xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision a1e58bbd)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33 
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40 
41 #define EFI_DEBUG	0
42 
43 extern efi_status_t efi_call_phys (void *, ...);
44 
45 struct efi efi;
46 EXPORT_SYMBOL(efi);
47 static efi_runtime_services_t *runtime;
48 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
49 
50 #define efi_call_virt(f, args...)	(*(f))(args)
51 
52 #define STUB_GET_TIME(prefix, adjust_arg)				       \
53 static efi_status_t							       \
54 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
55 {									       \
56 	struct ia64_fpreg fr[6];					       \
57 	efi_time_cap_t *atc = NULL;					       \
58 	efi_status_t ret;						       \
59 									       \
60 	if (tc)								       \
61 		atc = adjust_arg(tc);					       \
62 	ia64_save_scratch_fpregs(fr);					       \
63 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
64 				adjust_arg(tm), atc);			       \
65 	ia64_load_scratch_fpregs(fr);					       \
66 	return ret;							       \
67 }
68 
69 #define STUB_SET_TIME(prefix, adjust_arg)				       \
70 static efi_status_t							       \
71 prefix##_set_time (efi_time_t *tm)					       \
72 {									       \
73 	struct ia64_fpreg fr[6];					       \
74 	efi_status_t ret;						       \
75 									       \
76 	ia64_save_scratch_fpregs(fr);					       \
77 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
78 				adjust_arg(tm));			       \
79 	ia64_load_scratch_fpregs(fr);					       \
80 	return ret;							       \
81 }
82 
83 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
84 static efi_status_t							       \
85 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
86 			  efi_time_t *tm)				       \
87 {									       \
88 	struct ia64_fpreg fr[6];					       \
89 	efi_status_t ret;						       \
90 									       \
91 	ia64_save_scratch_fpregs(fr);					       \
92 	ret = efi_call_##prefix(					       \
93 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
94 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
95 	ia64_load_scratch_fpregs(fr);					       \
96 	return ret;							       \
97 }
98 
99 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
100 static efi_status_t							       \
101 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
102 {									       \
103 	struct ia64_fpreg fr[6];					       \
104 	efi_time_t *atm = NULL;						       \
105 	efi_status_t ret;						       \
106 									       \
107 	if (tm)								       \
108 		atm = adjust_arg(tm);					       \
109 	ia64_save_scratch_fpregs(fr);					       \
110 	ret = efi_call_##prefix(					       \
111 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
112 		enabled, atm);						       \
113 	ia64_load_scratch_fpregs(fr);					       \
114 	return ret;							       \
115 }
116 
117 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
118 static efi_status_t							       \
119 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
120 		       unsigned long *data_size, void *data)		       \
121 {									       \
122 	struct ia64_fpreg fr[6];					       \
123 	u32 *aattr = NULL;						       \
124 	efi_status_t ret;						       \
125 									       \
126 	if (attr)							       \
127 		aattr = adjust_arg(attr);				       \
128 	ia64_save_scratch_fpregs(fr);					       \
129 	ret = efi_call_##prefix(					       \
130 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
131 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
132 		adjust_arg(data_size), adjust_arg(data));		       \
133 	ia64_load_scratch_fpregs(fr);					       \
134 	return ret;							       \
135 }
136 
137 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
138 static efi_status_t							       \
139 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
140 			    efi_guid_t *vendor)				       \
141 {									       \
142 	struct ia64_fpreg fr[6];					       \
143 	efi_status_t ret;						       \
144 									       \
145 	ia64_save_scratch_fpregs(fr);					       \
146 	ret = efi_call_##prefix(					       \
147 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
148 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
149 	ia64_load_scratch_fpregs(fr);					       \
150 	return ret;							       \
151 }
152 
153 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
154 static efi_status_t							       \
155 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
156 		       unsigned long attr, unsigned long data_size,	       \
157 		       void *data)					       \
158 {									       \
159 	struct ia64_fpreg fr[6];					       \
160 	efi_status_t ret;						       \
161 									       \
162 	ia64_save_scratch_fpregs(fr);					       \
163 	ret = efi_call_##prefix(					       \
164 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
165 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
166 		adjust_arg(data));					       \
167 	ia64_load_scratch_fpregs(fr);					       \
168 	return ret;							       \
169 }
170 
171 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
172 static efi_status_t							       \
173 prefix##_get_next_high_mono_count (u32 *count)				       \
174 {									       \
175 	struct ia64_fpreg fr[6];					       \
176 	efi_status_t ret;						       \
177 									       \
178 	ia64_save_scratch_fpregs(fr);					       \
