 start, end;
1303 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1304 	void *efi_map_start, *efi_map_end, *p;
1305 	efi_memory_desc_t *md;
1306 	u64 efi_desc_size;
1307 
1308 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1309 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1310 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1311 
1312 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1313 		md = p;
1314 		if (!efi_wb(md))
1315 			continue;
1316 		start = ALIGN(md->phys_addr, alignment);
1317 		end = efi_md_end(md);
1318 		for (i = 0; i < n; i++) {
1319 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1320 				if (__pa(r[i].start) > start + size)
1321 					return start;
1322 				start = ALIGN(__pa(r[i].end), alignment);
1323 				if (i < n-1 &&
1324 				    __pa(r[i+1].start) < start + size)
1325 					continue;
1326 				else
1327 					break;
1328 			}
1329 		}
1330 		if (end > start + size)
1331 			return start;
1332 	}
1333 
1334 	printk(KERN_WARNING
1335 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1336 	return ~0UL;
1337 }
1338 #endif
1339 
1340 #ifdef CONFIG_CRASH_DUMP
1341 /* locate the size find a the descriptor at a certain address */
1342 unsigned long __init
1343 vmcore_find_descriptor_size (unsigned long address)
1344 {
1345 	void *efi_map_start, *efi_map_end, *p;
1346 	efi_memory_desc_t *md;
1347 	u64 efi_desc_size;
1348 	unsigned long ret = 0;
1349 
1350 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1351 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1352 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1353 
1354 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1355 		md = p;
1356 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1357 		    && md->phys_addr == address) {
1358 			ret = efi_md_size(md);
1359 			break;
1360 		}
1361 	}
1362 
1363 	if (ret == 0)
1364 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1365 
1366 	return ret;
1367 }
1368 #endif
1369