xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 0.9
6  * April 30, 1999
7  *
8  * Copyright (C) 1999 VA Linux Systems
9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
11  *	David Mosberger-Tang <davidm@hpl.hp.com>
12  *	Stephane Eranian <eranian@hpl.hp.com>
13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
15  *
16  * All EFI Runtime Services are not implemented yet as EFI only
17  * supports physical mode addressing on SoftSDV. This is to be fixed
18  * in a future version.  --drummond 1999-07-20
19  *
20  * Implemented EFI runtime services and virtual mode calls.  --davidm
21  *
22  * Goutham Rao: <goutham.rao@intel.com>
23  *	Skip non-WB memory and ignore empty memory ranges.
24  */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36 
37 #include <asm/io.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44 
45 #define EFI_DEBUG	0
46 
47 #define ESI_TABLE_GUID					\
48     EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,		\
49 	     0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
50 
51 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
52 static __initdata unsigned long palo_phys;
53 
54 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
55 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
56 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
57 
58 static const efi_config_table_type_t arch_tables[] __initconst = {
59 	{ESI_TABLE_GUID,				&esi_phys,		"ESI"		},
60 	{HCDP_TABLE_GUID,				&hcdp_phys,		"HCDP"		},
61 	{MPS_TABLE_GUID,				&mps_phys,		"MPS"		},
62 	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,	&palo_phys,		"PALO"		},
63 	{SAL_SYSTEM_TABLE_GUID,				&sal_systab_phys,	"SALsystab"	},
64 	{},
65 };
66 
67 extern efi_status_t efi_call_phys (void *, ...);
68 
69 static efi_runtime_services_t *runtime;
70 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
71 
72 #define efi_call_virt(f, args...)	(*(f))(args)
73 
74 #define STUB_GET_TIME(prefix, adjust_arg)				       \
75 static efi_status_t							       \
76 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
77 {									       \
78 	struct ia64_fpreg fr[6];					       \
79 	efi_time_cap_t *atc = NULL;					       \
80 	efi_status_t ret;						       \
81 									       \
82 	if (tc)								       \
83 		atc = adjust_arg(tc);					       \
84 	ia64_save_scratch_fpregs(fr);					       \
85 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
86 				adjust_arg(tm), atc);			       \
87 	ia64_load_scratch_fpregs(fr);					       \
88 	return ret;							       \
89 }
90 
91 #define STUB_SET_TIME(prefix, adjust_arg)				       \
92 static efi_status_t							       \
93 prefix##_set_time (efi_time_t *tm)					       \
94 {									       \
95 	struct ia64_fpreg fr[6];					       \
96 	efi_status_t ret;						       \
97 									       \
98 	ia64_save_scratch_fpregs(fr);					       \
99 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
100 				adjust_arg(tm));			       \
101 	ia64_load_scratch_fpregs(fr);					       \
102 	return ret;							       \
103 }
104 
105 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
106 static efi_status_t							       \
107 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
108 			  efi_time_t *tm)				       \
109 {									       \
110 	struct ia64_fpreg fr[6];					       \
111 	efi_status_t ret;						       \
112 									       \
113 	ia64_save_scratch_fpregs(fr);					       \
114 	ret = efi_call_##prefix(					       \
115 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
116 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
117 	ia64_load_scratch_fpregs(fr);					       \
118 	return ret;							       \
119 }
120 
121 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
122 static efi_status_t							       \
123 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
124 {									       \
125 	struct ia64_fpreg fr[6];					       \
126 	efi_time_t *atm = NULL;						       \
127 	efi_status_t ret;						       \
128 									       \
129 	if (tm)								       \
130 		atm = adjust_arg(tm);					       \
131 	ia64_save_scratch_fpregs(fr);					       \
132 	ret = efi_call_##prefix(					       \
133 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
134 		enabled, atm);						       \
135 	ia64_load_scratch_fpregs(fr);					       \
136 	return ret;							       \
137 }
