xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision c21b37f6)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2003 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
13  *
14  * All EFI Runtime Services are not implemented yet as EFI only
15  * supports physical mode addressing on SoftSDV. This is to be fixed
16  * in a future version.  --drummond 1999-07-20
17  *
18  * Implemented EFI runtime services and virtual mode calls.  --davidm
19  *
20  * Goutham Rao: <goutham.rao@intel.com>
21  *	Skip non-WB memory and ignore empty memory ranges.
22  */
23 #include <linux/module.h>
24 #include <linux/bootmem.h>
25 #include <linux/kernel.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/time.h>
29 #include <linux/efi.h>
30 #include <linux/kexec.h>
31 #include <linux/mm.h>
32 
33 #include <asm/io.h>
34 #include <asm/kregs.h>
35 #include <asm/meminit.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/mca.h>
39 
40 #define EFI_DEBUG	0
41 
42 extern efi_status_t efi_call_phys (void *, ...);
43 
44 struct efi efi;
45 EXPORT_SYMBOL(efi);
46 static efi_runtime_services_t *runtime;
47 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
48 
49 #define efi_call_virt(f, args...)	(*(f))(args)
50 
51 #define STUB_GET_TIME(prefix, adjust_arg)							  \
52 static efi_status_t										  \
53 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)						  \
54 {												  \
55 	struct ia64_fpreg fr[6];								  \
56 	efi_time_cap_t *atc = NULL;								  \
57 	efi_status_t ret;									  \
58 												  \
59 	if (tc)											  \
60 		atc = adjust_arg(tc);								  \
61 	ia64_save_scratch_fpregs(fr);								  \
62 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
63 	ia64_load_scratch_fpregs(fr);								  \
64 	return ret;										  \
65 }
66 
67 #define STUB_SET_TIME(prefix, adjust_arg)							\
68 static efi_status_t										\
69 prefix##_set_time (efi_time_t *tm)								\
70 {												\
71 	struct ia64_fpreg fr[6];								\
72 	efi_status_t ret;									\
73 												\
74 	ia64_save_scratch_fpregs(fr);								\
75 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));	\
76 	ia64_load_scratch_fpregs(fr);								\
77 	return ret;										\
78 }
79 
80 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)						\
81 static efi_status_t										\
82 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)		\
83 {												\
84 	struct ia64_fpreg fr[6];								\
85 	efi_status_t ret;									\
86 												\
87 	ia64_save_scratch_fpregs(fr);								\
88 	ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),	\
89 				adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));	\
90 	ia64_load_scratch_fpregs(fr);								\
91 	return ret;										\
92 }
93 
94 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)						\
95 static efi_status_t										\
96 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)					\
97 {												\
98 	struct ia64_fpreg fr[6];								\
99 	efi_time_t *atm = NULL;									\
100 	efi_status_t ret;									\
101 												\
102 	if (tm)											\
103 		atm = adjust_arg(tm);								\
104 	ia64_save_scratch_fpregs(fr);								\
105 	ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),	\
106 				enabled, atm);							\
107 	ia64_load_scratch_fpregs(fr);								\
108 	return ret;										\
109 }
110 
111 #define STUB_GET_VARIABLE(prefix, adjust_arg)						\
112 static efi_status_t									\
113 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,		\
114 		       unsigned long *data_size, void *data)				\
115 {											\
116 	struct ia64_fpreg fr[6];							\
117 	u32 *aattr = NULL;									\
118 	efi_status_t ret;								\
119 											\
120 	if (attr)									\
121 		aattr = adjust_arg(attr);						\
122 	ia64_save_scratch_fpregs(fr);							\
123 	ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),	\
124 				adjust_arg(name), adjust_arg(vendor), aattr,		\
125 				adjust_arg(data_size), adjust_arg(data));		\
126 	ia64_load_scratch_fpregs(fr);							\
127 	return ret;									\
128 }
129 
130 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)						\
131 static efi_status_t										\
132 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)	\
133 {												\
134 	struct ia64_fpreg fr[6];								\
135 	efi_status_t ret;									\
136 												\
137 	ia64_save_scratch_fpregs(fr);								\
138 	ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),	\
139 				adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));	\
140 	ia64_load_scratch_fpregs(fr);								\
141 	return ret;										\
142 }
143 
144 #define STUB_SET_VARIABLE(prefix, adjust_arg)						\
145 static efi_status_t									\
146 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,	\
