1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Extensible Firmware Interface 4 * 5 * Based on Extensible Firmware Interface Specification version 0.9 6 * April 30, 1999 7 * 8 * Copyright (C) 1999 VA Linux Systems 9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 10 * Copyright (C) 1999-2003 Hewlett-Packard Co. 11 * David Mosberger-Tang <davidm@hpl.hp.com> 12 * Stephane Eranian <eranian@hpl.hp.com> 13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. 14 * Bjorn Helgaas <bjorn.helgaas@hp.com> 15 * 16 * All EFI Runtime Services are not implemented yet as EFI only 17 * supports physical mode addressing on SoftSDV. This is to be fixed 18 * in a future version. --drummond 1999-07-20 19 * 20 * Implemented EFI runtime services and virtual mode calls. --davidm 21 * 22 * Goutham Rao: <goutham.rao@intel.com> 23 * Skip non-WB memory and ignore empty memory ranges. 24 */ 25 #include <linux/module.h> 26 #include <linux/memblock.h> 27 #include <linux/crash_dump.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/types.h> 31 #include <linux/slab.h> 32 #include <linux/time.h> 33 #include <linux/efi.h> 34 #include <linux/kexec.h> 35 #include <linux/mm.h> 36 37 #include <asm/io.h> 38 #include <asm/kregs.h> 39 #include <asm/meminit.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 #include <asm/mca.h> 43 #include <asm/setup.h> 44 #include <asm/tlbflush.h> 45 46 #define EFI_DEBUG 0 47 48 #define ESI_TABLE_GUID \ 49 EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3, \ 50 0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4) 51 52 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR; 53 static __initdata unsigned long palo_phys; 54 55 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR; 56 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR; 57 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR; 58 59 static const efi_config_table_type_t arch_tables[] __initconst = { 60 {ESI_TABLE_GUID, "ESI", &esi_phys}, 61 {HCDP_TABLE_GUID, "HCDP", &hcdp_phys}, 62 {MPS_TABLE_GUID, "MPS", &mps_phys}, 63 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys}, 64 {SAL_SYSTEM_TABLE_GUID, "SALsystab", &sal_systab_phys}, 65 {NULL_GUID, NULL, 0}, 66 }; 67 68 extern efi_status_t efi_call_phys (void *, ...); 69 70 static efi_runtime_services_t *runtime; 71 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; 72 73 #define efi_call_virt(f, args...) (*(f))(args) 74 75 #define STUB_GET_TIME(prefix, adjust_arg) \ 76 static efi_status_t \ 77 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 78 { \ 79 struct ia64_fpreg fr[6]; \ 80 efi_time_cap_t *atc = NULL; \ 81 efi_status_t ret; \ 82 \ 83 if (tc) \ 84 atc = adjust_arg(tc); \ 85 ia64_save_scratch_fpregs(fr); \ 86 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ 87 adjust_arg(tm), atc); \ 88 ia64_load_scratch_fpregs(fr); \ 89 return ret; \ 90 } 91 92 #define STUB_SET_TIME(prefix, adjust_arg) \ 93 static efi_status_t \ 94 prefix##_set_time (efi_time_t *tm) \ 95 { \ 96 struct ia64_fpreg fr[6]; \ 97 efi_status_t ret; \ 98 \ 99 ia64_save_scratch_fpregs(fr); \ 100 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ 101 adjust_arg(tm)); \ 102 ia64_load_scratch_fpregs(fr); \ 103 return ret; \ 104 } 105 106 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 107 static efi_status_t \ 108 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ 109 efi_time_t *tm) \ 110 { \ 111 struct ia64_fpreg fr[6]; \ 112 efi_status_t ret; \ 113 \ 114 ia64_save_scratch_fpregs(fr); \ 115 ret = efi_call_##prefix( \ 116 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 117 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 118 ia64_load_scratch_fpregs(fr); \ 119 return ret; \ 120 } 121 122 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 123 static efi_status_t \ 124 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 125 { \ 126 struct ia64_fpreg fr[6]; \ 127 efi_time_t *atm = NULL; \ 128 efi_status_t ret; \ 129 \ 130 if (tm) \ 131 atm = adjust_arg(tm); \ 132 ia64_save_scratch_fpregs(fr); \ 133 ret = efi_call_##prefix( \ 134 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 135 enabled, atm); \ 136 ia64_load_scratch_fpregs(fr); \ 137 return ret; \ 138 } 139 140 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 141 static efi_status_t \ 142 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 143 unsigned long *data_size, void *data) \ 144 { \ 145 struct ia64_fpreg fr[6]; \ 146 u32 *aattr = NULL; \ 147 efi_status_t ret; \ 148 \ 149 if (attr) \ 150 aattr = adjust_arg(attr); \ 151 ia64_save_scratch_fpregs(fr); \ 152 ret = efi_call_##prefix( \ 153 (efi_get_variable_t *) __va(runtime->get_variable), \ 154 adjust_arg(name), adjust_arg(vendor), aattr, \ 155 adjust_arg(data_size), adjust_arg(data)); \ 