138 
139 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
140 static efi_status_t							       \
141 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
142 		       unsigned long *data_size, void *data)		       \
143 {									       \
144 	struct ia64_fpreg fr[6];					       \
145 	u32 *aattr = NULL;						       \
146 	efi_status_t ret;						       \
147 									       \
148 	if (attr)							       \
149 		aattr = adjust_arg(attr);				       \
150 	ia64_save_scratch_fpregs(fr);					       \
151 	ret = efi_call_##prefix(					       \
152 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
153 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
154 		adjust_arg(data_size), adjust_arg(data));		       \
155 	ia64_load_scratch_fpregs(fr);					       \
156 	return ret;							       \
157 }
158 
159 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
160 static efi_status_t							       \
161 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
162 			    efi_guid_t *vendor)				       \
163 {									       \
164 	struct ia64_fpreg fr[6];					       \
165 	efi_status_t ret;						       \
166 									       \
167 	ia64_save_scratch_fpregs(fr);					       \
168 	ret = efi_call_##prefix(					       \
169 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
170 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
171 	ia64_load_scratch_fpregs(fr);					       \
172 	return ret;							       \
173 }
174 
175 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
176 static efi_status_t							       \
177 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
178 		       u32 attr, unsigned long data_size,		       \
179 		       void *data)					       \
180 {									       \
181 	struct ia64_fpreg fr[6];					       \
182 	efi_status_t ret;						       \
183 									       \
184 	ia64_save_scratch_fpregs(fr);					       \
185 	ret = efi_call_##prefix(					       \
186 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
187 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
188 		adjust_arg(data));					       \
189 	ia64_load_scratch_fpregs(fr);					       \
190 	return ret;							       \
191 }
192 
193 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
194 static efi_status_t							       \
195 prefix##_get_next_high_mono_count (u32 *count)				       \
196 {									       \
197 	struct ia64_fpreg fr[6];					       \
198 	efi_status_t ret;						       \
199 									       \
200 	ia64_save_scratch_fpregs(fr);					       \
201 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
202 				__va(runtime->get_next_high_mono_count),       \
203 				adjust_arg(count));			       \
204 	ia64_load_scratch_fpregs(fr);					       \
205 	return ret;							       \
206 }
207 
208 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
209 static void								       \
210 prefix##_reset_system (int reset_type, efi_status_t status,		       \
211 		       unsigned long data_size, efi_char16_t *data)	       \
212 {									       \
213 	struct ia64_fpreg fr[6];					       \
214 	efi_char16_t *adata = NULL;					       \
215 									       \
216 	if (data)							       \
217 		adata = adjust_arg(data);				       \
218 									       \
219 	ia64_save_scratch_fpregs(fr);					       \
220 	efi_call_##prefix(						       \
221 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
222 		reset_type, status, data_size, adata);			       \
223 	/* should not return, but just in case... */			       \
224 	ia64_load_scratch_fpregs(fr);					       \
225 }
226 
227 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
228 
229 STUB_GET_TIME(phys, phys_ptr)
230 STUB_SET_TIME(phys, phys_ptr)
231 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
232 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
233 STUB_GET_VARIABLE(phys, phys_ptr)
234 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
235 STUB_SET_VARIABLE(phys, phys_ptr)
236 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
237 STUB_RESET_SYSTEM(phys, phys_ptr)
238 
239 #define id(arg)	arg
240 
241 STUB_GET_TIME(virt, id)
242 STUB_SET_TIME(virt, id)
243 STUB_GET_WAKEUP_TIME(virt, id)
244 STUB_SET_WAKEUP_TIME(virt, id)
245 STUB_GET_VARIABLE(virt, id)
246 STUB_GET_NEXT_VARIABLE(virt, id)
247 STUB_SET_VARIABLE(virt, id)
248 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