179 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
180 				__va(runtime->get_next_high_mono_count),       \
181 				adjust_arg(count));			       \
182 	ia64_load_scratch_fpregs(fr);					       \
183 	return ret;							       \
184 }
185 
186 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
187 static void								       \
188 prefix##_reset_system (int reset_type, efi_status_t status,		       \
189 		       unsigned long data_size, efi_char16_t *data)	       \
190 {									       \
191 	struct ia64_fpreg fr[6];					       \
192 	efi_char16_t *adata = NULL;					       \
193 									       \
194 	if (data)							       \
195 		adata = adjust_arg(data);				       \
196 									       \
197 	ia64_save_scratch_fpregs(fr);					       \
198 	efi_call_##prefix(						       \
199 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
200 		reset_type, status, data_size, adata);			       \
201 	/* should not return, but just in case... */			       \
202 	ia64_load_scratch_fpregs(fr);					       \
203 }
204 
205 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
206 
207 STUB_GET_TIME(phys, phys_ptr)
208 STUB_SET_TIME(phys, phys_ptr)
209 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
210 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_GET_VARIABLE(phys, phys_ptr)
212 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
213 STUB_SET_VARIABLE(phys, phys_ptr)
214 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
215 STUB_RESET_SYSTEM(phys, phys_ptr)
216 
217 #define id(arg)	arg
218 
219 STUB_GET_TIME(virt, id)
220 STUB_SET_TIME(virt, id)
221 STUB_GET_WAKEUP_TIME(virt, id)
222 STUB_SET_WAKEUP_TIME(virt, id)
223 STUB_GET_VARIABLE(virt, id)
224 STUB_GET_NEXT_VARIABLE(virt, id)
225 STUB_SET_VARIABLE(virt, id)
226 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
227 STUB_RESET_SYSTEM(virt, id)
228 
229 void
230 efi_gettimeofday (struct timespec *ts)
231 {
232 	efi_time_t tm;
233 
234 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
235 		memset(ts, 0, sizeof(*ts));
236 		return;
237 	}
238 
239 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
240 			    tm.hour, tm.minute, tm.second);
241 	ts->tv_nsec = tm.nanosecond;
242 }
243 
244 static int
245 is_memory_available (efi_memory_desc_t *md)
246 {
247 	if (!(md->attribute & EFI_MEMORY_WB))
248 		return 0;
249 
250 	switch (md->type) {
251 	      case EFI_LOADER_CODE:
252 	      case EFI_LOADER_DATA:
253 	      case EFI_BOOT_SERVICES_CODE:
254 	      case EFI_BOOT_SERVICES_DATA:
255 	      case EFI_CONVENTIONAL_MEMORY:
256 		return 1;
257 	}
258 	return 0;
259 }
260 
261 typedef struct kern_memdesc {
262 	u64 attribute;
263 	u64 start;
264 	u64 num_pages;
265 } kern_memdesc_t;
266 
267 static kern_memdesc_t *kern_memmap;
268 
269 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
270 
271 static inline u64
272 kmd_end(kern_memdesc_t *kmd)
273 {
274 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
275 }
276 
277 static inline u64
278 efi_md_end(efi_memory_desc_t *md)
279 {
280 	return (md->phys_addr + efi_md_size(md));
281 }
282 
283 static inline int
284 efi_wb(efi_memory_desc_t *md)
285 {
286 	return (md->attribute & EFI_MEMORY_WB);
287 }
288 
289 static inline int
290 efi_uc(efi_memory_desc_t *md)
291 {
292 	return (md->attribute & EFI_MEMORY_UC);
293 }
294 
295 static void
296 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
297 {
298 	kern_memdesc_t *k;
299 	u64 start, end, voff;
300 
301 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
302 	for (k = kern_memmap; k->start != ~0UL; k++) {
303 		if (k->attribute != attr)
304 			continue;
305 		start = PAGE_ALIGN(k->start);
306 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
307 		if (start < end)
308 			if ((*callback)(start + voff, end + voff, arg) < 0)
309 				return;
310 	}
311 }
312 
313 /*
314  * Walk the EFI memory map and call CALLBACK once for each EFI memory
315  * descriptor that has memory that is available for OS use.
316  */
317 void
318 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
319 {
320 	walk(callback, arg, EFI_MEMORY_WB);
321 }
322 
323 /*
324  * Walk the EFI memory map and call CALLBACK once for each EFI memory
325  * descriptor that has memory that is available for uncached allocator.
326  */
327 void
328 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
329 {
330 	walk(callback, arg, EFI_MEMORY_UC);
331 }
332 
333 /*
334  * Look for the PAL_CODE region reported by EFI and map it using an
335  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
336  * Abstraction Layer chapter 11 in ADAG
337  */
338 void *
339 efi_get_pal_addr (void)
340 {
341 	void *efi_map_start, *efi_map_end, *p;
342 	efi_memory_desc_t *md;
343 	u64 efi_desc_size;
344 	int pal_code_count = 0;
345 	u64 vaddr, mask;
346 
347 	efi_map_start = __va(ia64_boot_param->efi_memmap);
348 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
349 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
350 
351 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
352 		md = p;
353 		if (md->type != EFI_PAL_CODE)
354 			continue;
355 
356 		if (++pal_code_count > 1) {
357 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
358 			       "dropped @ %lx\n", md->phys_addr);
359 			continue;
360 		}
361 		/*
362 		 * The only ITLB entry in region 7 that is used is the one
363 		 * installed by __start().  That entry covers a 64MB range.