156 ia64_load_scratch_fpregs(fr); \ 157 return ret; \ 158 } 159 160 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 161 static efi_status_t \ 162 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ 163 efi_guid_t *vendor) \ 164 { \ 165 struct ia64_fpreg fr[6]; \ 166 efi_status_t ret; \ 167 \ 168 ia64_save_scratch_fpregs(fr); \ 169 ret = efi_call_##prefix( \ 170 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 171 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 172 ia64_load_scratch_fpregs(fr); \ 173 return ret; \ 174 } 175 176 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 177 static efi_status_t \ 178 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ 179 u32 attr, unsigned long data_size, \ 180 void *data) \ 181 { \ 182 struct ia64_fpreg fr[6]; \ 183 efi_status_t ret; \ 184 \ 185 ia64_save_scratch_fpregs(fr); \ 186 ret = efi_call_##prefix( \ 187 (efi_set_variable_t *) __va(runtime->set_variable), \ 188 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 189 adjust_arg(data)); \ 190 ia64_load_scratch_fpregs(fr); \ 191 return ret; \ 192 } 193 194 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 195 static efi_status_t \ 196 prefix##_get_next_high_mono_count (u32 *count) \ 197 { \ 198 struct ia64_fpreg fr[6]; \ 199 efi_status_t ret; \ 200 \ 201 ia64_save_scratch_fpregs(fr); \ 202 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 203 __va(runtime->get_next_high_mono_count), \ 204 adjust_arg(count)); \ 205 ia64_load_scratch_fpregs(fr); \ 206 return ret; \ 207 } 208 209 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 210 static void \ 211 prefix##_reset_system (int reset_type, efi_status_t status, \ 212 unsigned long data_size, efi_char16_t *data) \ 213 { \ 214 struct ia64_fpreg fr[6]; \ 215 efi_char16_t *adata = NULL; \ 216 \ 217 if (data) \ 218 adata = adjust_arg(data); \ 219 \ 220 ia64_save_scratch_fpregs(fr); \ 221 efi_call_##prefix( \ 222 (efi_reset_system_t *) __va(runtime->reset_system), \ 223 reset_type, status, data_size, adata); \ 224 /* should not return, but just in case... */ \ 225 ia64_load_scratch_fpregs(fr); \ 226 } 227 228 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 229 230 STUB_GET_TIME(phys, phys_ptr) 231 STUB_SET_TIME(phys, phys_ptr) 232 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 233 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 234 STUB_GET_VARIABLE(phys, phys_ptr) 235 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 236 STUB_SET_VARIABLE(phys, phys_ptr) 237 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 238 STUB_RESET_SYSTEM(phys, phys_ptr) 239 240 #define id(arg) arg 241 242 STUB_GET_TIME(virt, id) 243 STUB_SET_TIME(virt, id) 244 STUB_GET_WAKEUP_TIME(virt, id) 245 STUB_SET_WAKEUP_TIME(virt, id) 246 STUB_GET_VARIABLE(virt, id) 247 STUB_GET_NEXT_VARIABLE(virt, id) 248 STUB_SET_VARIABLE(virt, id) 249 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 250 STUB_RESET_SYSTEM(virt, id) 251 252 void 253 efi_gettimeofday (struct timespec64 *ts) 254 { 255 efi_time_t tm; 256 257 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { 258 memset(ts, 0, sizeof(*ts)); 259 return; 260 } 261 262 ts->tv_sec = mktime64(tm.year, tm.month, tm.day, 263 tm.hour, tm.minute, tm.second); 264 ts->tv_nsec = tm.nanosecond; 265 } 266 267 static int 268 is_memory_available (efi_memory_desc_t *md) 269 { 270 if (!(md->attribute & EFI_MEMORY_WB)) 271 return 0; 272 273 switch (md->type) { 274 case EFI_LOADER_CODE: 275 case EFI_LOADER_DATA: 276 case EFI_BOOT_SERVICES_CODE: 277 case EFI_BOOT_SERVICES_DATA: 278 case EFI_CONVENTIONAL_MEMORY: 279 return 1; 280 } 281 return 0; 282 } 283 284 typedef struct kern_memdesc { 285 u64 attribute; 286 u64 start; 287 u64 num_pages; 288 } kern_memdesc_t; 289 290 static kern_memdesc_t *kern_memmap; 291 292 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) 293 294 static inline u64 295 kmd_end(kern_memdesc_t *kmd) 296 { 297 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); 298 } 299 300 static inline u64 301 efi_md_end(efi_memory_desc_t *md) 302 { 303 return (md->phys_addr + efi_md_size(md)); 304 } 305 306 static inline int 307 efi_wb(efi_memory_desc_t *md) 308 { 309 return (md->attribute & EFI_MEMORY_WB); 310 } 311 312 static inline int 313 efi_uc(efi_memory_desc_t *md) 314 { 315 return (md->attribute & EFI_MEMORY_UC); 316 } 317 318 static void 319 walk (efi_freemem_callback_t callback, void *arg, u64 attr) 320 { 321 kern_memdesc_t *k; 322 u64 start, end, voff; 323 324 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; 325 for (k = kern_memmap; k->start != ~0UL; k++) { 326 if (k->attribute != attr) 327 continue; 328 start = PAGE_ALIGN(k->start); 329 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; 330 if (start < end) 331 if ((*callback)(start + voff, end + voff, arg) < 0) 332 return; 333 } 334 } 335 336 /* 337 * Walk the EFI memory map and call CALLBACK once for each EFI memory 338 * descriptor that has memory that is available for OS use. 339 */ 340 void 341 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 342 { 343 walk(callback, arg, EFI_MEMORY_WB); 344 } 345 346 /* 347 * Walk the EFI memory map and call CALLBACK once for each EFI memory 348 * descriptor that has memory that is available for uncached allocator. 