147 		       unsigned long data_size, void *data)				\
148 {											\
149 	struct ia64_fpreg fr[6];							\
150 	efi_status_t ret;								\
151 											\
152 	ia64_save_scratch_fpregs(fr);							\
153 	ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),	\
154 				adjust_arg(name), adjust_arg(vendor), attr, data_size,	\
155 				adjust_arg(data));					\
156 	ia64_load_scratch_fpregs(fr);							\
157 	return ret;									\
158 }
159 
160 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)					\
161 static efi_status_t										\
162 prefix##_get_next_high_mono_count (u32 *count)							\
163 {												\
164 	struct ia64_fpreg fr[6];								\
165 	efi_status_t ret;									\
166 												\
167 	ia64_save_scratch_fpregs(fr);								\
168 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)				\
169 				__va(runtime->get_next_high_mono_count), adjust_arg(count));	\
170 	ia64_load_scratch_fpregs(fr);								\
171 	return ret;										\
172 }
173 
174 #define STUB_RESET_SYSTEM(prefix, adjust_arg)					\
175 static void									\
176 prefix##_reset_system (int reset_type, efi_status_t status,			\
177 		       unsigned long data_size, efi_char16_t *data)		\
178 {										\
179 	struct ia64_fpreg fr[6];						\
180 	efi_char16_t *adata = NULL;						\
181 										\
182 	if (data)								\
183 		adata = adjust_arg(data);					\
184 										\
185 	ia64_save_scratch_fpregs(fr);						\
186 	efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),	\
187 			  reset_type, status, data_size, adata);		\
188 	/* should not return, but just in case... */				\
189 	ia64_load_scratch_fpregs(fr);						\
190 }
191 
192 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
193 
194 STUB_GET_TIME(phys, phys_ptr)
195 STUB_SET_TIME(phys, phys_ptr)
196 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
197 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
198 STUB_GET_VARIABLE(phys, phys_ptr)
199 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
200 STUB_SET_VARIABLE(phys, phys_ptr)
201 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
202 STUB_RESET_SYSTEM(phys, phys_ptr)
203 
204 #define id(arg)	arg
205 
206 STUB_GET_TIME(virt, id)
207 STUB_SET_TIME(virt, id)
208 STUB_GET_WAKEUP_TIME(virt, id)
209 STUB_SET_WAKEUP_TIME(virt, id)
210 STUB_GET_VARIABLE(virt, id)
211 STUB_GET_NEXT_VARIABLE(virt, id)
212 STUB_SET_VARIABLE(virt, id)
213 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
214 STUB_RESET_SYSTEM(virt, id)
215 
216 void
217 efi_gettimeofday (struct timespec *ts)
218 {
219 	efi_time_t tm;
220 
221 	memset(ts, 0, sizeof(ts));
222 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
223 		return;
224 
225 	ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
226 	ts->tv_nsec = tm.nanosecond;
227 }
228 
229 static int
230 is_memory_available (efi_memory_desc_t *md)
231 {
232 	if (!(md->attribute & EFI_MEMORY_WB))
233 		return 0;
234 
235 	switch (md->type) {
236 	      case EFI_LOADER_CODE:
237 	      case EFI_LOADER_DATA:
238 	      case EFI_BOOT_SERVICES_CODE:
239 	      case EFI_BOOT_SERVICES_DATA:
240 	      case EFI_CONVENTIONAL_MEMORY:
241 		return 1;
242 	}
243 	return 0;
244 }
245 
246 typedef struct kern_memdesc {
247 	u64 attribute;
248 	u64 start;
249 	u64 num_pages;
250 } kern_memdesc_t;
251 
252 static kern_memdesc_t *kern_memmap;
253 
254 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
255 
256 static inline u64
257 kmd_end(kern_memdesc_t *kmd)
258 {
259 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
260 }
261 
262 static inline u64
263 efi_md_end(efi_memory_desc_t *md)
264 {
265 	return (md->phys_addr + efi_md_size(md));
266 }
267 
268 static inline int
269 efi_wb(efi_memory_desc_t *md)
270 {
271 	return (md->attribute & EFI_MEMORY_WB);
272 }
273 
274 static inline int
275 efi_uc(efi_memory_desc_t *md)
276 {
277 	return (md->attribute & EFI_MEMORY_UC);
278 }
279 
280 static void
281 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
282 {
283 	kern_memdesc_t *k;
284 	u64 start, end, voff;
285 
286 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
287 	for (k = kern_memmap; k->start != ~0UL; k++) {
288 		if (k->attribute != attr)
289 			continue;
290 		start = PAGE_ALIGN(k->start);
291 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
292 		if (start < end)
293 			if ((*callback)(start + voff, end + voff, arg) < 0)
294 				return;
295 	}
296 }
297 
298 /*
299  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
300  * has memory that is available for OS use.
301  */
302 void
303 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
304 {
305 	walk(callback, arg, EFI_MEMORY_WB);
306 }
307 
308 /*
309  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
310  * has memory that is available for uncached allocator.