364 		 */
365 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
366 		vaddr = PAGE_OFFSET + md->phys_addr;
367 
368 		/*
369 		 * We must check that the PAL mapping won't overlap with the
370 		 * kernel mapping.
371 		 *
372 		 * PAL code is guaranteed to be aligned on a power of 2 between
373 		 * 4k and 256KB and that only one ITR is needed to map it. This
374 		 * implies that the PAL code is always aligned on its size,
375 		 * i.e., the closest matching page size supported by the TLB.
376 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
377 		 * it is bigger than 64MB (very unlikely!).  So for now the
378 		 * following test is enough to determine whether or not we need
379 		 * a dedicated ITR for the PAL code.
380 		 */
381 		if ((vaddr & mask) == (KERNEL_START & mask)) {
382 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
383 			       __func__);
384 			continue;
385 		}
386 
387 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
388 			panic("Whoa!  PAL code size bigger than a granule!");
389 
390 #if EFI_DEBUG
391 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
392 
393 		printk(KERN_INFO "CPU %d: mapping PAL code "
394                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
395                        smp_processor_id(), md->phys_addr,
396                        md->phys_addr + efi_md_size(md),
397                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
398 #endif
399 		return __va(md->phys_addr);
400 	}
401 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
402 	       __func__);
403 	return NULL;
404 }
405 
406 void
407 efi_map_pal_code (void)
408 {
409 	void *pal_vaddr = efi_get_pal_addr ();
410 	u64 psr;
411 
412 	if (!pal_vaddr)
413 		return;
414 
415 	/*
416 	 * Cannot write to CRx with PSR.ic=1
417 	 */
418 	psr = ia64_clear_ic();
419 	ia64_itr(0x1, IA64_TR_PALCODE,
420 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
421 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
422 		 IA64_GRANULE_SHIFT);
423 	ia64_set_psr(psr);		/* restore psr */
424 }
425 
426 void __init
427 efi_init (void)
428 {
429 	void *efi_map_start, *efi_map_end;
430 	efi_config_table_t *config_tables;
431 	efi_char16_t *c16;
432 	u64 efi_desc_size;
433 	char *cp, vendor[100] = "unknown";
434 	int i;
435 
436 	/*
437 	 * It's too early to be able to use the standard kernel command line
438 	 * support...
439 	 */
440 	for (cp = boot_command_line; *cp; ) {
441 		if (memcmp(cp, "mem=", 4) == 0) {
442 			mem_limit = memparse(cp + 4, &cp);
443 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
444 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
445 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
446 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
447 		} else {
448 			while (*cp != ' ' && *cp)
449 				++cp;
450 			while (*cp == ' ')
451 				++cp;
452 		}
453 	}
454 	if (min_addr != 0UL)
455 		printk(KERN_INFO "Ignoring memory below %luMB\n",
456 		       min_addr >> 20);
457 	if (max_addr != ~0UL)
458 		printk(KERN_INFO "Ignoring memory above %luMB\n",
459 		       max_addr >> 20);
460 
461 	efi.systab = __va(ia64_boot_param->efi_systab);
462 
463 	/*
464 	 * Verify the EFI Table
465 	 */
466 	if (efi.systab == NULL)
467 		panic("Whoa! Can't find EFI system table.\n");
468 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
469 		panic("Whoa! EFI system table signature incorrect\n");
470 	if ((efi.systab->hdr.revision >> 16) == 0)
471 		printk(KERN_WARNING "Warning: EFI system table version "
472 		       "%d.%02d, expected 1.00 or greater\n",
473 		       efi.systab->hdr.revision >> 16,
474 		       efi.systab->hdr.revision & 0xffff);
475 
476 	config_tables = __va(efi.systab->tables);
477 
478 	/* Show what we know for posterity */
479 	c16 = __va(efi.systab->fw_vendor);
480 	if (c16) {
481 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
482 			vendor[i] = *c16++;
483 		vendor[i] = '\0';
484 	}
485 
486 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
487 	       efi.systab->hdr.revision >> 16,
488 	       efi.systab->hdr.revision & 0xffff, vendor);
489 
490 	efi.mps        = EFI_INVALID_TABLE_ADDR;
491 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
492 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
493 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
494 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
495 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
496 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
497 	efi.uga        = EFI_INVALID_TABLE_ADDR;
498 
499 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
500 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
501 			efi.mps = config_tables[i].table;
502 			printk(" MPS=0x%lx", config_tables[i].table);
503 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
504 			efi.acpi20 = config_tables[i].table;
505 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
506 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