349 */ 350 void 351 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) 352 { 353 walk(callback, arg, EFI_MEMORY_UC); 354 } 355 356 /* 357 * Look for the PAL_CODE region reported by EFI and map it using an 358 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 359 * Abstraction Layer chapter 11 in ADAG 360 */ 361 void * 362 efi_get_pal_addr (void) 363 { 364 void *efi_map_start, *efi_map_end, *p; 365 efi_memory_desc_t *md; 366 u64 efi_desc_size; 367 int pal_code_count = 0; 368 u64 vaddr, mask; 369 370 efi_map_start = __va(ia64_boot_param->efi_memmap); 371 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 372 efi_desc_size = ia64_boot_param->efi_memdesc_size; 373 374 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 375 md = p; 376 if (md->type != EFI_PAL_CODE) 377 continue; 378 379 if (++pal_code_count > 1) { 380 printk(KERN_ERR "Too many EFI Pal Code memory ranges, " 381 "dropped @ %llx\n", md->phys_addr); 382 continue; 383 } 384 /* 385 * The only ITLB entry in region 7 that is used is the one 386 * installed by __start(). That entry covers a 64MB range. 387 */ 388 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 389 vaddr = PAGE_OFFSET + md->phys_addr; 390 391 /* 392 * We must check that the PAL mapping won't overlap with the 393 * kernel mapping. 394 * 395 * PAL code is guaranteed to be aligned on a power of 2 between 396 * 4k and 256KB and that only one ITR is needed to map it. This 397 * implies that the PAL code is always aligned on its size, 398 * i.e., the closest matching page size supported by the TLB. 399 * Therefore PAL code is guaranteed never to cross a 64MB unless 400 * it is bigger than 64MB (very unlikely!). So for now the 401 * following test is enough to determine whether or not we need 402 * a dedicated ITR for the PAL code. 403 */ 404 if ((vaddr & mask) == (KERNEL_START & mask)) { 405 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 406 __func__); 407 continue; 408 } 409 410 if (efi_md_size(md) > IA64_GRANULE_SIZE) 411 panic("Whoa! PAL code size bigger than a granule!"); 412 413 #if EFI_DEBUG 414 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 415 416 printk(KERN_INFO "CPU %d: mapping PAL code " 417 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 418 smp_processor_id(), md->phys_addr, 419 md->phys_addr + efi_md_size(md), 420 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 421 #endif 422 return __va(md->phys_addr); 423 } 424 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", 425 __func__); 426 return NULL; 427 } 428 429 430 static u8 __init palo_checksum(u8 *buffer, u32 length) 431 { 432 u8 sum = 0; 433 u8 *end = buffer + length; 434 435 while (buffer < end) 436 sum = (u8) (sum + *(buffer++)); 437 438 return sum; 439 } 440 441 /* 442 * Parse and handle PALO table which is published at: 443 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf 444 */ 445 static void __init handle_palo(unsigned long phys_addr) 446 { 447 struct palo_table *palo = __va(phys_addr); 448 u8 checksum; 449 450 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { 451 printk(KERN_INFO "PALO signature incorrect.\n"); 452 return; 453 } 454 455 checksum = palo_checksum((u8 *)palo, palo->length); 456 if (checksum) { 457 printk(KERN_INFO "PALO checksum incorrect.\n"); 458 return; 459 } 460 461 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); 462 } 463 464 void 465 efi_map_pal_code (void) 466 { 467 void *pal_vaddr = efi_get_pal_addr (); 468 u64 psr; 469 470 if (!pal_vaddr) 471 return; 472 473 /* 474 * Cannot write to CRx with PSR.ic=1 475 */ 476 psr = ia64_clear_ic(); 477 ia64_itr(0x1, IA64_TR_PALCODE, 478 GRANULEROUNDDOWN((unsigned long) pal_vaddr), 479 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 480 IA64_GRANULE_SHIFT); 481 ia64_set_psr(psr); /* restore psr */ 482 } 483 484 void __init 485 efi_init (void) 486 { 487 const efi_system_table_t *efi_systab; 488 void *efi_map_start, *efi_map_end; 489 u64 efi_desc_size; 490 char *cp; 491 492 set_bit(EFI_BOOT, &efi.flags); 493 set_bit(EFI_64BIT, &efi.flags); 494 495 /* 496 * It's too early to be able to use the standard kernel command line 497 * support... 