311  */
312 void
313 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
314 {
315 	walk(callback, arg, EFI_MEMORY_UC);
316 }
317 
318 /*
319  * Look for the PAL_CODE region reported by EFI and maps it using an
320  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
321  * Abstraction Layer chapter 11 in ADAG
322  */
323 
324 void *
325 efi_get_pal_addr (void)
326 {
327 	void *efi_map_start, *efi_map_end, *p;
328 	efi_memory_desc_t *md;
329 	u64 efi_desc_size;
330 	int pal_code_count = 0;
331 	u64 vaddr, mask;
332 
333 	efi_map_start = __va(ia64_boot_param->efi_memmap);
334 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
335 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
336 
337 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
338 		md = p;
339 		if (md->type != EFI_PAL_CODE)
340 			continue;
341 
342 		if (++pal_code_count > 1) {
343 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
344 			       md->phys_addr);
345 			continue;
346 		}
347 		/*
348 		 * The only ITLB entry in region 7 that is used is the one installed by
349 		 * __start().  That entry covers a 64MB range.
350 		 */
351 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
352 		vaddr = PAGE_OFFSET + md->phys_addr;
353 
354 		/*
355 		 * We must check that the PAL mapping won't overlap with the kernel
356 		 * mapping.
357 		 *
358 		 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
359 		 * 256KB and that only one ITR is needed to map it. This implies that the
360 		 * PAL code is always aligned on its size, i.e., the closest matching page
361 		 * size supported by the TLB. Therefore PAL code is guaranteed never to
362 		 * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
363 		 * now the following test is enough to determine whether or not we need a
364 		 * dedicated ITR for the PAL code.
365 		 */
366 		if ((vaddr & mask) == (KERNEL_START & mask)) {
367 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
368 			       __FUNCTION__);
369 			continue;
370 		}
371 
372 		if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
373 			panic("Woah!  PAL code size bigger than a granule!");
374 
375 #if EFI_DEBUG
376 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
377 
378 		printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
379 			smp_processor_id(), md->phys_addr,
380 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
381 			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
382 #endif
383 		return __va(md->phys_addr);
384 	}
385 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
386 	       __FUNCTION__);
387 	return NULL;
388 }
389 
390 void
391 efi_map_pal_code (void)
392 {
393 	void *pal_vaddr = efi_get_pal_addr ();
394 	u64 psr;
395 
396 	if (!pal_vaddr)
397 		return;
398 
399 	/*
400 	 * Cannot write to CRx with PSR.ic=1
401 	 */
402 	psr = ia64_clear_ic();
403 	ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
404 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
405 		 IA64_GRANULE_SHIFT);
406 	ia64_set_psr(psr);		/* restore psr */
407 	ia64_srlz_i();
408 }
409 
410 void __init
411 efi_init (void)
412 {
413 	void *efi_map_start, *efi_map_end;
414 	efi_config_table_t *config_tables;
415 	efi_char16_t *c16;
416 	u64 efi_desc_size;
417 	char *cp, vendor[100] = "unknown";
418 	int i;
419 
420 	/* it's too early to be able to use the standard kernel command line support... */
421 	for (cp = boot_command_line; *cp; ) {
422 		if (memcmp(cp, "mem=", 4) == 0) {
423 			mem_limit = memparse(cp + 4, &cp);
424 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
425 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
426 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
427 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
428 		} else {
429 			while (*cp != ' ' && *cp)
430 				++cp;
431 			while (*cp == ' ')
432 				++cp;
433 		}
434 	}
435 	if (min_addr != 0UL)
436 		printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
437 	if (max_addr != ~0UL)
438 		printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
439 
440 	efi.systab = __va(ia64_boot_param->efi_systab);
441 
442 	/*
443 	 * Verify the EFI Table
444 	 */
445 	if (efi.systab == NULL)
446 		panic("Woah! Can't find EFI system table.\n");
447 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
448 		panic("Woah! EFI system table signature incorrect\n");
449 	if ((efi.systab->hdr.revision >> 16) == 0)
450 		printk(KERN_WARNING "Warning: EFI system table version "
451 		       "%d.%02d, expected 1.00 or greater\n",
452 		       efi.systab->hdr.revision >> 16,
453 		       efi.systab->hdr.revision & 0xffff);
454 
455 	config_tables = __va(efi.systab->tables);
456 
457 	/* Show what we know for posterity */
458 	c16 = __va(efi.systab->fw_vendor);
459 	if (c16) {
460 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
461 			vendor[i] = *c16++;
462 		vendor[i] = '\0';
463 	}
464 
465 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
466 	       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
467 
468 	efi.mps        = EFI_INVALID_TABLE_ADDR;
469 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
