1 /* 2 * Extensible Firmware Interface 3 * 4 * Based on Extensible Firmware Interface Specification version 0.9 5 * April 30, 1999 6 * 7 * Copyright (C) 1999 VA Linux Systems 8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 9 * Copyright (C) 1999-2003 Hewlett-Packard Co. 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * Stephane Eranian <eranian@hpl.hp.com> 12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. 13 * Bjorn Helgaas <bjorn.helgaas@hp.com> 14 * 15 * All EFI Runtime Services are not implemented yet as EFI only 16 * supports physical mode addressing on SoftSDV. This is to be fixed 17 * in a future version. --drummond 1999-07-20 18 * 19 * Implemented EFI runtime services and virtual mode calls. --davidm 20 * 21 * Goutham Rao: <goutham.rao@intel.com> 22 * Skip non-WB memory and ignore empty memory ranges. 23 */ 24 #include <linux/module.h> 25 #include <linux/bootmem.h> 26 #include <linux/kernel.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/time.h> 30 #include <linux/efi.h> 31 #include <linux/kexec.h> 32 #include <linux/mm.h> 33 34 #include <asm/io.h> 35 #include <asm/kregs.h> 36 #include <asm/meminit.h> 37 #include <asm/pgtable.h> 38 #include <asm/processor.h> 39 #include <asm/mca.h> 40 41 #define EFI_DEBUG 0 42 43 extern efi_status_t efi_call_phys (void *, ...); 44 45 struct efi efi; 46 EXPORT_SYMBOL(efi); 47 static efi_runtime_services_t *runtime; 48 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; 49 50 #define efi_call_virt(f, args...) (*(f))(args) 51 52 #define STUB_GET_TIME(prefix, adjust_arg) \ 53 static efi_status_t \ 54 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 55 { \ 56 struct ia64_fpreg fr[6]; \ 57 efi_time_cap_t *atc = NULL; \ 58 efi_status_t ret; \ 59 \ 60 if (tc) \ 61 atc = adjust_arg(tc); \ 62 ia64_save_scratch_fpregs(fr); \ 63 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ 64 adjust_arg(tm), atc); \ 65 ia64_load_scratch_fpregs(fr); \ 66 return ret; \ 67 } 68 69 #define STUB_SET_TIME(prefix, adjust_arg) \ 70 static efi_status_t \ 71 prefix##_set_time (efi_time_t *tm) \ 72 { \ 73 struct ia64_fpreg fr[6]; \ 74 efi_status_t ret; \ 75 \ 76 ia64_save_scratch_fpregs(fr); \ 77 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ 78 adjust_arg(tm)); \ 79 ia64_load_scratch_fpregs(fr); \ 80 return ret; \ 81 } 82 83 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 84 static efi_status_t \ 85 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ 86 efi_time_t *tm) \ 87 { \ 88 struct ia64_fpreg fr[6]; \ 89 efi_status_t ret; \ 90 \ 91 ia64_save_scratch_fpregs(fr); \ 92 ret = efi_call_##prefix( \ 93 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 94 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 95 ia64_load_scratch_fpregs(fr); \ 96 return ret; \ 97 } 98 99 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 100 static efi_status_t \ 101 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 102 { \ 103 struct ia64_fpreg fr[6]; \ 104 efi_time_t *atm = NULL; \ 105 efi_status_t ret; \ 106 \ 107 if (tm) \ 108 atm = adjust_arg(tm); \ 109 ia64_save_scratch_fpregs(fr); \ 110 ret = efi_call_##prefix( \ 111 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 112 enabled, atm); \ 113 ia64_load_scratch_fpregs(fr); \ 114 return ret; \ 115 } 116 117 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 118 static efi_status_t \ 119 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 120 unsigned long *data_size, void *data) \ 121 { \ 122 struct ia64_fpreg fr[6]; \ 123 u32 *aattr = NULL; \ 124 efi_status_t ret; \ 125 \ 126 if (attr) \ 127 aattr = adjust_arg(attr); \ 128 ia64_save_scratch_fpregs(fr); \ 129 ret = efi_call_##prefix( \ 130 (efi_get_variable_t *) __va(runtime->get_variable), \ 131 adjust_arg(name), adjust_arg(vendor), aattr, \ 132 adjust_arg(data_size), adjust_arg(data)); \ 133 ia64_load_scratch_fpregs(fr); \ 134 return ret; \ 135 } 136 137 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 138 static efi_status_t \ 139 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ 140 efi_guid_t *vendor) \ 141 { \ 142 struct ia64_fpreg fr[6]; \ 143 efi_status_t ret; \ 144 \ 145 ia64_save_scratch_fpregs(fr); \ 146 ret = efi_call_##prefix( \ 147 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 148 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 149 ia64_load_scratch_fpregs(fr); \ 150 return ret; \ 151 } 152 153 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 154 static efi_status_t \ 155 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ 156 unsigned long attr, unsigned long data_size, \ 157 void *data) \ 158 { \ 159 struct ia64_fpreg fr[6]; \ 160 efi_status_t ret; \ 161 \ 162 