498 */ 499 for (cp = boot_command_line; *cp; ) { 500 if (memcmp(cp, "mem=", 4) == 0) { 501 mem_limit = memparse(cp + 4, &cp); 502 } else if (memcmp(cp, "max_addr=", 9) == 0) { 503 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 504 } else if (memcmp(cp, "min_addr=", 9) == 0) { 505 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 506 } else { 507 while (*cp != ' ' && *cp) 508 ++cp; 509 while (*cp == ' ') 510 ++cp; 511 } 512 } 513 if (min_addr != 0UL) 514 printk(KERN_INFO "Ignoring memory below %lluMB\n", 515 min_addr >> 20); 516 if (max_addr != ~0UL) 517 printk(KERN_INFO "Ignoring memory above %lluMB\n", 518 max_addr >> 20); 519 520 efi_systab = __va(ia64_boot_param->efi_systab); 521 522 /* 523 * Verify the EFI Table 524 */ 525 if (efi_systab == NULL) 526 panic("Whoa! Can't find EFI system table.\n"); 527 if (efi_systab_check_header(&efi_systab->hdr, 1)) 528 panic("Whoa! EFI system table signature incorrect\n"); 529 530 efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor); 531 532 palo_phys = EFI_INVALID_TABLE_ADDR; 533 534 if (efi_config_parse_tables(__va(efi_systab->tables), 535 efi_systab->nr_tables, 536 arch_tables) != 0) 537 return; 538 539 if (palo_phys != EFI_INVALID_TABLE_ADDR) 540 handle_palo(palo_phys); 541 542 runtime = __va(efi_systab->runtime); 543 efi.get_time = phys_get_time; 544 efi.set_time = phys_set_time; 545 efi.get_wakeup_time = phys_get_wakeup_time; 546 efi.set_wakeup_time = phys_set_wakeup_time; 547 efi.get_variable = phys_get_variable; 548 efi.get_next_variable = phys_get_next_variable; 549 efi.set_variable = phys_set_variable; 550 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 551 efi.reset_system = phys_reset_system; 552 553 efi_map_start = __va(ia64_boot_param->efi_memmap); 554 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 555 efi_desc_size = ia64_boot_param->efi_memdesc_size; 556 557 #if EFI_DEBUG 558 /* print EFI memory map: */ 559 { 560 efi_memory_desc_t *md; 561 void *p; 562 563 for (i = 0, p = efi_map_start; p < efi_map_end; 564 ++i, p += efi_desc_size) 565 { 566 const char *unit; 567 unsigned long size; 568 char buf[64]; 569 570 md = p; 571 size = md->num_pages << EFI_PAGE_SHIFT; 572 573 if ((size >> 40) > 0) { 574 size >>= 40; 575 unit = "TB"; 576 } else if ((size >> 30) > 0) { 577 size >>= 30; 578 unit = "GB"; 579 } else if ((size >> 20) > 0) { 580 size >>= 20; 581 unit = "MB"; 582 } else { 583 size >>= 10; 584 unit = "KB"; 585 } 586 587 printk("mem%02d: %s " 588 "range=[0x%016lx-0x%016lx) (%4lu%s)\n", 589 i, efi_md_typeattr_format(buf, sizeof(buf), md), 590 md->phys_addr, 591 md->phys_addr + efi_md_size(md), size, unit); 592 } 593 } 594 #endif 595 596 efi_map_pal_code(); 597 efi_enter_virtual_mode(); 598 } 599 600 void 601 efi_enter_virtual_mode (void) 602 { 603 void *efi_map_start, *efi_map_end, *p; 604 efi_memory_desc_t *md; 605 efi_status_t status; 606 u64 efi_desc_size; 607 608 efi_map_start = __va(ia64_boot_param->efi_memmap); 609 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 610 efi_desc_size = ia64_boot_param->efi_memdesc_size; 611 612 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 613 md = p; 614 if (md->attribute & EFI_MEMORY_RUNTIME) { 615 /* 616 * Some descriptors have multiple bits set, so the 617 * order of the tests is relevant. 618 */ 619 if (md->attribute & EFI_MEMORY_WB) { 620 md->virt_addr = (u64) __va(md->phys_addr); 621 } else if (md->attribute & EFI_MEMORY_UC) { 622 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 623 } else if (md->attribute & EFI_MEMORY_WC) { 624 #if 0 625 md->virt_addr = ia64_remap(md->phys_addr, 626 (_PAGE_A | 627 _PAGE_P | 628 _PAGE_D | 629 _PAGE_MA_WC | 630 _PAGE_PL_0 | 631 _PAGE_AR_RW)); 632 #else 633 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 634 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 635 #endif 636 } else if (md->attribute & EFI_MEMORY_WT) { 637 #if 0 638 md->virt_addr = ia64_remap(md->phys_addr, 639 (_PAGE_A | 640 _PAGE_P | 641 _PAGE_D | 642 _PAGE_MA_WT | 643 _PAGE_PL_0 | 644 _PAGE_AR_RW)); 645 #else 646 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 647 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 648 #endif 649 } 650 } 651 } 652 653 status = efi_call_phys(__va(runtime->set_virtual_address_map), 654 ia64_boot_param->efi_memmap_size, 655 efi_desc_size, 656 ia64_boot_param->efi_memdesc_version, 657 ia64_boot_param->efi_memmap); 658 if (status != EFI_SUCCESS) { 659 printk(KERN_WARNING "warning: unable to switch EFI into " 660 "virtual mode (status=%lu)\n", status); 661 return; 662 } 663 664 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 665 666 /* 667 * Now that EFI is in virtual mode, we call the EFI functions more 668 * efficiently: 669 */ 670 efi.get_time = virt_get_time; 671 efi.set_time = virt_set_time; 