470 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
471 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
472 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
473 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
474 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
475 	efi.uga        = EFI_INVALID_TABLE_ADDR;
476 
477 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
478 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
479 			efi.mps = config_tables[i].table;
480 			printk(" MPS=0x%lx", config_tables[i].table);
481 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
482 			efi.acpi20 = config_tables[i].table;
483 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
484 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
485 			efi.acpi = config_tables[i].table;
486 			printk(" ACPI=0x%lx", config_tables[i].table);
487 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
488 			efi.smbios = config_tables[i].table;
489 			printk(" SMBIOS=0x%lx", config_tables[i].table);
490 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
491 			efi.sal_systab = config_tables[i].table;
492 			printk(" SALsystab=0x%lx", config_tables[i].table);
493 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
494 			efi.hcdp = config_tables[i].table;
495 			printk(" HCDP=0x%lx", config_tables[i].table);
496 		}
497 	}
498 	printk("\n");
499 
500 	runtime = __va(efi.systab->runtime);
501 	efi.get_time = phys_get_time;
502 	efi.set_time = phys_set_time;
503 	efi.get_wakeup_time = phys_get_wakeup_time;
504 	efi.set_wakeup_time = phys_set_wakeup_time;
505 	efi.get_variable = phys_get_variable;
506 	efi.get_next_variable = phys_get_next_variable;
507 	efi.set_variable = phys_set_variable;
508 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
509 	efi.reset_system = phys_reset_system;
510 
511 	efi_map_start = __va(ia64_boot_param->efi_memmap);
512 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
513 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
514 
515 #if EFI_DEBUG
516 	/* print EFI memory map: */
517 	{
518 		efi_memory_desc_t *md;
519 		void *p;
520 
521 		for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
522 			md = p;
523 			printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
524 			       i, md->type, md->attribute, md->phys_addr,
525 			       md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
526 			       md->num_pages >> (20 - EFI_PAGE_SHIFT));
527 		}
528 	}
529 #endif
530 
531 	efi_map_pal_code();
532 	efi_enter_virtual_mode();
533 }
534 
535 void
536 efi_enter_virtual_mode (void)
537 {
538 	void *efi_map_start, *efi_map_end, *p;
539 	efi_memory_desc_t *md;
540 	efi_status_t status;
541 	u64 efi_desc_size;
542 
543 	efi_map_start = __va(ia64_boot_param->efi_memmap);
544 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
545 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
546 
547 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
548 		md = p;
549 		if (md->attribute & EFI_MEMORY_RUNTIME) {
550 			/*
551 			 * Some descriptors have multiple bits set, so the order of
552 			 * the tests is relevant.
553 			 */
554 			if (md->attribute & EFI_MEMORY_WB) {
555 				md->virt_addr = (u64) __va(md->phys_addr);
556 			} else if (md->attribute & EFI_MEMORY_UC) {
557 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
558 			} else if (md->attribute & EFI_MEMORY_WC) {
559 #if 0
560 				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
561 									   | _PAGE_D
562 									   | _PAGE_MA_WC
563 									   | _PAGE_PL_0
564 									   | _PAGE_AR_RW));
565 #else
566 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
567 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
568 #endif
569 			} else if (md->attribute & EFI_MEMORY_WT) {
570 #if 0
571 				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
572 									   | _PAGE_D | _PAGE_MA_WT
573 									   | _PAGE_PL_0
574 									   | _PAGE_AR_RW));
575 #else
576 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
577 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
578 #endif
579 			}
580 		}
581 	}
582 
583 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
584 			       ia64_boot_param->efi_memmap_size,
585 			       efi_desc_size, ia64_boot_param->efi_memdesc_version,
586 			       ia64_boot_param->efi_memmap);
587 	if (status != EFI_SUCCESS) {
588 		printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
589 		       "(status=%lu)\n", status);
590 		return;
591 	}
592 
593 	/*
594 	 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
595 	 */
596 	efi.get_time = virt_get_time;
597 	efi.set_time = virt_set_time;
598 	efi.get_wakeup_time = virt_get_wakeup_time;
599 	efi.set_wakeup_time = virt_set_wakeup_time;
600 	efi.get_variable = virt_get_variable;
601 	efi.get_next_variable = virt_get_next_variable;
602 	efi.set_variable = virt_set_variable;
603 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
604 	efi.reset_system = virt_reset_system;
605 }
606 
607 /*
608  * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
609  * this type, other I/O port ranges should be described via ACPI.