ia64_save_scratch_fpregs(fr); \ 163 ret = efi_call_##prefix( \ 164 (efi_set_variable_t *) __va(runtime->set_variable), \ 165 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 166 adjust_arg(data)); \ 167 ia64_load_scratch_fpregs(fr); \ 168 return ret; \ 169 } 170 171 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 172 static efi_status_t \ 173 prefix##_get_next_high_mono_count (u32 *count) \ 174 { \ 175 struct ia64_fpreg fr[6]; \ 176 efi_status_t ret; \ 177 \ 178 ia64_save_scratch_fpregs(fr); \ 179 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 180 __va(runtime->get_next_high_mono_count), \ 181 adjust_arg(count)); \ 182 ia64_load_scratch_fpregs(fr); \ 183 return ret; \ 184 } 185 186 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 187 static void \ 188 prefix##_reset_system (int reset_type, efi_status_t status, \ 189 unsigned long data_size, efi_char16_t *data) \ 190 { \ 191 struct ia64_fpreg fr[6]; \ 192 efi_char16_t *adata = NULL; \ 193 \ 194 if (data) \ 195 adata = adjust_arg(data); \ 196 \ 197 ia64_save_scratch_fpregs(fr); \ 198 efi_call_##prefix( \ 199 (efi_reset_system_t *) __va(runtime->reset_system), \ 200 reset_type, status, data_size, adata); \ 201 /* should not return, but just in case... */ \ 202 ia64_load_scratch_fpregs(fr); \ 203 } 204 205 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 206 207 STUB_GET_TIME(phys, phys_ptr) 208 STUB_SET_TIME(phys, phys_ptr) 209 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 210 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 211 STUB_GET_VARIABLE(phys, phys_ptr) 212 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 213 STUB_SET_VARIABLE(phys, phys_ptr) 214 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 215 STUB_RESET_SYSTEM(phys, phys_ptr) 216 217 #define id(arg) arg 218 219 STUB_GET_TIME(virt, id) 220 STUB_SET_TIME(virt, id) 221 STUB_GET_WAKEUP_TIME(virt, id) 222 STUB_SET_WAKEUP_TIME(virt, id) 223 STUB_GET_VARIABLE(virt, id) 224 STUB_GET_NEXT_VARIABLE(virt, id) 225 STUB_SET_VARIABLE(virt, id) 226 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 227 STUB_RESET_SYSTEM(virt, id) 228 229 void 230 efi_gettimeofday (struct timespec *ts) 231 { 232 efi_time_t tm; 233 234 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { 235 memset(ts, 0, sizeof(*ts)); 236 return; 237 } 238 239 ts->tv_sec = mktime(tm.year, tm.month, tm.day, 240 tm.hour, tm.minute, tm.second); 241 ts->tv_nsec = tm.nanosecond; 242 } 243 244 static int 245 is_memory_available (efi_memory_desc_t *md) 246 { 247 if (!(md->attribute & EFI_MEMORY_WB)) 248 return 0; 249 250 switch (md->type) { 251 case EFI_LOADER_CODE: 252 case EFI_LOADER_DATA: 253 case EFI_BOOT_SERVICES_CODE: 254 case EFI_BOOT_SERVICES_DATA: 255 case EFI_CONVENTIONAL_MEMORY: 256 return 1; 257 } 258 return 0; 259 } 260 261 typedef struct kern_memdesc { 262 u64 attribute; 263 u64 start; 264 u64 num_pages; 265 } kern_memdesc_t; 266 267 static kern_memdesc_t *kern_memmap; 268 269 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) 270 271 static inline u64 272 kmd_end(kern_memdesc_t *kmd) 273 { 274 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); 275 } 276 277 static inline u64 278 efi_md_end(efi_memory_desc_t *md) 279 { 280 return (md->phys_addr + efi_md_size(md)); 281 } 282 283 static inline int 284 efi_wb(efi_memory_desc_t *md) 285 { 286 return (md->attribute & EFI_MEMORY_WB); 287 } 288 289 static inline int 290 efi_uc(efi_memory_desc_t *md) 291 { 292 return (md->attribute & EFI_MEMORY_UC); 293 } 294 295 static void 296 walk (efi_freemem_callback_t callback, void *arg, u64 attr) 297 { 298 kern_memdesc_t *k; 299 u64 start, end, voff; 300 301 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; 302 for (k = kern_memmap; k->start != ~0UL; k++) { 303 if (k->attribute != attr) 304 continue; 305 start = PAGE_ALIGN(k->start); 306 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; 307 if (start < end) 308 if ((*callback)(start + voff, end + voff, arg) < 0) 309 return; 310 } 311 } 312 313 /* 314 * Walk the EFI memory map and call CALLBACK once for each EFI memory 315 * descriptor that has memory that is available for OS use. 316 */ 317 void 318 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 319 { 320 walk(callback, arg, EFI_MEMORY_WB); 321 } 322 323 /* 324 * Walk the EFI memory map and call CALLBACK once for each EFI memory 325 * descriptor that has memory that is available for uncached allocator. 