672 efi.get_wakeup_time = virt_get_wakeup_time; 673 efi.set_wakeup_time = virt_set_wakeup_time; 674 efi.get_variable = virt_get_variable; 675 efi.get_next_variable = virt_get_next_variable; 676 efi.set_variable = virt_set_variable; 677 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 678 efi.reset_system = virt_reset_system; 679 } 680 681 /* 682 * Walk the EFI memory map looking for the I/O port range. There can only be 683 * one entry of this type, other I/O port ranges should be described via ACPI. 684 */ 685 u64 686 efi_get_iobase (void) 687 { 688 void *efi_map_start, *efi_map_end, *p; 689 efi_memory_desc_t *md; 690 u64 efi_desc_size; 691 692 efi_map_start = __va(ia64_boot_param->efi_memmap); 693 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 694 efi_desc_size = ia64_boot_param->efi_memdesc_size; 695 696 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 697 md = p; 698 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 699 if (md->attribute & EFI_MEMORY_UC) 700 return md->phys_addr; 701 } 702 } 703 return 0; 704 } 705 706 static struct kern_memdesc * 707 kern_memory_descriptor (unsigned long phys_addr) 708 { 709 struct kern_memdesc *md; 710 711 for (md = kern_memmap; md->start != ~0UL; md++) { 712 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) 713 return md; 714 } 715 return NULL; 716 } 717 718 static efi_memory_desc_t * 719 efi_memory_descriptor (unsigned long phys_addr) 720 { 721 void *efi_map_start, *efi_map_end, *p; 722 efi_memory_desc_t *md; 723 u64 efi_desc_size; 724 725 efi_map_start = __va(ia64_boot_param->efi_memmap); 726 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 727 efi_desc_size = ia64_boot_param->efi_memdesc_size; 728 729 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 730 md = p; 731 732 if (phys_addr - md->phys_addr < efi_md_size(md)) 733 return md; 734 } 735 return NULL; 736 } 737 738 static int 739 efi_memmap_intersects (unsigned long phys_addr, unsigned long size) 740 { 741 void *efi_map_start, *efi_map_end, *p; 742 efi_memory_desc_t *md; 743 u64 efi_desc_size; 744 unsigned long end; 745 746 efi_map_start = __va(ia64_boot_param->efi_memmap); 747 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 748 efi_desc_size = ia64_boot_param->efi_memdesc_size; 749 750 end = phys_addr + size; 751 752 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 753 md = p; 754 if (md->phys_addr < end && efi_md_end(md) > phys_addr) 755 return 1; 756 } 757 return 0; 758 } 759 760 int 761 efi_mem_type (unsigned long phys_addr) 762 { 763 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 764 765 if (md) 766 return md->type; 767 return -EINVAL; 768 } 769 770 u64 771 efi_mem_attributes (unsigned long phys_addr) 772 { 773 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 774 775 if (md) 776 return md->attribute; 777 return 0; 778 } 779 EXPORT_SYMBOL(efi_mem_attributes); 780 781 u64 782 efi_mem_attribute (unsigned long phys_addr, unsigned long size) 783 { 784 unsigned long end = phys_addr + size; 785 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 786 u64 attr; 787 788 if (!md) 789 return 0; 790 791 /* 792 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells 793 * the kernel that firmware needs this region mapped. 794 */ 795 attr = md->attribute & ~EFI_MEMORY_RUNTIME; 796 do { 797 unsigned long md_end = efi_md_end(md); 798 799 if (end <= md_end) 800 return attr; 801 802 md = efi_memory_descriptor(md_end); 803 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) 804 return 0; 805 } while (md); 806 return 0; /* never reached */ 807 } 808 809 u64 810 kern_mem_attribute (unsigned long phys_addr, unsigned long size) 811 { 812 unsigned long end = phys_addr + size; 813 struct kern_memdesc *md; 814 u64 attr; 815 816 /* 817 * This is a hack for ioremap calls before we set up kern_memmap. 818 * Maybe we should do efi_memmap_init() earlier instead. 819 */ 820 if (!kern_memmap) { 821 attr = efi_mem_attribute(phys_addr, size); 822 if (attr & EFI_MEMORY_WB) 823 return EFI_MEMORY_WB; 824 return 0; 825 } 826 827 md = kern_memory_descriptor(phys_addr); 828 if (!md) 829 return 0; 830 831 attr = md->attribute; 832 do { 833 unsigned long md_end = kmd_end(md); 834 835 if (end <= md_end) 836 return attr; 837 838 md = kern_memory_descriptor(md_end); 839 if (!md || md->attribute != attr) 840 return 0; 841 } while (md); 842 return 0; /* never reached */ 843 } 844 845 int 846 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size) 847 { 848 u64 attr; 849 850 /* 851 * /dev/mem reads and writes use copy_to_user(), which implicitly 852 * uses a granule-sized kernel identity mapping. It's really 853 * only safe to do this for regions in kern_memmap. For more 854 * details, see Documentation/ia64/aliasing.rst. 855 */ 856 attr = kern_mem_attribute(phys_addr, size); 857 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 858 return 1; 859 return 0; 860 } 861 862 int 863 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) 864 { 865 unsigned long phys_addr = pfn << PAGE_SHIFT; 866 u64 attr; 867 868 attr = efi_mem_attribute(phys_addr, size); 869 870 /* 871 * /dev/mem mmap uses normal user pages, so we don't need the entire 872 * granule, but the entire region we're mapping must support the same 873 * attribute. 