610  */
611 u64
612 efi_get_iobase (void)
613 {
614 	void *efi_map_start, *efi_map_end, *p;
615 	efi_memory_desc_t *md;
616 	u64 efi_desc_size;
617 
618 	efi_map_start = __va(ia64_boot_param->efi_memmap);
619 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
620 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
621 
622 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
623 		md = p;
624 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
625 			if (md->attribute & EFI_MEMORY_UC)
626 				return md->phys_addr;
627 		}
628 	}
629 	return 0;
630 }
631 
632 static struct kern_memdesc *
633 kern_memory_descriptor (unsigned long phys_addr)
634 {
635 	struct kern_memdesc *md;
636 
637 	for (md = kern_memmap; md->start != ~0UL; md++) {
638 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
639 			 return md;
640 	}
641 	return NULL;
642 }
643 
644 static efi_memory_desc_t *
645 efi_memory_descriptor (unsigned long phys_addr)
646 {
647 	void *efi_map_start, *efi_map_end, *p;
648 	efi_memory_desc_t *md;
649 	u64 efi_desc_size;
650 
651 	efi_map_start = __va(ia64_boot_param->efi_memmap);
652 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
653 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
654 
655 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
656 		md = p;
657 
658 		if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
659 			 return md;
660 	}
661 	return NULL;
662 }
663 
664 static int
665 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
666 {
667 	void *efi_map_start, *efi_map_end, *p;
668 	efi_memory_desc_t *md;
669 	u64 efi_desc_size;
670 	unsigned long end;
671 
672 	efi_map_start = __va(ia64_boot_param->efi_memmap);
673 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
674 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
675 
676 	end = phys_addr + size;
677 
678 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
679 		md = p;
680 
681 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
682 			return 1;
683 	}
684 	return 0;
685 }
686 
687 u32
688 efi_mem_type (unsigned long phys_addr)
689 {
690 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
691 
692 	if (md)
693 		return md->type;
694 	return 0;
695 }
696 
697 u64
698 efi_mem_attributes (unsigned long phys_addr)
699 {
700 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
701 
702 	if (md)
703 		return md->attribute;
704 	return 0;
705 }
706 EXPORT_SYMBOL(efi_mem_attributes);
707 
708 u64
709 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
710 {
711 	unsigned long end = phys_addr + size;
712 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
713 	u64 attr;
714 
715 	if (!md)
716 		return 0;
717 
718 	/*
719 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
720 	 * the kernel that firmware needs this region mapped.
721 	 */
722 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
723 	do {
724 		unsigned long md_end = efi_md_end(md);
725 
726 		if (end <= md_end)
727 			return attr;
728 
729 		md = efi_memory_descriptor(md_end);
730 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
731 			return 0;
732 	} while (md);
733 	return 0;
734 }
735 
736 u64
737 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
738 {
739 	unsigned long end = phys_addr + size;
740 	struct kern_memdesc *md;
741 	u64 attr;
742 
743 	/*
744 	 * This is a hack for ioremap calls before we set up kern_memmap.
745 	 * Maybe we should do efi_memmap_init() earlier instead.
746 	 */
747 	if (!kern_memmap) {
748 		attr = efi_mem_attribute(phys_addr, size);
749 		if (attr & EFI_MEMORY_WB)
750 			return EFI_MEMORY_WB;
751 		return 0;
752 	}
753 
754 	md = kern_memory_descriptor(phys_addr);
755 	if (!md)
756 		return 0;
757 
758 	attr = md->attribute;
759 	do {
760 		unsigned long md_end = kmd_end(md);
761 
762 		if (end <= md_end)
763 			return attr;
764 
765 		md = kern_memory_descriptor(md_end);
766 		if (!md || md->attribute != attr)
767 			return 0;
768 	} while (md);
769 	return 0;
770 }
771 EXPORT_SYMBOL(kern_mem_attribute);
772 
773 int
774 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
775 {
776 	u64 attr;
777 
778 	/*
779 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
780 	 * uses a granule-sized kernel identity mapping.  It's really
781 	 * only safe to do this for regions in kern_memmap.  For more
782 	 * details, see Documentation/ia64/aliasing.txt.
783 	 */
784 	attr = kern_mem_attribute(phys_addr, size);
785 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
786 		return 1;
787 	return 0;
788 }
789 
790 int
791 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
792 {
793 	unsigned long phys_addr = pfn << PAGE_SHIFT;
794 	u64 attr;
795 
796 	attr = efi_mem_attribute(phys_addr, size);
797 
798 	/*
799 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
800 	 * granule, but the entire region we're mapping must support the same
801 	 * attribute.
802 	 */
803 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
804 		return 1;
805 
806 	/*
807 	 * Intel firmware doesn't tell us about all the MMIO regions, so
808 	 * in general we have to allow mmap requests.  But if EFI *does*
809 	 * tell us about anything inside this region, we should deny it.
810 	 * The user can always map a smaller region to avoid the overlap.