249 STUB_RESET_SYSTEM(virt, id)
250 
251 void
252 efi_gettimeofday (struct timespec64 *ts)
253 {
254 	efi_time_t tm;
255 
256 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
257 		memset(ts, 0, sizeof(*ts));
258 		return;
259 	}
260 
261 	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
262 			    tm.hour, tm.minute, tm.second);
263 	ts->tv_nsec = tm.nanosecond;
264 }
265 
266 static int
267 is_memory_available (efi_memory_desc_t *md)
268 {
269 	if (!(md->attribute & EFI_MEMORY_WB))
270 		return 0;
271 
272 	switch (md->type) {
273 	      case EFI_LOADER_CODE:
274 	      case EFI_LOADER_DATA:
275 	      case EFI_BOOT_SERVICES_CODE:
276 	      case EFI_BOOT_SERVICES_DATA:
277 	      case EFI_CONVENTIONAL_MEMORY:
278 		return 1;
279 	}
280 	return 0;
281 }
282 
283 typedef struct kern_memdesc {
284 	u64 attribute;
285 	u64 start;
286 	u64 num_pages;
287 } kern_memdesc_t;
288 
289 static kern_memdesc_t *kern_memmap;
290 
291 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
292 
293 static inline u64
294 kmd_end(kern_memdesc_t *kmd)
295 {
296 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
297 }
298 
299 static inline u64
300 efi_md_end(efi_memory_desc_t *md)
301 {
302 	return (md->phys_addr + efi_md_size(md));
303 }
304 
305 static inline int
306 efi_wb(efi_memory_desc_t *md)
307 {
308 	return (md->attribute & EFI_MEMORY_WB);
309 }
310 
311 static inline int
312 efi_uc(efi_memory_desc_t *md)
313 {
314 	return (md->attribute & EFI_MEMORY_UC);
315 }
316 
317 static void
318 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
319 {
320 	kern_memdesc_t *k;
321 	u64 start, end, voff;
322 
323 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
324 	for (k = kern_memmap; k->start != ~0UL; k++) {
325 		if (k->attribute != attr)
326 			continue;
327 		start = PAGE_ALIGN(k->start);
328 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
329 		if (start < end)
330 			if ((*callback)(start + voff, end + voff, arg) < 0)
331 				return;
332 	}
333 }
334 
335 /*
336  * Walk the EFI memory map and call CALLBACK once for each EFI memory
337  * descriptor that has memory that is available for OS use.
338  */
339 void
340 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
341 {
342 	walk(callback, arg, EFI_MEMORY_WB);
343 }
344 
345 /*
346  * Walk the EFI memory map and call CALLBACK once for each EFI memory
347  * descriptor that has memory that is available for uncached allocator.
348  */
349 void
350 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
351 {
352 	walk(callback, arg, EFI_MEMORY_UC);
353 }
354 
355 /*
356  * Look for the PAL_CODE region reported by EFI and map it using an
357  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
358  * Abstraction Layer chapter 11 in ADAG
359  */
360 void *
361 efi_get_pal_addr (void)
362 {
363 	void *efi_map_start, *efi_map_end, *p;
364 	efi_memory_desc_t *md;
365 	u64 efi_desc_size;
366 	int pal_code_count = 0;
367 	u64 vaddr, mask;
368 
369 	efi_map_start = __va(ia64_boot_param->efi_memmap);
370 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
371 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
372 
373 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
374 		md = p;
375 		if (md->type != EFI_PAL_CODE)
376 			continue;
377 
378 		if (++pal_code_count > 1) {
379 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
380 			       "dropped @ %llx\n", md->phys_addr);
381 			continue;
382 		}
383 		/*
384 		 * The only ITLB entry in region 7 that is used is the one
385 		 * installed by __start().  That entry covers a 64MB range.
386 		 */
387 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
388 		vaddr = PAGE_OFFSET + md->phys_addr;
389 
390 		/*
391 		 * We must check that the PAL mapping won't overlap with the
392 		 * kernel mapping.
393 		 *
394 		 * PAL code is guaranteed to be aligned on a power of 2 between
395 		 * 4k and 256KB and that only one ITR is needed to map it. This
396 		 * implies that the PAL code is always aligned on its size,
397 		 * i.e., the closest matching page size supported by the TLB.
398 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
399 		 * it is bigger than 64MB (very unlikely!).  So for now the
400 		 * following test is enough to determine whether or not we need
401 		 * a dedicated ITR for the PAL code.