874 */ 875 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 876 return 1; 877 878 /* 879 * Intel firmware doesn't tell us about all the MMIO regions, so 880 * in general we have to allow mmap requests. But if EFI *does* 881 * tell us about anything inside this region, we should deny it. 882 * The user can always map a smaller region to avoid the overlap. 883 */ 884 if (efi_memmap_intersects(phys_addr, size)) 885 return 0; 886 887 return 1; 888 } 889 890 pgprot_t 891 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, 892 pgprot_t vma_prot) 893 { 894 unsigned long phys_addr = pfn << PAGE_SHIFT; 895 u64 attr; 896 897 /* 898 * For /dev/mem mmap, we use user mappings, but if the region is 899 * in kern_memmap (and hence may be covered by a kernel mapping), 900 * we must use the same attribute as the kernel mapping. 901 */ 902 attr = kern_mem_attribute(phys_addr, size); 903 if (attr & EFI_MEMORY_WB) 904 return pgprot_cacheable(vma_prot); 905 else if (attr & EFI_MEMORY_UC) 906 return pgprot_noncached(vma_prot); 907 908 /* 909 * Some chipsets don't support UC access to memory. If 910 * WB is supported, we prefer that. 911 */ 912 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) 913 return pgprot_cacheable(vma_prot); 914 915 return pgprot_noncached(vma_prot); 916 } 917 918 int __init 919 efi_uart_console_only(void) 920 { 921 efi_status_t status; 922 char *s, name[] = "ConOut"; 923 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 924 efi_char16_t *utf16, name_utf16[32]; 925 unsigned char data[1024]; 926 unsigned long size = sizeof(data); 927 struct efi_generic_dev_path *hdr, *end_addr; 928 int uart = 0; 929 930 /* Convert to UTF-16 */ 931 utf16 = name_utf16; 932 s = name; 933 while (*s) 934 *utf16++ = *s++ & 0x7f; 935 *utf16 = 0; 936 937 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 938 if (status != EFI_SUCCESS) { 939 printk(KERN_ERR "No EFI %s variable?\n", name); 940 return 0; 941 } 942 943 hdr = (struct efi_generic_dev_path *) data; 944 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 945 while (hdr < end_addr) { 946 if (hdr->type == EFI_DEV_MSG && 947 hdr->sub_type == EFI_DEV_MSG_UART) 948 uart = 1; 949 else if (hdr->type == EFI_DEV_END_PATH || 950 hdr->type == EFI_DEV_END_PATH2) { 951 if (!uart) 952 return 0; 953 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 954 return 1; 955 uart = 0; 956 } 957 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); 958 } 959 printk(KERN_ERR "Malformed %s value\n", name); 960 return 0; 961 } 962 963 /* 964 * Look for the first granule aligned memory descriptor memory 965 * that is big enough to hold EFI memory map. Make sure this 966 * descriptor is at least granule sized so it does not get trimmed 967 */ 968 struct kern_memdesc * 969 find_memmap_space (void) 970 { 971 u64 contig_low=0, contig_high=0; 972 u64 as = 0, ae; 973 void *efi_map_start, *efi_map_end, *p, *q; 974 efi_memory_desc_t *md, *pmd = NULL, *check_md; 975 u64 space_needed, efi_desc_size; 976 unsigned long total_mem = 0; 977 978 efi_map_start = __va(ia64_boot_param->efi_memmap); 979 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 980 efi_desc_size = ia64_boot_param->efi_memdesc_size; 981 982 /* 983 * Worst case: we need 3 kernel descriptors for each efi descriptor 984 * (if every entry has a WB part in the middle, and UC head and tail), 985 * plus one for the end marker. 986 */ 987 space_needed = sizeof(kern_memdesc_t) * 988 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); 989 990 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 991 md = p; 992 if (!efi_wb(md)) { 993 continue; 994 } 995 if (pmd == NULL || !efi_wb(pmd) || 996 efi_md_end(pmd) != md->phys_addr) { 997 contig_low = GRANULEROUNDUP(md->phys_addr); 998 contig_high = efi_md_end(md); 999 for (q = p + efi_desc_size; q < efi_map_end; 1000 q += efi_desc_size) { 1001 check_md = q; 1002 if (!efi_wb(check_md)) 1003 break; 1004 if (contig_high != check_md->phys_addr) 1005 break; 1006 contig_high = efi_md_end(check_md); 1007 } 1008 contig_high = GRANULEROUNDDOWN(contig_high); 1009 } 1010 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) 1011 continue; 1012 1013 /* Round ends inward to granule boundaries */ 1014 as = max(contig_low, md->phys_addr); 1015 ae = min(contig_high, efi_md_end(md)); 1016 1017 /* keep within max_addr= and min_addr= command line arg */ 1018 as = max(as, min_addr); 1019 ae = min(ae, max_addr); 1020 if (ae <= as) 1021 continue; 1022 1023 /* avoid going over mem= command line arg */ 1024 if (total_mem + (ae - as) > mem_limit) 1025 ae -= total_mem + (ae - as) - mem_limit; 1026 1027 if (ae <= as) 1028 continue; 1029 1030 if (ae - as > space_needed) 1031 break; 1032 } 1033 if (p >= efi_map_end) 1034 panic("Can't allocate space for kernel memory descriptors"); 1035 1036 return __va(as); 1037 } 1038 1039 /* 1040 * Walk the EFI memory map and gather all memory available for kernel 1041 * to use. We can allocate partial granules only if the unavailable 1042 * parts exist, and are WB. 1043 */ 1044 unsigned long 1045 efi_memmap_init(u64 *s, u64 *e) 1046 { 1047 struct kern_memdesc *k, *prev = NULL; 1048 u64 contig_low=0, contig_high=0; 1049 u64 as, ae, lim; 1050 void *efi_map_start, *efi_map_end, *p, *q; 1051 efi_memory_desc_t *md, *pmd = NULL, *check_md; 1052 u64 efi_desc_size; 1053 unsigned long total_mem = 0; 1054 1055 k = kern_memmap = find_memmap_space(); 1056 1057 efi_map_start = __va(ia64_boot_param->efi_memmap); 1058 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1059 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1060 1061 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 1062 md = p; 1063 if (!efi_wb(md)) { 1064 if (efi_uc(md) && 1065 (md->type == EFI_CONVENTIONAL_MEMORY || 1066 md->type == EFI_BOOT_SERVICES_DATA)) { 1067 k->attribute = EFI_MEMORY_UC; 1068 k->start = md->phys_addr; 1069 k->num_pages = md->num_pages; 1070 k++; 1071 } 1072 continue; 1073 } 1074 if (pmd == NULL || !efi_wb(pmd) || 1075 efi_md_end(pmd) != md->phys_addr) { 1076 contig_low = GRANULEROUNDUP(md->phys_addr); 1077 contig_high = efi_md_end(md); 1078 for (q = p + efi_desc_size; q < efi_map_end; 1079 q += efi_desc_size) { 1080 check_md = q; 1081 if (!efi_wb(check_md)) 1082 break; 1083 if (contig_high != check_md->phys_addr) 1084 break; 1085 contig_high = efi_md_end(check_md); 1086 } 1087 contig_high = GRANULEROUNDDOWN(contig_high); 1088 } 1089 if (!is_memory_available(md)) 1090 continue; 1091 1092 /* 1093 * Round ends inward to granule boundaries 1094 * Give trimmings to uncached allocator 1095 */ 1096 if (md->phys_addr < contig_low) { 1097 lim = min(efi_md_end(md), contig_low); 1098 if (efi_uc(md)) { 1099 if (k > kern_memmap && 1100 (k-1)->attribute == EFI_MEMORY_UC && 1101 kmd_end(k-1) == md->phys_addr) { 1102 (k-1)->num_pages += 1103 (lim - md->phys_addr) 1104 >> EFI_PAGE_SHIFT; 1105 } else { 1106 k->attribute = EFI_MEMORY_UC; 1107 k->start = md->phys_addr; 1108 k->num_pages = (lim - md->phys_addr) 1109 >> EFI_PAGE_SHIFT; 1110 k++; 1111 } 1112 } 1113 as = contig_low; 1114 } else 1115 as = md->phys_addr; 1116 1117 if (efi_md_end(md) > contig_high) { 1118 lim = max(md->phys_addr, contig_high); 1119 if (efi_uc(md)) { 1120 if (lim == md->phys_addr && k > kern_memmap && 1121 (k-1)->attribute == EFI_MEMORY_UC && 1122 kmd_end(k-1) == md->phys_addr) { 1123 (k-1)->num_pages += md->num_pages; 1124 } else { 1125 k->attribute = EFI_MEMORY_UC; 1126 k->start = lim; 1127 k->num_pages = (efi_md_end(md) - lim) 1128 >> EFI_PAGE_SHIFT; 1129 k++; 1130 } 1131 } 1132 ae = contig_high; 1133 } else 1134 ae = efi_md_end(md); 1135 1136 /* keep within max_addr= and min_addr= command line arg */ 1137 as = max(as, min_addr); 1138 ae = min(ae, max_addr); 1139 if (ae <= as) 1140 continue; 1141 1142 /* avoid going over mem= command line arg */ 1143 if (total_mem + (ae - as) > mem_limit) 1144 ae -= total_mem + (ae - as) - mem_limit; 1145 1146 if (ae <= as) 1147 continue; 1148 if (prev && kmd_end(prev) == md->phys_addr) { 1149 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; 1150 total_mem += ae - as; 1151 continue; 1152 } 1153 k->attribute = EFI_MEMORY_WB; 1154 k->start = as; 1155 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; 1156 total_mem += ae - as; 1157 prev = k++; 1158 } 1159 k->start = ~0L; /* end-marker */ 1160 1161 /* reserve the memory we are using for kern_memmap */ 1162 *s = (u64)kern_memmap; 1163 *e = (u64)++k; 1164 1165 return total_mem; 1166 } 1167 1168 void 1169 efi_initialize_iomem_resources(struct resource *code_resource, 1170 struct resource *data_resource, 1171 struct resource *bss_resource) 1172 { 1173 struct resource *res; 1174 void *efi_map_start, *efi_map_end, *p; 1175 efi_memory_desc_t *md; 1176 u64 efi_desc_size; 1177 char *name; 1178 unsigned long flags, desc; 1179 1180 efi_map_start = __va(ia64_boot_param->efi_memmap); 1181 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1182 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1183 