326 */ 327 void 328 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) 329 { 330 walk(callback, arg, EFI_MEMORY_UC); 331 } 332 333 /* 334 * Look for the PAL_CODE region reported by EFI and map it using an 335 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 336 * Abstraction Layer chapter 11 in ADAG 337 */ 338 void * 339 efi_get_pal_addr (void) 340 { 341 void *efi_map_start, *efi_map_end, *p; 342 efi_memory_desc_t *md; 343 u64 efi_desc_size; 344 int pal_code_count = 0; 345 u64 vaddr, mask; 346 347 efi_map_start = __va(ia64_boot_param->efi_memmap); 348 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 349 efi_desc_size = ia64_boot_param->efi_memdesc_size; 350 351 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 352 md = p; 353 if (md->type != EFI_PAL_CODE) 354 continue; 355 356 if (++pal_code_count > 1) { 357 printk(KERN_ERR "Too many EFI Pal Code memory ranges, " 358 "dropped @ %lx\n", md->phys_addr); 359 continue; 360 } 361 /* 362 * The only ITLB entry in region 7 that is used is the one 363 * installed by __start(). That entry covers a 64MB range. 364 */ 365 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 366 vaddr = PAGE_OFFSET + md->phys_addr; 367 368 /* 369 * We must check that the PAL mapping won't overlap with the 370 * kernel mapping. 371 * 372 * PAL code is guaranteed to be aligned on a power of 2 between 373 * 4k and 256KB and that only one ITR is needed to map it. This 374 * implies that the PAL code is always aligned on its size, 375 * i.e., the closest matching page size supported by the TLB. 376 * Therefore PAL code is guaranteed never to cross a 64MB unless 377 * it is bigger than 64MB (very unlikely!). So for now the 378 * following test is enough to determine whether or not we need 379 * a dedicated ITR for the PAL code. 380 */ 381 if ((vaddr & mask) == (KERNEL_START & mask)) { 382 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 383 __func__); 384 continue; 385 } 386 387 if (efi_md_size(md) > IA64_GRANULE_SIZE) 388 panic("Whoa! PAL code size bigger than a granule!"); 389 390 #if EFI_DEBUG 391 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 392 393 printk(KERN_INFO "CPU %d: mapping PAL code " 394 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 395 smp_processor_id(), md->phys_addr, 396 md->phys_addr + efi_md_size(md), 397 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 398 #endif 399 return __va(md->phys_addr); 400 } 401 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", 402 __func__); 403 return NULL; 404 } 405 406 void 407 efi_map_pal_code (void) 408 { 409 void *pal_vaddr = efi_get_pal_addr (); 410 u64 psr; 411 412 if (!pal_vaddr) 413 return; 414 415 /* 416 * Cannot write to CRx with PSR.ic=1 417 */ 418 psr = ia64_clear_ic(); 419 ia64_itr(0x1, IA64_TR_PALCODE, 420 GRANULEROUNDDOWN((unsigned long) pal_vaddr), 421 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 422 IA64_GRANULE_SHIFT); 423 ia64_set_psr(psr); /* restore psr */ 424 } 425 426 void __init 427 efi_init (void) 428 { 429 void *efi_map_start, *efi_map_end; 430 efi_config_table_t *config_tables; 431 efi_char16_t *c16; 432 u64 efi_desc_size; 433 char *cp, vendor[100] = "unknown"; 434 int i; 435 436 /* 437 * It's too early to be able to use the standard kernel command line 438 * support... 439 */ 440 for (cp = boot_command_line; *cp; ) { 441 if (memcmp(cp, "mem=", 4) == 0) { 442 mem_limit = memparse(cp + 4, &cp); 443 } else if (memcmp(cp, "max_addr=", 9) == 0) { 444 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 445 } else if (memcmp(cp, "min_addr=", 9) == 0) { 446 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 447 } else { 448 while (*cp != ' ' && *cp) 449 ++cp; 450 while (*cp == ' ') 451 ++cp; 452 } 453 } 454 if (min_addr != 0UL) 455 printk(KERN_INFO "Ignoring memory below %luMB\n", 456 min_addr >> 20); 457 if (max_addr != ~0UL) 458 printk(KERN_INFO "Ignoring memory above %luMB\n", 459 max_addr >> 20); 460 461 efi.systab = __va(ia64_boot_param->efi_systab); 462 463 /* 464 * Verify the EFI Table 465 */ 466 if (efi.systab == NULL) 467 panic("Whoa! Can't find EFI system table.\n"); 468 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 469 panic("Whoa! EFI system table signature incorrect\n"); 470 if ((efi.systab->hdr.revision >> 16) == 0) 471 printk(KERN_WARNING "Warning: EFI system table version " 472 "%d.%02d, expected 1.00 or greater\n", 473 efi.systab->hdr.revision >> 16, 474 efi.systab->hdr.revision & 0xffff); 475 476 config_tables = __va(efi.systab->tables); 477 478 /* Show what we know for posterity */ 479 c16 = __va(efi.systab->fw_vendor); 480 if (c16) { 481 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) 482 vendor[i] = *c16++; 483 vendor[i] = '\0'; 484 } 485 486 printk(KERN_INFO "EFI v%u.