507 			efi.acpi = config_tables[i].table;
508 			printk(" ACPI=0x%lx", config_tables[i].table);
509 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
510 			efi.smbios = config_tables[i].table;
511 			printk(" SMBIOS=0x%lx", config_tables[i].table);
512 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
513 			efi.sal_systab = config_tables[i].table;
514 			printk(" SALsystab=0x%lx", config_tables[i].table);
515 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
516 			efi.hcdp = config_tables[i].table;
517 			printk(" HCDP=0x%lx", config_tables[i].table);
518 		}
519 	}
520 	printk("\n");
521 
522 	runtime = __va(efi.systab->runtime);
523 	efi.get_time = phys_get_time;
524 	efi.set_time = phys_set_time;
525 	efi.get_wakeup_time = phys_get_wakeup_time;
526 	efi.set_wakeup_time = phys_set_wakeup_time;
527 	efi.get_variable = phys_get_variable;
528 	efi.get_next_variable = phys_get_next_variable;
529 	efi.set_variable = phys_set_variable;
530 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
531 	efi.reset_system = phys_reset_system;
532 
533 	efi_map_start = __va(ia64_boot_param->efi_memmap);
534 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
535 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
536 
537 #if EFI_DEBUG
538 	/* print EFI memory map: */
539 	{
540 		efi_memory_desc_t *md;
541 		void *p;
542 
543 		for (i = 0, p = efi_map_start; p < efi_map_end;
544 		     ++i, p += efi_desc_size)
545 		{
546 			const char *unit;
547 			unsigned long size;
548 
549 			md = p;
550 			size = md->num_pages << EFI_PAGE_SHIFT;
551 
552 			if ((size >> 40) > 0) {
553 				size >>= 40;
554 				unit = "TB";
555 			} else if ((size >> 30) > 0) {
556 				size >>= 30;
557 				unit = "GB";
558 			} else if ((size >> 20) > 0) {
559 				size >>= 20;
560 				unit = "MB";
561 			} else {
562 				size >>= 10;
563 				unit = "KB";
564 			}
565 
566 			printk("mem%02d: type=%2u, attr=0x%016lx, "
567 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
568 			       i, md->type, md->attribute, md->phys_addr,
569 			       md->phys_addr + efi_md_size(md), size, unit);
570 		}
571 	}
572 #endif
573 
574 	efi_map_pal_code();
575 	efi_enter_virtual_mode();
576 }
577 
578 void
579 efi_enter_virtual_mode (void)
580 {
581 	void *efi_map_start, *efi_map_end, *p;
582 	efi_memory_desc_t *md;
583 	efi_status_t status;
584 	u64 efi_desc_size;
585 
586 	efi_map_start = __va(ia64_boot_param->efi_memmap);
587 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
588 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
589 
590 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
591 		md = p;
592 		if (md->attribute & EFI_MEMORY_RUNTIME) {
593 			/*
594 			 * Some descriptors have multiple bits set, so the
595 			 * order of the tests is relevant.
596 			 */
597 			if (md->attribute & EFI_MEMORY_WB) {
598 				md->virt_addr = (u64) __va(md->phys_addr);
599 			} else if (md->attribute & EFI_MEMORY_UC) {
600 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
601 			} else if (md->attribute & EFI_MEMORY_WC) {
602 #if 0
603 				md->virt_addr = ia64_remap(md->phys_addr,
604 							   (_PAGE_A |
605 							    _PAGE_P |
606 							    _PAGE_D |
607 							    _PAGE_MA_WC |
608 							    _PAGE_PL_0 |
609 							    _PAGE_AR_RW));
610 #else
611 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
612 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
613 #endif
614 			} else if (md->attribute & EFI_MEMORY_WT) {
615 #if 0
616 				md->virt_addr = ia64_remap(md->phys_addr,
617 							   (_PAGE_A |
618 							    _PAGE_P |
619 							    _PAGE_D |
620 							    _PAGE_MA_WT |
621 							    _PAGE_PL_0 |
622 							    _PAGE_AR_RW));
623 #else
624 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
625 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
626 #endif
627 			}
628 		}
629 	}
630 
631 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
632 			       ia64_boot_param->efi_memmap_size,
633 			       efi_desc_size,
634 			       ia64_boot_param->efi_memdesc_version,
635 			       ia64_boot_param->efi_memmap);
636 	if (status != EFI_SUCCESS) {
637 		printk(KERN_WARNING "warning: unable to switch EFI into "
638 		       "virtual mode (status=%lu)\n", status);
639 		return;
640 	}
641 
642 	/*
643 	 * Now that EFI is in virtual mode, we call the EFI functions more
644 	 * efficiently:
645 	 */
646 	efi.get_time = virt_get_time;
647 	efi.set_time = virt_set_time;
648 	efi.get_wakeup_time = virt_get_wakeup_time;
649 	efi.set_wakeup_time = virt_set_wakeup_time;
650 	efi.get_variable = virt_get_variable;
651 	efi.get_next_variable = virt_get_next_variable;
652 	efi.set_variable = virt_set_variable;
653 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
654 	efi.reset_system = virt_reset_system;
655 }
656 
657 /*
658  * Walk the EFI memory map looking for the I/O port range.  There can only be
659  * one entry of this type, other I/O port ranges should be described via ACPI.