811 	 */
812 	if (efi_memmap_intersects(phys_addr, size))
813 		return 0;
814 
815 	return 1;
816 }
817 
818 pgprot_t
819 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
820 		     pgprot_t vma_prot)
821 {
822 	unsigned long phys_addr = pfn << PAGE_SHIFT;
823 	u64 attr;
824 
825 	/*
826 	 * For /dev/mem mmap, we use user mappings, but if the region is
827 	 * in kern_memmap (and hence may be covered by a kernel mapping),
828 	 * we must use the same attribute as the kernel mapping.
829 	 */
830 	attr = kern_mem_attribute(phys_addr, size);
831 	if (attr & EFI_MEMORY_WB)
832 		return pgprot_cacheable(vma_prot);
833 	else if (attr & EFI_MEMORY_UC)
834 		return pgprot_noncached(vma_prot);
835 
836 	/*
837 	 * Some chipsets don't support UC access to memory.  If
838 	 * WB is supported, we prefer that.
839 	 */
840 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
841 		return pgprot_cacheable(vma_prot);
842 
843 	return pgprot_noncached(vma_prot);
844 }
845 
846 int __init
847 efi_uart_console_only(void)
848 {
849 	efi_status_t status;
850 	char *s, name[] = "ConOut";
851 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
852 	efi_char16_t *utf16, name_utf16[32];
853 	unsigned char data[1024];
854 	unsigned long size = sizeof(data);
855 	struct efi_generic_dev_path *hdr, *end_addr;
856 	int uart = 0;
857 
858 	/* Convert to UTF-16 */
859 	utf16 = name_utf16;
860 	s = name;
861 	while (*s)
862 		*utf16++ = *s++ & 0x7f;
863 	*utf16 = 0;
864 
865 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
866 	if (status != EFI_SUCCESS) {
867 		printk(KERN_ERR "No EFI %s variable?\n", name);
868 		return 0;
869 	}
870 
871 	hdr = (struct efi_generic_dev_path *) data;
872 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
873 	while (hdr < end_addr) {
874 		if (hdr->type == EFI_DEV_MSG &&
875 		    hdr->sub_type == EFI_DEV_MSG_UART)
876 			uart = 1;
877 		else if (hdr->type == EFI_DEV_END_PATH ||
878 			  hdr->type == EFI_DEV_END_PATH2) {
879 			if (!uart)
880 				return 0;
881 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
882 				return 1;
883 			uart = 0;
884 		}
885 		hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
886 	}
887 	printk(KERN_ERR "Malformed %s value\n", name);
888 	return 0;
889 }
890 
891 /*
892  * Look for the first granule aligned memory descriptor memory
893  * that is big enough to hold EFI memory map. Make sure this
894  * descriptor is atleast granule sized so it does not get trimmed
895  */
896 struct kern_memdesc *
897 find_memmap_space (void)
898 {
899 	u64	contig_low=0, contig_high=0;
900 	u64	as = 0, ae;
901 	void *efi_map_start, *efi_map_end, *p, *q;
902 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
903 	u64	space_needed, efi_desc_size;
904 	unsigned long total_mem = 0;
905 
906 	efi_map_start = __va(ia64_boot_param->efi_memmap);
907 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
908 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
909 
910 	/*
911 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
912 	 * (if every entry has a WB part in the middle, and UC head and tail),
913 	 * plus one for the end marker.
914 	 */
915 	space_needed = sizeof(kern_memdesc_t) *
916 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
917 
918 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
919 		md = p;
920 		if (!efi_wb(md)) {
921 			continue;
922 		}
923 		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
924 			contig_low = GRANULEROUNDUP(md->phys_addr);
925 			contig_high = efi_md_end(md);
926 			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
927 				check_md = q;
928 				if (!efi_wb(check_md))
929 					break;
930 				if (contig_high != check_md->phys_addr)
931 					break;
932 				contig_high = efi_md_end(check_md);
933 			}
934 			contig_high = GRANULEROUNDDOWN(contig_high);
935 		}
936 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
937 			continue;
938 
939 		/* Round ends inward to granule boundaries */
940 		as = max(contig_low, md->phys_addr);
941 		ae = min(contig_high, efi_md_end(md));
942 
943 		/* keep within max_addr= and min_addr= command line arg */
944 		as = max(as, min_addr);
945 		ae = min(ae, max_addr);
946 		if (ae <= as)
947 			continue;
948 
949 		/* avoid going over mem= command line arg */
950 		if (total_mem + (ae - as) > mem_limit)
951 			ae -= total_mem + (ae - as) - mem_limit;
952 
953 		if (ae <= as)
954 			continue;
955 
956 		if (ae - as > space_needed)
957 			break;
958 	}
959 	if (p >= efi_map_end)
960 		panic("Can't allocate space for kernel memory descriptors");
961 
962 	return __va(as);
963 }
964 
965 /*
966  * Walk the EFI memory map and gather all memory available for kernel
967  * to use.  We can allocate partial granules only if the unavailable
968  * parts exist, and are WB.