%.02u by %s:", 487 efi.systab->hdr.revision >> 16, 488 efi.systab->hdr.revision & 0xffff, vendor); 489 490 efi.mps = EFI_INVALID_TABLE_ADDR; 491 efi.acpi = EFI_INVALID_TABLE_ADDR; 492 efi.acpi20 = EFI_INVALID_TABLE_ADDR; 493 efi.smbios = EFI_INVALID_TABLE_ADDR; 494 efi.sal_systab = EFI_INVALID_TABLE_ADDR; 495 efi.boot_info = EFI_INVALID_TABLE_ADDR; 496 efi.hcdp = EFI_INVALID_TABLE_ADDR; 497 efi.uga = EFI_INVALID_TABLE_ADDR; 498 499 for (i = 0; i < (int) efi.systab->nr_tables; i++) { 500 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { 501 efi.mps = config_tables[i].table; 502 printk(" MPS=0x%lx", config_tables[i].table); 503 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { 504 efi.acpi20 = config_tables[i].table; 505 printk(" ACPI 2.0=0x%lx", config_tables[i].table); 506 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { 507 efi.acpi = config_tables[i].table; 508 printk(" ACPI=0x%lx", config_tables[i].table); 509 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { 510 efi.smbios = config_tables[i].table; 511 printk(" SMBIOS=0x%lx", config_tables[i].table); 512 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { 513 efi.sal_systab = config_tables[i].table; 514 printk(" SALsystab=0x%lx", config_tables[i].table); 515 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { 516 efi.hcdp = config_tables[i].table; 517 printk(" HCDP=0x%lx", config_tables[i].table); 518 } 519 } 520 printk("\n"); 521 522 runtime = __va(efi.systab->runtime); 523 efi.get_time = phys_get_time; 524 efi.set_time = phys_set_time; 525 efi.get_wakeup_time = phys_get_wakeup_time; 526 efi.set_wakeup_time = phys_set_wakeup_time; 527 efi.get_variable = phys_get_variable; 528 efi.get_next_variable = phys_get_next_variable; 529 efi.set_variable = phys_set_variable; 530 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 531 efi.reset_system = phys_reset_system; 532 533 efi_map_start = __va(ia64_boot_param->efi_memmap); 534 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 535 efi_desc_size = ia64_boot_param->efi_memdesc_size; 536 537 #if EFI_DEBUG 538 /* print EFI memory map: */ 539 { 540 efi_memory_desc_t *md; 541 void *p; 542 543 for (i = 0, p = efi_map_start; p < efi_map_end; 544 ++i, p += efi_desc_size) 545 { 546 const char *unit; 547 unsigned long size; 548 549 md = p; 550 size = md->num_pages << EFI_PAGE_SHIFT; 551 552 if ((size >> 40) > 0) { 553 size >>= 40; 554 unit = "TB"; 555 } else if ((size >> 30) > 0) { 556 size >>= 30; 557 unit = "GB"; 558 } else if ((size >> 20) > 0) { 559 size >>= 20; 560 unit = "MB"; 561 } else { 562 size >>= 10; 563 unit = "KB"; 564 } 565 566 printk("mem%02d: type=%2u, attr=0x%016lx, " 567 "range=[0x%016lx-0x%016lx) (%4lu%s)\n", 568 i, md->type, md->attribute, md->phys_addr, 569 md->phys_addr + efi_md_size(md), size, unit); 570 } 571 } 572 #endif 573 574 efi_map_pal_code(); 575 efi_enter_virtual_mode(); 576 } 577 578 void 579 efi_enter_virtual_mode (void) 580 { 581 void *efi_map_start, *efi_map_end, *p; 582 efi_memory_desc_t *md; 583 efi_status_t status; 584 u64 efi_desc_size; 585 586 efi_map_start = __va(ia64_boot_param->efi_memmap); 587 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 588 efi_desc_size = ia64_boot_param->efi_memdesc_size; 589 590 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 591 md = p; 592 if (md->attribute & EFI_MEMORY_RUNTIME) { 593 /* 594 * Some descriptors have multiple bits set, so the 595 * order of the tests is relevant. 596 */ 597 if (md->attribute & EFI_MEMORY_WB) { 598 md->virt_addr = (u64) __va(md->phys_addr); 599 } else if (md->attribute & EFI_MEMORY_UC) { 600 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 601 } else if (md->attribute & EFI_MEMORY_WC) { 602 #if 0 603 md->virt_addr = ia64_remap(md->phys_addr, 604 (_PAGE_A | 605 _PAGE_P | 606 _PAGE_D | 607 _PAGE_MA_WC | 608 _PAGE_PL_0 | 609 _PAGE_AR_RW)); 610 #else 611 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 612 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 613 #endif 614 } else if (md->attribute & EFI_MEMORY_WT) { 615 #if 0 616 md->virt_addr = ia64_remap(md->phys_addr, 617 (_PAGE_A | 618 _PAGE_P | 619 _PAGE_D | 620 _PAGE_MA_WT | 621 _PAGE_PL_0 | 622 _PAGE_AR_RW)); 623 #else 624 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 625 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 626 #endif 627 } 628 } 629 } 630 631 status = efi_call_phys(__va(runtime->set_virtual_address_map), 632 ia64_boot_param->efi_memmap_size, 633 efi_desc_size, 634 ia64_boot_param->efi_memdesc_version, 635 ia64_boot_param->efi_memmap); 636 if (status != EFI_SUCCESS) { 637 printk(KERN_WARNING "warning: unable to switch EFI into " 638 "virtual mode (status=%lu)\n", status); 639 return; 640 } 641 642 /* 643 * Now that EFI is in virtual mode, we call the EFI functions more 644 * efficiently: 