660  */
661 u64
662 efi_get_iobase (void)
663 {
664 	void *efi_map_start, *efi_map_end, *p;
665 	efi_memory_desc_t *md;
666 	u64 efi_desc_size;
667 
668 	efi_map_start = __va(ia64_boot_param->efi_memmap);
669 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
670 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
671 
672 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
673 		md = p;
674 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
675 			if (md->attribute & EFI_MEMORY_UC)
676 				return md->phys_addr;
677 		}
678 	}
679 	return 0;
680 }
681 
682 static struct kern_memdesc *
683 kern_memory_descriptor (unsigned long phys_addr)
684 {
685 	struct kern_memdesc *md;
686 
687 	for (md = kern_memmap; md->start != ~0UL; md++) {
688 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
689 			 return md;
690 	}
691 	return NULL;
692 }
693 
694 static efi_memory_desc_t *
695 efi_memory_descriptor (unsigned long phys_addr)
696 {
697 	void *efi_map_start, *efi_map_end, *p;
698 	efi_memory_desc_t *md;
699 	u64 efi_desc_size;
700 
701 	efi_map_start = __va(ia64_boot_param->efi_memmap);
702 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
703 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
704 
705 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
706 		md = p;
707 
708 		if (phys_addr - md->phys_addr < efi_md_size(md))
709 			 return md;
710 	}
711 	return NULL;
712 }
713 
714 static int
715 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
716 {
717 	void *efi_map_start, *efi_map_end, *p;
718 	efi_memory_desc_t *md;
719 	u64 efi_desc_size;
720 	unsigned long end;
721 
722 	efi_map_start = __va(ia64_boot_param->efi_memmap);
723 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
724 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
725 
726 	end = phys_addr + size;
727 
728 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
729 		md = p;
730 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
731 			return 1;
732 	}
733 	return 0;
734 }
735 
736 u32
737 efi_mem_type (unsigned long phys_addr)
738 {
739 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
740 
741 	if (md)
742 		return md->type;
743 	return 0;
744 }
745 
746 u64
747 efi_mem_attributes (unsigned long phys_addr)
748 {
749 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
750 
751 	if (md)
752 		return md->attribute;
753 	return 0;
754 }
755 EXPORT_SYMBOL(efi_mem_attributes);
756 
757 u64
758 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
759 {
760 	unsigned long end = phys_addr + size;
761 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
762 	u64 attr;
763 
764 	if (!md)
765 		return 0;
766 
767 	/*
768 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
769 	 * the kernel that firmware needs this region mapped.
770 	 */
771 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
772 	do {
773 		unsigned long md_end = efi_md_end(md);
774 
775 		if (end <= md_end)
776 			return attr;
777 
778 		md = efi_memory_descriptor(md_end);
779 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
780 			return 0;
781 	} while (md);
782 	return 0;	/* never reached */
783 }
784 
785 u64
786 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
787 {
788 	unsigned long end = phys_addr + size;
789 	struct kern_memdesc *md;
790 	u64 attr;
791 
792 	/*
793 	 * This is a hack for ioremap calls before we set up kern_memmap.
794 	 * Maybe we should do efi_memmap_init() earlier instead.
795 	 */
796 	if (!kern_memmap) {
797 		attr = efi_mem_attribute(phys_addr, size);
798 		if (attr & EFI_MEMORY_WB)
799 			return EFI_MEMORY_WB;
800 		return 0;
801 	}
802 
803 	md = kern_memory_descriptor(phys_addr);
804 	if (!md)
805 		return 0;
806 
807 	attr = md->attribute;
808 	do {
809 		unsigned long md_end = kmd_end(md);
810 
811 		if (end <= md_end)
812 			return attr;
813 
814 		md = kern_memory_descriptor(md_end);
815 		if (!md || md->attribute != attr)
816 			return 0;
817 	} while (md);
818 	return 0;	/* never reached */
819 }
820 EXPORT_SYMBOL(kern_mem_attribute);
821 
822 int
823 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
824 {
825 	u64 attr;
826 
827 	/*
828 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
829 	 * uses a granule-sized kernel identity mapping.  It's really
830 	 * only safe to do this for regions in kern_memmap.  For more
831 	 * details, see Documentation/ia64/aliasing.txt.
832 	 */
833 	attr = kern_mem_attribute(phys_addr, size);
834 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
835 		return 1;
836 	return 0;
837 }
838 
839 int
840 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
841 {
842 	unsigned long phys_addr = pfn << PAGE_SHIFT;
843 	u64 attr;
844 
845 	attr = efi_mem_attribute(phys_addr, size);
846 
847 	/*
848 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
849 	 * granule, but the entire region we're mapping must support the same
850 	 * attribute.
851 	 */
852 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
853 		return 1;
854 
855 	/*
856 	 * Intel firmware doesn't tell us about all the MMIO regions, so
857 	 * in general we have to allow mmap requests.  But if EFI *does*
858 	 * tell us about anything inside this region, we should deny it.
859 	 * The user can always map a smaller region to avoid the overlap.