969  */
970 void
971 efi_memmap_init(unsigned long *s, unsigned long *e)
972 {
973 	struct kern_memdesc *k, *prev = NULL;
974 	u64	contig_low=0, contig_high=0;
975 	u64	as, ae, lim;
976 	void *efi_map_start, *efi_map_end, *p, *q;
977 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
978 	u64	efi_desc_size;
979 	unsigned long total_mem = 0;
980 
981 	k = kern_memmap = find_memmap_space();
982 
983 	efi_map_start = __va(ia64_boot_param->efi_memmap);
984 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
985 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
986 
987 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
988 		md = p;
989 		if (!efi_wb(md)) {
990 			if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
991 				    	   md->type == EFI_BOOT_SERVICES_DATA)) {
992 				k->attribute = EFI_MEMORY_UC;
993 				k->start = md->phys_addr;
994 				k->num_pages = md->num_pages;
995 				k++;
996 			}
997 			continue;
998 		}
999 		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
1000 			contig_low = GRANULEROUNDUP(md->phys_addr);
1001 			contig_high = efi_md_end(md);
1002 			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
1003 				check_md = q;
1004 				if (!efi_wb(check_md))
1005 					break;
1006 				if (contig_high != check_md->phys_addr)
1007 					break;
1008 				contig_high = efi_md_end(check_md);
1009 			}
1010 			contig_high = GRANULEROUNDDOWN(contig_high);
1011 		}
1012 		if (!is_memory_available(md))
1013 			continue;
1014 
1015 #ifdef CONFIG_CRASH_DUMP
1016 		/* saved_max_pfn should ignore max_addr= command line arg */
1017 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1018 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1019 #endif
1020 		/*
1021 		 * Round ends inward to granule boundaries
1022 		 * Give trimmings to uncached allocator
1023 		 */
1024 		if (md->phys_addr < contig_low) {
1025 			lim = min(efi_md_end(md), contig_low);
1026 			if (efi_uc(md)) {
1027 				if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
1028 				    kmd_end(k-1) == md->phys_addr) {
1029 					(k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1030 				} else {
1031 					k->attribute = EFI_MEMORY_UC;
1032 					k->start = md->phys_addr;
1033 					k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1034 					k++;
1035 				}
1036 			}
1037 			as = contig_low;
1038 		} else
1039 			as = md->phys_addr;
1040 
1041 		if (efi_md_end(md) > contig_high) {
1042 			lim = max(md->phys_addr, contig_high);
1043 			if (efi_uc(md)) {
1044 				if (lim == md->phys_addr && k > kern_memmap &&
1045 				    (k-1)->attribute == EFI_MEMORY_UC &&
1046 				    kmd_end(k-1) == md->phys_addr) {
1047 					(k-1)->num_pages += md->num_pages;
1048 				} else {
1049 					k->attribute = EFI_MEMORY_UC;
1050 					k->start = lim;
1051 					k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1052 					k++;
1053 				}
1054 			}
1055 			ae = contig_high;
1056 		} else
1057 			ae = efi_md_end(md);
1058 
1059 		/* keep within max_addr= and min_addr= command line arg */
1060 		as = max(as, min_addr);
1061 		ae = min(ae, max_addr);
1062 		if (ae <= as)
1063 			continue;
1064 
1065 		/* avoid going over mem= command line arg */
1066 		if (total_mem + (ae - as) > mem_limit)
1067 			ae -= total_mem + (ae - as) - mem_limit;
1068 
1069 		if (ae <= as)
1070 			continue;
1071 		if (prev && kmd_end(prev) == md->phys_addr) {
1072 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1073 			total_mem += ae - as;
1074 			continue;
1075 		}
1076 		k->attribute = EFI_MEMORY_WB;
1077 		k->start = as;
1078 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1079 		total_mem += ae - as;
1080 		prev = k++;
1081 	}
1082 	k->start = ~0L; /* end-marker */
1083 
1084 	/* reserve the memory we are using for kern_memmap */
1085 	*s = (u64)kern_memmap;
1086 	*e = (u64)++k;
1087 }
1088 
1089 void
1090 efi_initialize_iomem_resources(struct resource *code_resource,
1091 			       struct resource *data_resource)
1092 {
1093 	struct resource *res;
1094 	void *efi_map_start, *efi_map_end, *p;
1095 	efi_memory_desc_t *md;
1096 	u64 efi_desc_size;
1097 	char *name;
1098 	unsigned long flags;
1099 
1100 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1101 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1102 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1103 
1104 	res = NULL;
1105 
1106 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1107 		md = p;