645 */ 646 efi.get_time = virt_get_time; 647 efi.set_time = virt_set_time; 648 efi.get_wakeup_time = virt_get_wakeup_time; 649 efi.set_wakeup_time = virt_set_wakeup_time; 650 efi.get_variable = virt_get_variable; 651 efi.get_next_variable = virt_get_next_variable; 652 efi.set_variable = virt_set_variable; 653 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 654 efi.reset_system = virt_reset_system; 655 } 656 657 /* 658 * Walk the EFI memory map looking for the I/O port range. There can only be 659 * one entry of this type, other I/O port ranges should be described via ACPI. 660 */ 661 u64 662 efi_get_iobase (void) 663 { 664 void *efi_map_start, *efi_map_end, *p; 665 efi_memory_desc_t *md; 666 u64 efi_desc_size; 667 668 efi_map_start = __va(ia64_boot_param->efi_memmap); 669 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 670 efi_desc_size = ia64_boot_param->efi_memdesc_size; 671 672 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 673 md = p; 674 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 675 if (md->attribute & EFI_MEMORY_UC) 676 return md->phys_addr; 677 } 678 } 679 return 0; 680 } 681 682 static struct kern_memdesc * 683 kern_memory_descriptor (unsigned long phys_addr) 684 { 685 struct kern_memdesc *md; 686 687 for (md = kern_memmap; md->start != ~0UL; md++) { 688 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) 689 return md; 690 } 691 return NULL; 692 } 693 694 static efi_memory_desc_t * 695 efi_memory_descriptor (unsigned long phys_addr) 696 { 697 void *efi_map_start, *efi_map_end, *p; 698 efi_memory_desc_t *md; 699 u64 efi_desc_size; 700 701 efi_map_start = __va(ia64_boot_param->efi_memmap); 702 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 703 efi_desc_size = ia64_boot_param->efi_memdesc_size; 704 705 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 706 md = p; 707 708 if (phys_addr - md->phys_addr < efi_md_size(md)) 709 return md; 710 } 711 return NULL; 712 } 713 714 static int 715 efi_memmap_intersects (unsigned long phys_addr, unsigned long size) 716 { 717 void *efi_map_start, *efi_map_end, *p; 718 efi_memory_desc_t *md; 719 u64 efi_desc_size; 720 unsigned long end; 721 722 efi_map_start = __va(ia64_boot_param->efi_memmap); 723 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 724 efi_desc_size = ia64_boot_param->efi_memdesc_size; 725 726 end = phys_addr + size; 727 728 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 729 md = p; 730 if (md->phys_addr < end && efi_md_end(md) > phys_addr) 731 return 1; 732 } 733 return 0; 734 } 735 736 u32 737 efi_mem_type (unsigned long phys_addr) 738 { 739 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 740 741 if (md) 742 return md->type; 743 return 0; 744 } 745 746 u64 747 efi_mem_attributes (unsigned long phys_addr) 748 { 749 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 750 751 if (md) 752 return md->attribute; 753 return 0; 754 } 755 EXPORT_SYMBOL(efi_mem_attributes); 756 757 u64 758 efi_mem_attribute (unsigned long phys_addr, unsigned long size) 759 { 760 unsigned long end = phys_addr + size; 761 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 762 u64 attr; 763 764 if (!md) 765 return 0; 766 767 /* 768 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells 769 * the kernel that firmware needs this region mapped. 770 */ 771 attr = md->attribute & ~EFI_MEMORY_RUNTIME; 772 do { 773 unsigned long md_end = efi_md_end(md); 774 775 if (end <= md_end) 776 return attr; 777 778 md = efi_memory_descriptor(md_end); 779 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) 780 return 0; 781 } while (md); 782 return 0; /* never reached */ 783 } 784 785 u64 786 kern_mem_attribute (unsigned long phys_addr, unsigned long size) 787 { 788 unsigned long end = phys_addr + size; 789 struct kern_memdesc *md; 790 u64 attr; 791 792 /* 793 * This is a hack for ioremap calls before we set up kern_memmap. 794 * Maybe we should do efi_memmap_init() earlier instead. 795 */ 796 if (!kern_memmap) { 797 attr = efi_mem_attribute(phys_addr, size); 798 if (attr & EFI_MEMORY_WB) 799 return EFI_MEMORY_WB; 800 return 0; 801 } 802 803 md = kern_memory_descriptor(phys_addr); 804 if (!md) 805 return 0; 806 807 attr = md->attribute; 808 do { 809 unsigned long md_end = kmd_end(md); 810 811 if (end <= md_end) 812 return attr; 813 814 md = kern_memory_descriptor(md_end); 815 if (!md || md->attribute != attr) 816 return 0; 817 } while (md); 818 return 0; /* never reached */ 819 } 820 EXPORT_SYMBOL(kern_mem_attribute); 821 822 int 823 valid_phys_addr_range (unsigned long phys_addr, unsigned long size) 824 { 825 u64 attr; 826 827 /* 828 * /dev/mem reads and writes use copy_to_user(), which