1184 res = NULL; 1185 1186 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1187 md = p; 1188 1189 if (md->num_pages == 0) /* should not happen */ 1190 continue; 1191 1192 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 1193 desc = IORES_DESC_NONE; 1194 1195 switch (md->type) { 1196 1197 case EFI_MEMORY_MAPPED_IO: 1198 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 1199 continue; 1200 1201 case EFI_LOADER_CODE: 1202 case EFI_LOADER_DATA: 1203 case EFI_BOOT_SERVICES_DATA: 1204 case EFI_BOOT_SERVICES_CODE: 1205 case EFI_CONVENTIONAL_MEMORY: 1206 if (md->attribute & EFI_MEMORY_WP) { 1207 name = "System ROM"; 1208 flags |= IORESOURCE_READONLY; 1209 } else if (md->attribute == EFI_MEMORY_UC) { 1210 name = "Uncached RAM"; 1211 } else { 1212 name = "System RAM"; 1213 flags |= IORESOURCE_SYSRAM; 1214 } 1215 break; 1216 1217 case EFI_ACPI_MEMORY_NVS: 1218 name = "ACPI Non-volatile Storage"; 1219 desc = IORES_DESC_ACPI_NV_STORAGE; 1220 break; 1221 1222 case EFI_UNUSABLE_MEMORY: 1223 name = "reserved"; 1224 flags |= IORESOURCE_DISABLED; 1225 break; 1226 1227 case EFI_PERSISTENT_MEMORY: 1228 name = "Persistent Memory"; 1229 desc = IORES_DESC_PERSISTENT_MEMORY; 1230 break; 1231 1232 case EFI_RESERVED_TYPE: 1233 case EFI_RUNTIME_SERVICES_CODE: 1234 case EFI_RUNTIME_SERVICES_DATA: 1235 case EFI_ACPI_RECLAIM_MEMORY: 1236 default: 1237 name = "reserved"; 1238 break; 1239 } 1240 1241 if ((res = kzalloc(sizeof(struct resource), 1242 GFP_KERNEL)) == NULL) { 1243 printk(KERN_ERR 1244 "failed to allocate resource for iomem\n"); 1245 return; 1246 } 1247 1248 res->name = name; 1249 res->start = md->phys_addr; 1250 res->end = md->phys_addr + efi_md_size(md) - 1; 1251 res->flags = flags; 1252 res->desc = desc; 1253 1254 if (insert_resource(&iomem_resource, res) < 0) 1255 kfree(res); 1256 else { 1257 /* 1258 * We don't know which region contains 1259 * kernel data so we try it repeatedly and 1260 * let the resource manager test it. 1261 */ 1262 insert_resource(res, code_resource); 1263 insert_resource(res, data_resource); 1264 insert_resource(res, bss_resource); 1265 #ifdef CONFIG_KEXEC 1266 insert_resource(res, &efi_memmap_res); 1267 insert_resource(res, &boot_param_res); 1268 if (crashk_res.end > crashk_res.start) 1269 insert_resource(res, &crashk_res); 1270 #endif 1271 } 1272 } 1273 } 1274 1275 #ifdef CONFIG_KEXEC 1276 /* find a block of memory aligned to 64M exclude reserved regions 1277 rsvd_regions are sorted 1278 */ 1279 unsigned long __init 1280 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) 1281 { 1282 int i; 1283 u64 start, end; 1284 u64 alignment = 1UL << _PAGE_SIZE_64M; 1285 void *efi_map_start, *efi_map_end, *p; 1286 efi_memory_desc_t *md; 1287 u64 efi_desc_size; 1288 1289 efi_map_start = __va(ia64_boot_param->efi_memmap); 1290 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1291 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1292 1293 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1294 md = p; 1295 if (!efi_wb(md)) 1296 continue; 1297 start = ALIGN(md->phys_addr, alignment); 1298 end = efi_md_end(md); 1299 for (i = 0; i < n; i++) { 1300 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { 1301 if (__pa(r[i].start) > start + size) 1302 return start; 1303 start = ALIGN(__pa(r[i].end), alignment); 1304 if (i < n-1 && 1305 __pa(r[i+1].start) < start + size) 1306 continue; 1307 else 1308 break; 1309 } 1310 } 1311 if (end > start + size) 1312 return start; 1313 } 1314 1315 printk(KERN_WARNING 1316 "Cannot reserve 0x%lx byte of memory for crashdump\n", size); 1317 return ~0UL; 1318 } 1319 #endif 1320 1321 #ifdef CONFIG_CRASH_DUMP 1322 /* locate the size find a the descriptor at a certain address */ 1323 unsigned long __init 1324 vmcore_find_descriptor_size (unsigned long address) 1325 { 1326 void *efi_map_start, *efi_map_end, *p; 1327 efi_memory_desc_t *md; 1328 u64 efi_desc_size; 1329 unsigned long ret = 0; 1330 1331 efi_map_start = __va(ia64_boot_param->efi_memmap); 1332 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1333 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1334 1335 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1336 md = p; 1337 if (efi_wb(md) && md->type == EFI_LOADER_DATA 1338 && md->phys_addr == address) { 1339 ret = efi_md_size(md); 1340 break; 1341 } 1342 } 1343 1344 if (ret == 0) 1345 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); 1346 1347 return ret; 1348 } 1349 #endif 1350 1351 char *efi_systab_show_arch(char *str) 1352 { 1353 if (mps_phys != EFI_INVALID_TABLE_ADDR) 1354 str += sprintf(str, "MPS=0x%lx\n", mps_phys); 1355 if (hcdp_phys != EFI_INVALID_TABLE_ADDR) 1356 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys); 1357 return str; 1358 } 1359