1108 
1109 		if (md->num_pages == 0) /* should not happen */
1110 			continue;
1111 
1112 		flags = IORESOURCE_MEM;
1113 		switch (md->type) {
1114 
1115 			case EFI_MEMORY_MAPPED_IO:
1116 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1117 				continue;
1118 
1119 			case EFI_LOADER_CODE:
1120 			case EFI_LOADER_DATA:
1121 			case EFI_BOOT_SERVICES_DATA:
1122 			case EFI_BOOT_SERVICES_CODE:
1123 			case EFI_CONVENTIONAL_MEMORY:
1124 				if (md->attribute & EFI_MEMORY_WP) {
1125 					name = "System ROM";
1126 					flags |= IORESOURCE_READONLY;
1127 				} else {
1128 					name = "System RAM";
1129 				}
1130 				break;
1131 
1132 			case EFI_ACPI_MEMORY_NVS:
1133 				name = "ACPI Non-volatile Storage";
1134 				flags |= IORESOURCE_BUSY;
1135 				break;
1136 
1137 			case EFI_UNUSABLE_MEMORY:
1138 				name = "reserved";
1139 				flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1140 				break;
1141 
1142 			case EFI_RESERVED_TYPE:
1143 			case EFI_RUNTIME_SERVICES_CODE:
1144 			case EFI_RUNTIME_SERVICES_DATA:
1145 			case EFI_ACPI_RECLAIM_MEMORY:
1146 			default:
1147 				name = "reserved";
1148 				flags |= IORESOURCE_BUSY;
1149 				break;
1150 		}
1151 
1152 		if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1153 			printk(KERN_ERR "failed to alocate resource for iomem\n");
1154 			return;
1155 		}
1156 
1157 		res->name = name;
1158 		res->start = md->phys_addr;
1159 		res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1160 		res->flags = flags;
1161 
1162 		if (insert_resource(&iomem_resource, res) < 0)
1163 			kfree(res);
1164 		else {
1165 			/*
1166 			 * We don't know which region contains
1167 			 * kernel data so we try it repeatedly and
1168 			 * let the resource manager test it.
1169 			 */
1170 			insert_resource(res, code_resource);
1171 			insert_resource(res, data_resource);
1172 #ifdef CONFIG_KEXEC
1173                         insert_resource(res, &efi_memmap_res);
1174                         insert_resource(res, &boot_param_res);
1175 			if (crashk_res.end > crashk_res.start)
1176 				insert_resource(res, &crashk_res);
1177 #endif
1178 		}
1179 	}
1180 }
1181 
1182 #ifdef CONFIG_KEXEC
1183 /* find a block of memory aligned to 64M exclude reserved regions
1184    rsvd_regions are sorted
1185  */
1186 unsigned long __init
1187 kdump_find_rsvd_region (unsigned long size,
1188 		struct rsvd_region *r, int n)
1189 {
1190   int i;
1191   u64 start, end;
1192   u64 alignment = 1UL << _PAGE_SIZE_64M;
1193   void *efi_map_start, *efi_map_end, *p;
1194   efi_memory_desc_t *md;
1195   u64 efi_desc_size;
1196 
1197   efi_map_start = __va(ia64_boot_param->efi_memmap);
1198   efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1199   efi_desc_size = ia64_boot_param->efi_memdesc_size;
1200 
1201   for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1202 	  md = p;
1203 	  if (!efi_wb(md))
1204 		  continue;
1205 	  start = ALIGN(md->phys_addr, alignment);
1206 	  end = efi_md_end(md);
1207 	  for (i = 0; i < n; i++) {
1208 		if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1209 			if (__pa(r[i].start) > start + size)
1210 				return start;
1211 			start = ALIGN(__pa(r[i].end), alignment);
1212 			if (i < n-1 && __pa(r[i+1].start) < start + size)
1213 				continue;
1214 			else
1215 				break;
1216 		}
1217 	  }
1218 	  if (end > start + size)
1219 		return start;
1220   }
1221 
1222   printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1223 	size);
1224   return ~0UL;
1225 }
1226 #endif
1227 
1228 #ifdef CONFIG_PROC_VMCORE
1229 /* locate the size find a the descriptor at a certain address */
1230 unsigned long
1231 vmcore_find_descriptor_size (unsigned long address)
1232 {
1233 	void *efi_map_start, *efi_map_end, *p;
1234 	efi_memory_desc_t *md;
1235 	u64 efi_desc_size;
1236 	unsigned long ret = 0;
1237 
1238 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1239 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1240 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1241 
1242 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1243 		md = p;
1244 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1245 		    && md->phys_addr == address) {
1246 			ret = efi_md_size(md);
1247 			break;
1248 		}
1249 	}
1250 
1251 	if (ret == 0)
1252 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1253 
1254 	return ret;
1255 }
1256 #endif
1257