implicitly 829 * uses a granule-sized kernel identity mapping. It's really 830 * only safe to do this for regions in kern_memmap. For more 831 * details, see Documentation/ia64/aliasing.txt. 832 */ 833 attr = kern_mem_attribute(phys_addr, size); 834 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 835 return 1; 836 return 0; 837 } 838 839 int 840 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) 841 { 842 unsigned long phys_addr = pfn << PAGE_SHIFT; 843 u64 attr; 844 845 attr = efi_mem_attribute(phys_addr, size); 846 847 /* 848 * /dev/mem mmap uses normal user pages, so we don't need the entire 849 * granule, but the entire region we're mapping must support the same 850 * attribute. 851 */ 852 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 853 return 1; 854 855 /* 856 * Intel firmware doesn't tell us about all the MMIO regions, so 857 * in general we have to allow mmap requests. But if EFI *does* 858 * tell us about anything inside this region, we should deny it. 859 * The user can always map a smaller region to avoid the overlap. 860 */ 861 if (efi_memmap_intersects(phys_addr, size)) 862 return 0; 863 864 return 1; 865 } 866 867 pgprot_t 868 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, 869 pgprot_t vma_prot) 870 { 871 unsigned long phys_addr = pfn << PAGE_SHIFT; 872 u64 attr; 873 874 /* 875 * For /dev/mem mmap, we use user mappings, but if the region is 876 * in kern_memmap (and hence may be covered by a kernel mapping), 877 * we must use the same attribute as the kernel mapping. 878 */ 879 attr = kern_mem_attribute(phys_addr, size); 880 if (attr & EFI_MEMORY_WB) 881 return pgprot_cacheable(vma_prot); 882 else if (attr & EFI_MEMORY_UC) 883 return pgprot_noncached(vma_prot); 884 885 /* 886 * Some chipsets don't support UC access to memory. If 887 * WB is supported, we prefer that. 888 */ 889 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) 890 return pgprot_cacheable(vma_prot); 891 892 return pgprot_noncached(vma_prot); 893 } 894 895 int __init 896 efi_uart_console_only(void) 897 { 898 efi_status_t status; 899 char *s, name[] = "ConOut"; 900 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 901 efi_char16_t *utf16, name_utf16[32]; 902 unsigned char data[1024]; 903 unsigned long size = sizeof(data); 904 struct efi_generic_dev_path *hdr, *end_addr; 905 int uart = 0; 906 907 /* Convert to UTF-16 */ 908 utf16 = name_utf16; 909 s = name; 910 while (*s) 911 *utf16++ = *s++ & 0x7f; 912 *utf16 = 0; 913 914 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 915 if (status != EFI_SUCCESS) { 916 printk(KERN_ERR "No EFI %s variable?\n", name); 917 return 0; 918 } 919 920 hdr = (struct efi_generic_dev_path *) data; 921 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 922 while (hdr < end_addr) { 923 if (hdr->type == EFI_DEV_MSG && 924 hdr->sub_type == EFI_DEV_MSG_UART) 925 uart = 1; 926 else if (hdr->type == EFI_DEV_END_PATH || 927 hdr->type == EFI_DEV_END_PATH2) { 928 if (!uart) 929 return 0; 930 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 931 return 1; 932 uart = 0; 933 } 934 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); 935 } 936 printk(KERN_ERR "Malformed %s value\n", name); 937 return 0; 938 } 939 940 /* 941 * Look for the first granule aligned memory descriptor memory 942 * that is big enough to hold EFI memory map. Make sure this 943 * descriptor is atleast granule sized so it does not get trimmed 944 */ 945 struct kern_memdesc * 946 find_memmap_space (void) 947 { 948 u64 contig_low=0, contig_high=0; 949 u64 as = 0, ae; 950 void *efi_map_start, *efi_map_end, *p, *q; 951 efi_memory_desc_t *md, *pmd = NULL, *check_md; 952 u64 space_needed, efi_desc_size; 953 unsigned long total_mem = 0; 954 955 efi_map_start = __va(ia64_boot_param->efi_memmap); 956 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 957 efi_desc_size = ia64_boot_param->efi_memdesc_size; 958 959 /* 960 * Worst case: we need 3 kernel descriptors for each efi descriptor 961 * (if every entry has a WB part in the middle, and UC head and tail), 962 * plus one for the end marker. 