860 	 */
861 	if (efi_memmap_intersects(phys_addr, size))
862 		return 0;
863 
864 	return 1;
865 }
866 
867 pgprot_t
868 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
869 		     pgprot_t vma_prot)
870 {
871 	unsigned long phys_addr = pfn << PAGE_SHIFT;
872 	u64 attr;
873 
874 	/*
875 	 * For /dev/mem mmap, we use user mappings, but if the region is
876 	 * in kern_memmap (and hence may be covered by a kernel mapping),
877 	 * we must use the same attribute as the kernel mapping.
878 	 */
879 	attr = kern_mem_attribute(phys_addr, size);
880 	if (attr & EFI_MEMORY_WB)
881 		return pgprot_cacheable(vma_prot);
882 	else if (attr & EFI_MEMORY_UC)
883 		return pgprot_noncached(vma_prot);
884 
885 	/*
886 	 * Some chipsets don't support UC access to memory.  If
887 	 * WB is supported, we prefer that.
888 	 */
889 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
890 		return pgprot_cacheable(vma_prot);
891 
892 	return pgprot_noncached(vma_prot);
893 }
894 
895 int __init
896 efi_uart_console_only(void)
897 {
898 	efi_status_t status;
899 	char *s, name[] = "ConOut";
900 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
901 	efi_char16_t *utf16, name_utf16[32];
902 	unsigned char data[1024];
903 	unsigned long size = sizeof(data);
904 	struct efi_generic_dev_path *hdr, *end_addr;
905 	int uart = 0;
906 
907 	/* Convert to UTF-16 */
908 	utf16 = name_utf16;
909 	s = name;
910 	while (*s)
911 		*utf16++ = *s++ & 0x7f;
912 	*utf16 = 0;
913 
914 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
915 	if (status != EFI_SUCCESS) {
916 		printk(KERN_ERR "No EFI %s variable?\n", name);
917 		return 0;
918 	}
919 
920 	hdr = (struct efi_generic_dev_path *) data;
921 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
922 	while (hdr < end_addr) {
923 		if (hdr->type == EFI_DEV_MSG &&
924 		    hdr->sub_type == EFI_DEV_MSG_UART)
925 			uart = 1;
926 		else if (hdr->type == EFI_DEV_END_PATH ||
927 			  hdr->type == EFI_DEV_END_PATH2) {
928 			if (!uart)
929 				return 0;
930 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
931 				return 1;
932 			uart = 0;
933 		}
934 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
935 	}
936 	printk(KERN_ERR "Malformed %s value\n", name);
937 	return 0;
938 }
939 
940 /*
941  * Look for the first granule aligned memory descriptor memory
942  * that is big enough to hold EFI memory map. Make sure this
943  * descriptor is atleast granule sized so it does not get trimmed
944  */
945 struct kern_memdesc *
946 find_memmap_space (void)
947 {
948 	u64	contig_low=0, contig_high=0;
949 	u64	as = 0, ae;
950 	void *efi_map_start, *efi_map_end, *p, *q;
951 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
952 	u64	space_needed, efi_desc_size;
953 	unsigned long total_mem = 0;
954 
955 	efi_map_start = __va(ia64_boot_param->efi_memmap);
956 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
957 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
958 
959 	/*
960 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
961 	 * (if every entry has a WB part in the middle, and UC head and tail),
962 	 * plus one for the end marker.
963 	 */
964 	space_needed = sizeof(kern_memdesc_t) *
965 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
966 
967 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
968 		md = p;
969 		if (!efi_wb(md)) {
970 			continue;
971 		}
972 		if (pmd == NULL || !efi_wb(pmd) ||
973 		    efi_md_end(pmd) != md->phys_addr) {
974 			contig_low = GRANULEROUNDUP(md->phys_addr);
975 			contig_high = efi_md_end(md);
976 			for (q = p + efi_desc_size; q < efi_map_end;
977 			     q += efi_desc_size) {
978 				check_md = q;
979 				if (!efi_wb(check_md))
980 					break;
981 				if (contig_high != check_md->phys_addr)
982 					break;
983 				contig_high = efi_md_end(check_md);
984 			}
985 			contig_high = GRANULEROUNDDOWN(contig_high);
986 		}
987 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
988 			continue;
989 
990 		/* Round ends inward to granule boundaries */
991 		as = max(contig_low, md->phys_addr);
992 		ae = min(contig_high, efi_md_end(md));
993 
994 		/* keep within max_addr= and min_addr= command line arg */
995 		as = max(as, min_addr);
996 		ae = min(ae, max_addr);
997 		if (ae <= as)
998 			continue;
999 
1000 		/* avoid going over mem= command line arg */
1001 		if (total_mem + (ae - as) > mem_limit)
1002 			ae -= total_mem + (ae - as) - mem_limit;
1003 
1004 		if (ae <= as)
1005 			continue;
1006 
1007 		if (ae - as > space_needed)
1008 			break;
1009 	}
1010 	if (p >= efi_map_end)
1011 		panic("Can't allocate space for kernel memory descriptors");
1012 
1013 	return __va(as);
1014 }
1015 
1016 /*
1017  * Walk the EFI memory map and gather all memory available for kernel
1018  * to use.  We can allocate partial granules only if the unavailable
1019  * parts exist, and are WB.
1020  */
1021 unsigned long
1022 efi_memmap_init(unsigned long *s, unsigned long *e)
1023 {
1024 	struct kern_memdesc *k, *prev = NULL;
1025 	u64	contig_low=0, contig_high=0;
1026 	u64	as, ae, lim;
1027 	void *efi_map_start, *efi_map_end, *p, *q;
1028 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1029 	u64	efi_desc_size;
1030 	unsigned long total_mem = 0;
1031 
1032 	k = kern_memmap = find_memmap_space();
1033 
1034 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1035 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1036 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1037 
1038 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1039 		md = p;
1040 		if (!efi_wb(md)) {
1041 			if (efi_uc(md) &&
1042 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1043 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1044 				k->attribute = EFI_MEMORY_UC;
1045 				k->start = md->phys_addr;
1046 				k->num_pages = md->num_pages;
1047 				k++;
1048 			}
1049 			continue;
1050 		}
1051 		if (pmd == NULL || !efi_wb(pmd) ||
1052 		    efi_md_end(pmd) != md->phys_addr) {
1053 			contig_low = GRANULEROUNDUP(md->phys_addr);
1054 			contig_high = efi_md_end(md);
1055 			for (q = p + efi_desc_size; q < efi_map_end;
1056 			     q += efi_desc_size) {
1057 				check_md = q;
1058 				if (!efi_wb(check_md))
1059 					break;
1060 				if (contig_high != check_md->phys_addr)
1061 					break;
1062 				contig_high = efi_md_end(check_md);
1063 			}
1064 			contig_high = GRANULEROUNDDOWN(contig_high);
1065 		}
1066 		if (!is_memory_available(md))
1067 			continue;
1068 
1069 #ifdef CONFIG_CRASH_DUMP
1070 		/* saved_max_pfn should ignore max_addr= command line arg */
1071 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1072 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1073 #endif
1074 		/*
1075 		 * Round ends inward to granule boundaries
1076 		 * Give trimmings to uncached allocator
1077 		 */
1078 		if (md->phys_addr < contig_low) {
1079 			lim = min(efi_md_end(md), contig_low);
1080 			if (efi_uc(md)) {
1081 				if (k > kern_memmap &&
1082 				    (k-1)->attribute == EFI_MEMORY_UC &&
1083 				    kmd_end(k-1) == md->phys_addr) {
1084 					(k-1)->num_pages +=
1085 						(lim - md->phys_addr)
1086 						>> EFI_PAGE_SHIFT;
1087 				} else {
1088 					k->attribute = EFI_MEMORY_UC;
1089 					k->start = md->phys_addr;
1090 					k->num_pages = (lim - md->phys_addr)
1091 						>> EFI_PAGE_SHIFT;
1092 					k++;
1093 				}
1094 			}
1095 			as = contig_low;
1096 		} else
1097 			as = md->phys_addr;
1098 
1099 		if (efi_md_end(md) > contig_high) {
1100 			lim = max(md->phys_addr, contig_high);
1101 			if (efi_uc(md)) {
1102 				if (lim == md->phys_addr && k > kern_memmap &&
1103 				    (k-1)->attribute == EFI_MEMORY_UC &&
1104 				    kmd_end(k-1) == md->phys_addr) {
1105 					(k-1)->num_pages += md->num_pages;
1106 				} else {
1107 					k->attribute = EFI_MEMORY_UC;
1108 					k->start = lim;
1109 					k->num_pages = (efi_md_end(md) - lim)
1110 						>> EFI_PAGE_SHIFT;
1111 					k++;
1112 				}
1113 			}
1114 			ae = contig_high;
1115 		} else
1116 			ae = efi_md_end(md);
1117 
1118 		/* keep within max_addr= and min_addr= command line arg */
1119 		as = max(as, min_addr);
1120 		ae = min(ae, max_addr);
1121 		if (ae <= as)
1122 			continue;
1123 
1124 		/* avoid going over mem= command line arg */
1125 		if (total_mem + (ae - as) > mem_limit)
1126 			ae -= total_mem + (ae - as) - mem_limit;
1127 
1128 		if (ae <= as)
1129 			continue;
1130 		if (prev && kmd_end(prev) == md->phys_addr) {
1131 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1132 			total_mem += ae - as;
1133 			continue;
1134 		}
1135 		k->attribute = EFI_MEMORY_WB;
1136 		k->start = as;
1137 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1138 		total_mem += ae - as;
1139 		prev = k++;
1140 	}
1141 	k->start = ~0L; /* end-marker */
1142 
1143 	/* reserve the memory we are using for kern_memmap */
1144 	*s = (u64)kern_memmap;
1145 	*e = (u64)++k;
1146 
1147 	return total_mem;
1148 }
1149 
1150 void
1151 efi_initialize_iomem_resources(struct resource *code_resource,
1152 			       struct resource *data_resource,
1153 			       struct resource *bss_resource)
1154 {
1155 	struct resource *res;
1156 	void *efi_map_start, *efi_map_end, *p;
1157 	efi_memory_desc_t *md;
1158 	u64 efi_desc_size;
1159 	char *name;
1160 	unsigned long flags;
1161 
1162 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1163 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1164 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1165 