963 */ 964 space_needed = sizeof(kern_memdesc_t) * 965 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); 966 967 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 968 md = p; 969 if (!efi_wb(md)) { 970 continue; 971 } 972 if (pmd == NULL || !efi_wb(pmd) || 973 efi_md_end(pmd) != md->phys_addr) { 974 contig_low = GRANULEROUNDUP(md->phys_addr); 975 contig_high = efi_md_end(md); 976 for (q = p + efi_desc_size; q < efi_map_end; 977 q += efi_desc_size) { 978 check_md = q; 979 if (!efi_wb(check_md)) 980 break; 981 if (contig_high != check_md->phys_addr) 982 break; 983 contig_high = efi_md_end(check_md); 984 } 985 contig_high = GRANULEROUNDDOWN(contig_high); 986 } 987 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) 988 continue; 989 990 /* Round ends inward to granule boundaries */ 991 as = max(contig_low, md->phys_addr); 992 ae = min(contig_high, efi_md_end(md)); 993 994 /* keep within max_addr= and min_addr= command line arg */ 995 as = max(as, min_addr); 996 ae = min(ae, max_addr); 997 if (ae <= as) 998 continue; 999 1000 /* avoid going over mem= command line arg */ 1001 if (total_mem + (ae - as) > mem_limit) 1002 ae -= total_mem + (ae - as) - mem_limit; 1003 1004 if (ae <= as) 1005 continue; 1006 1007 if (ae - as > space_needed) 1008 break; 1009 } 1010 if (p >= efi_map_end) 1011 panic("Can't allocate space for kernel memory descriptors"); 1012 1013 return __va(as); 1014 } 1015 1016 /* 1017 * Walk the EFI memory map and gather all memory available for kernel 1018 * to use. We can allocate partial granules only if the unavailable 1019 * parts exist, and are WB. 1020 */ 1021 unsigned long 1022 efi_memmap_init(unsigned long *s, unsigned long *e) 1023 { 1024 struct kern_memdesc *k, *prev = NULL; 1025 u64 contig_low=0, contig_high=0; 1026 u64 as, ae, lim; 1027 void *efi_map_start, *efi_map_end, *p, *q; 1028 efi_memory_desc_t *md, *pmd = NULL, *check_md; 1029 u64 efi_desc_size; 1030 unsigned long total_mem = 0; 1031 1032 k = kern_memmap = find_memmap_space(); 1033 1034 efi_map_start = __va(ia64_boot_param->efi_memmap); 1035 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1036 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1037 1038 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 1039 md = p; 1040 if (!efi_wb(md)) { 1041 if (efi_uc(md) && 1042 (md->type == EFI_CONVENTIONAL_MEMORY || 1043 md->type == EFI_BOOT_SERVICES_DATA)) { 1044 k->attribute = EFI_MEMORY_UC; 1045 k->start = md->phys_addr; 1046 k->num_pages = md->num_pages; 1047 k++; 1048 } 1049 continue; 1050 } 1051 if (pmd == NULL || !efi_wb(pmd) || 1052 efi_md_end(pmd) != md->phys_addr) { 1053 contig_low = GRANULEROUNDUP(md->phys_addr); 1054 contig_high = efi_md_end(md); 1055 for (q = p + efi_desc_size; q < efi_map_end; 1056 q += efi_desc_size) { 1057 check_md = q; 1058 if (!efi_wb(check_md)) 1059 break; 1060 if (contig_high != check_md->phys_addr) 1061 break; 1062 contig_high = efi_md_end(check_md); 1063 } 1064 contig_high = GRANULEROUNDDOWN(contig_high); 1065 } 1066 if (!is_memory_available(md)) 1067 continue; 1068 1069 #ifdef CONFIG_CRASH_DUMP 1070 /* saved_max_pfn should ignore max_addr= command line arg */ 1071 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT)) 1072 saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT); 1073 #endif 1074 /* 1075 * Round ends inward to granule boundaries 1076 * Give trimmings to uncached allocator 1077 */ 1078 if (md->phys_addr < contig_low) { 1079 lim = min(efi_md_end(md), contig_low); 1080 if (efi_uc(md)) { 1081 if (k > kern_memmap && 1082 (k-1)->attribute == EFI_MEMORY_UC && 1083 kmd_end(k-1) == md->phys_addr) { 1084 (k-1)->num_pages += 1085 (lim - md->phys_addr) 1086 >> EFI_PAGE_SHIFT; 1087 } else { 1088 k->attribute = EFI_MEMORY_UC; 1089 k->start = md->phys_addr; 1090 k->num_pages = (lim - md->phys_addr) 1091 >> EFI_PAGE_SHIFT; 1092 k++; 1093 } 1094 } 1095 as = contig_low; 1096 } else 1097 as = md->phys_addr; 1098 1099 if (efi_md_end(md) > contig_high) { 1100 lim = max(md->phys_addr, contig_high); 1101 if (efi_uc(md)) { 1102 if (lim == md->phys_addr && k > kern_memmap && 1103 (k-1)->attribute == EFI_MEMORY_UC && 1104 kmd_end(k-1) == md->phys_addr) { 1105 (k-1)->num_pages += md->num_pages; 1106 } else { 1107 k->attribute = EFI_MEMORY_UC; 1108 k->start = lim; 1109 k->num_pages = (efi_md_end(md) - lim) 1110 >> EFI_PAGE_SHIFT; 1111 k++; 1112 } 1113 } 1114 ae = contig_high; 1115 } else 1116 ae = efi_md_end(md); 1117 1118 /* keep within max_addr= and min_addr= command line arg */ 1119 as = max(as, min_addr); 1120 ae = min(ae, max_addr); 1121 if (ae <= as) 1122 continue; 1123 1124 /* avoid going over mem= command line arg */ 1125 if (total_mem + (ae - as) > mem_limit) 1126 ae -= total_mem + (ae - as) - mem_limit; 1127 1128 if (ae <= as) 1129 continue; 1130 if (prev && kmd_end(prev) == md->phys_addr) { 1131 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; 1132 total_mem += ae - as; 1133 continue; 1134 } 1135 k->attribute = EFI_MEMORY_WB; 1136 k->start = as; 1137 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; 1138 total_mem += ae - as; 1139 prev = k++; 1140 } 1141 k->start = ~0L; /* end-marker */ 1142 1143 /* reserve the memory we are using for kern_memmap */ 1144 *s = (u64)kern_memmap; 1145 *e = (u64)++k; 1146 1147 return total_mem; 1148 } 1149 1150 void 1151 efi_initialize_iomem_resources(struct resource *code_resource, 1152 struct resource *data_resource, 1153 struct resource *bss_resource) 1154 { 1155 struct resource *res; 1156 void *efi_map_start, *efi_map_end, *p; 1157 efi_memory_desc_t *md; 1158 u64 efi_desc_size; 1159 char *name; 1160 unsigned long flags; 1161 1162 efi_map_start = __va(ia64_boot_param->efi_memmap); 1163 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1164 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1165 1166 res = NULL; 1167 1168 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1169 md = p; 1170 1171 if (md->num_pages == 0) /* should not happen */ 1172 continue; 1173 1174 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 1175 switch (md->type) { 1176 1177 case EFI_MEMORY_MAPPED_IO: 1178 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 1179 continue; 1180 1181 case EFI_LOADER_CODE: 1182 case EFI_LOADER_DATA: 1183 case EFI_BOOT_SERVICES_DATA: 1184 case EFI_BOOT_SERVICES_CODE: 1185 case EFI_CONVENTIONAL_MEMORY: 1186 if (md->attribute & EFI_MEMORY_WP) { 1187 name = "System ROM"; 1188 flags |= IORESOURCE_READONLY; 1189 } else { 1190 name = "System RAM"; 1191 } 1192 break; 1193 1194 case EFI_ACPI_MEMORY_NVS: 1195 name = "ACPI Non-volatile Storage"; 1196 break; 1197 1198 case EFI_UNUSABLE_MEMORY: 1199 name = "reserved"; 1200 flags |= IORESOURCE_DISABLED; 1201 break; 1202 1203 case EFI_RESERVED_TYPE: 1204 case EFI_RUNTIME_SERVICES_CODE: 1205 case EFI_RUNTIME_SERVICES_DATA: 1206 case EFI_ACPI_RECLAIM_MEMORY: 1207 default: 1208 name = "reserved"; 1209 break; 1210 } 1211 1212 if ((res = kzalloc(sizeof(struct resource), 1213 GFP_KERNEL)) == NULL) { 1214 printk(KERN_ERR 1215 "failed to allocate resource for iomem\n"); 1216 return; 1217 } 1218 1219 res->name = name; 1220 res->start = md->phys_addr; 1221 res->end = md->phys_addr + efi_md_size(md) - 1; 1222 res->flags = flags; 1223 1224 if (insert_resource(&iomem_resource, res) < 0) 1225 kfree(res); 1226 else { 1227 /* 1228 * We don't know which region contains 1229 * kernel data so we try it repeatedly and 1230 * let the resource manager test it. 1231 */ 1232 insert_resource(res, code_resource); 1233 insert_resource(res, data_resource); 1234 insert_resource(res, bss_resource); 1235 #ifdef CONFIG_KEXEC 1236 insert_resource(res, &efi_memmap_res); 1237 insert_resource(res, &boot_param_res); 1238 if (crashk_res.end > crashk_res.start) 1239 insert_resource(res, &crashk_res); 1240 #endif 1241 } 1242 } 1243 } 1244 1245 #ifdef CONFIG_KEXEC 1246 /* find a block of memory aligned to 64M exclude reserved regions 1247 rsvd_regions are sorted 1248 */ 1249 unsigned long __init 1250 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) 1251 { 1252 int i; 1253 u64 start, end; 1254 u64 alignment = 1UL << _PAGE_SIZE_64M; 1255 void *efi_map_start, *efi_map_end, *p; 1256 efi_memory_desc_t *md; 1257 u64 efi_desc_size; 1258 1259 efi_map_start = __va(ia64_boot_param->efi_memmap); 1260 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1261 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1262 1263 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1264 md = p; 1265 if (!efi_wb(md)) 1266 continue; 1267 start = ALIGN(md->phys_addr, alignment); 1268 end = efi_md_end(md); 1269 for (i = 0; i < n; i++) { 1270 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { 1271 if (__pa(r[i].start) > start + size) 1272 return start; 1273 start = ALIGN(__pa(r[i].end), alignment); 1274 if (i < n-1 && 1275 __pa(r[i+1].start) < start + size) 1276 continue; 1277 else 1278 break; 1279 } 1280 } 1281 if (end > start + size) 1282 return start; 1283 } 1284 1285 printk(KERN_WARNING 1286 "Cannot reserve 0x%lx byte of memory for crashdump\n", size); 1287 return ~0UL; 1288 } 1289 #endif 1290 1291 #ifdef CONFIG_PROC_VMCORE 1292 /* locate the size find a the descriptor at a certain address */ 1293 unsigned long __init 1294 vmcore_find_descriptor_size (unsigned long address) 1295 { 1296 void *efi_map_start, *efi_map_end, *p; 1297 efi_memory_desc_t *md; 1298 u64 efi_desc_size; 1299 unsigned long ret = 0; 1300 1301 efi_map_start = __va(ia64_boot_param->efi_memmap); 1302 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1303 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1304 1305 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1306 md = p; 1307 if (efi_wb(md) && md->type == EFI_LOADER_DATA 1308 && md->phys_addr == address) { 1309 ret = efi_md_size(md); 1310 break; 1311 } 1312 } 1313 1314 if (ret == 0) 1315 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); 1316 1317 return ret; 1318 } 1319 #endif 1320