1166 	res = NULL;
1167 
1168 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1169 		md = p;
1170 
1171 		if (md->num_pages == 0) /* should not happen */
1172 			continue;
1173 
1174 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1175 		switch (md->type) {
1176 
1177 			case EFI_MEMORY_MAPPED_IO:
1178 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1179 				continue;
1180 
1181 			case EFI_LOADER_CODE:
1182 			case EFI_LOADER_DATA:
1183 			case EFI_BOOT_SERVICES_DATA:
1184 			case EFI_BOOT_SERVICES_CODE:
1185 			case EFI_CONVENTIONAL_MEMORY:
1186 				if (md->attribute & EFI_MEMORY_WP) {
1187 					name = "System ROM";
1188 					flags |= IORESOURCE_READONLY;
1189 				} else {
1190 					name = "System RAM";
1191 				}
1192 				break;
1193 
1194 			case EFI_ACPI_MEMORY_NVS:
1195 				name = "ACPI Non-volatile Storage";
1196 				break;
1197 
1198 			case EFI_UNUSABLE_MEMORY:
1199 				name = "reserved";
1200 				flags |= IORESOURCE_DISABLED;
1201 				break;
1202 
1203 			case EFI_RESERVED_TYPE:
1204 			case EFI_RUNTIME_SERVICES_CODE:
1205 			case EFI_RUNTIME_SERVICES_DATA:
1206 			case EFI_ACPI_RECLAIM_MEMORY:
1207 			default:
1208 				name = "reserved";
1209 				break;
1210 		}
1211 
1212 		if ((res = kzalloc(sizeof(struct resource),
1213 				   GFP_KERNEL)) == NULL) {
1214 			printk(KERN_ERR
1215 			       "failed to allocate resource for iomem\n");
1216 			return;
1217 		}
1218 
1219 		res->name = name;
1220 		res->start = md->phys_addr;
1221 		res->end = md->phys_addr + efi_md_size(md) - 1;
1222 		res->flags = flags;
1223 
1224 		if (insert_resource(&iomem_resource, res) < 0)
1225 			kfree(res);
1226 		else {
1227 			/*
1228 			 * We don't know which region contains
1229 			 * kernel data so we try it repeatedly and
1230 			 * let the resource manager test it.
1231 			 */
1232 			insert_resource(res, code_resource);
1233 			insert_resource(res, data_resource);
1234 			insert_resource(res, bss_resource);
1235 #ifdef CONFIG_KEXEC
1236                         insert_resource(res, &efi_memmap_res);
1237                         insert_resource(res, &boot_param_res);
1238 			if (crashk_res.end > crashk_res.start)
1239 				insert_resource(res, &crashk_res);
1240 #endif
1241 		}
1242 	}
1243 }
1244 
1245 #ifdef CONFIG_KEXEC
1246 /* find a block of memory aligned to 64M exclude reserved regions
1247    rsvd_regions are sorted
1248  */
1249 unsigned long __init
1250 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1251 {
1252 	int i;
1253 	u64 start, end;
1254 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1255 	void *efi_map_start, *efi_map_end, *p;
1256 	efi_memory_desc_t *md;
1257 	u64 efi_desc_size;
1258 
1259 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1260 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1261 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1262 
1263 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1264 		md = p;
1265 		if (!efi_wb(md))
1266 			continue;
1267 		start = ALIGN(md->phys_addr, alignment);
1268 		end = efi_md_end(md);
1269 		for (i = 0; i < n; i++) {
1270 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1271 				if (__pa(r[i].start) > start + size)
1272 					return start;
1273 				start = ALIGN(__pa(r[i].end), alignment);
1274 				if (i < n-1 &&
1275 				    __pa(r[i+1].start) < start + size)
1276 					continue;
1277 				else
1278 					break;
1279 			}
1280 		}
1281 		if (end > start + size)
1282 			return start;
1283 	}
1284 
1285 	printk(KERN_WARNING
1286 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1287 	return ~0UL;
1288 }
1289 #endif
1290 
1291 #ifdef CONFIG_PROC_VMCORE
1292 /* locate the size find a the descriptor at a certain address */
1293 unsigned long __init
1294 vmcore_find_descriptor_size (unsigned long address)
1295 {
1296 	void *efi_map_start, *efi_map_end, *p;
1297 	efi_memory_desc_t *md;
1298 	u64 efi_desc_size;
1299 	unsigned long ret = 0;
1300 
1301 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1302 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1303 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1304 
1305 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1306 		md = p;
1307 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1308 		    && md->phys_addr == address) {
1309 			ret = efi_md_size(md);
1310 			break;
1311 		}
1312 	}
1313 
1314 	if (ret == 0)
1315 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1316 
1317 	return ret;
1318 }
1319 #endif
1320