402 		 */
403 		if ((vaddr & mask) == (KERNEL_START & mask)) {
404 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
405 			       __func__);
406 			continue;
407 		}
408 
409 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
410 			panic("Whoa!  PAL code size bigger than a granule!");
411 
412 #if EFI_DEBUG
413 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
414 
415 		printk(KERN_INFO "CPU %d: mapping PAL code "
416                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
417                        smp_processor_id(), md->phys_addr,
418                        md->phys_addr + efi_md_size(md),
419                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
420 #endif
421 		return __va(md->phys_addr);
422 	}
423 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
424 	       __func__);
425 	return NULL;
426 }
427 
428 
429 static u8 __init palo_checksum(u8 *buffer, u32 length)
430 {
431 	u8 sum = 0;
432 	u8 *end = buffer + length;
433 
434 	while (buffer < end)
435 		sum = (u8) (sum + *(buffer++));
436 
437 	return sum;
438 }
439 
440 /*
441  * Parse and handle PALO table which is published at:
442  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
443  */
444 static void __init handle_palo(unsigned long phys_addr)
445 {
446 	struct palo_table *palo = __va(phys_addr);
447 	u8  checksum;
448 
449 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
450 		printk(KERN_INFO "PALO signature incorrect.\n");
451 		return;
452 	}
453 
454 	checksum = palo_checksum((u8 *)palo, palo->length);
455 	if (checksum) {
456 		printk(KERN_INFO "PALO checksum incorrect.\n");
457 		return;
458 	}
459 
460 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
461 }
462 
463 void
464 efi_map_pal_code (void)
465 {
466 	void *pal_vaddr = efi_get_pal_addr ();
467 	u64 psr;
468 
469 	if (!pal_vaddr)
470 		return;
471 
472 	/*
473 	 * Cannot write to CRx with PSR.ic=1
474 	 */
475 	psr = ia64_clear_ic();
476 	ia64_itr(0x1, IA64_TR_PALCODE,
477 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
478 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
479 		 IA64_GRANULE_SHIFT);
480 	ia64_set_psr(psr);		/* restore psr */
481 }
482 
483 void __init
484 efi_init (void)
485 {
486 	const efi_system_table_t *efi_systab;
487 	void *efi_map_start, *efi_map_end;
488 	u64 efi_desc_size;
489 	char *cp;
490 
491 	set_bit(EFI_BOOT, &efi.flags);
492 	set_bit(EFI_64BIT, &efi.flags);
493 
494 	/*
495 	 * It's too early to be able to use the standard kernel command line
496 	 * support...
497 	 */
498 	for (cp = boot_command_line; *cp; ) {
499 		if (memcmp(cp, "mem=", 4) == 0) {
500 			mem_limit = memparse(cp + 4, &cp);
501 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
502 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
503 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
504 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
505 		} else {
506 			while (*cp != ' ' && *cp)
507 				++cp;
508 			while (*cp == ' ')
509 				++cp;
510 		}
511 	}
512 	if (min_addr != 0UL)
513 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
514 		       min_addr >> 20);
515 	if (max_addr != ~0UL)
516 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
517 		       max_addr >> 20);
518 
519 	efi_systab = __va(ia64_boot_param->efi_systab);
520 
521 	/*
522 	 * Verify the EFI Table
523 	 */
524 	if (efi_systab == NULL)
525 		panic("Whoa! Can't find EFI system table.\n");
526 	if (efi_systab_check_header(&efi_systab->hdr, 1))
527 		panic("Whoa! EFI system table signature incorrect\n");
528 
529 	efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
530 
531 	palo_phys      = EFI_INVALID_TABLE_ADDR;
532 
533 	if (efi_config_parse_tables(__va(efi_systab->tables),
534 				    efi_systab->nr_tables,
535 				    arch_tables) != 0)
536 		return;
537 
538 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
539 		handle_palo(palo_phys);
540 
541 	runtime = __va(efi_systab->runtime);
542 	efi.get_time = phys_get_time;
543 	efi.set_time = phys_set_time;
544 	efi.get_wakeup_time = phys_get_wakeup_time;
545 	efi.set_wakeup_time = phys_set_wakeup_time;
546 	efi.get_variable = phys_get_variable;
547 	efi.get_next_variable = phys_get_next_variable;
548 	efi.set_variable = phys_set_variable;
549 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
550 	efi.reset_system = phys_reset_system;
551 
552 	efi_map_start = __va(ia64_boot_param->efi_memmap);
553 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
554 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
555 
556 #if EFI_DEBUG
557 	/* print EFI memory map: */
558 	{
559 		efi_memory_desc_t *md;
560 		void *p;
561 
562 		for (i = 0, p = efi_map_start; p < efi_map_end;
563 		     ++i, p += efi_desc_size)
564 		{
565 			const char *unit;
566 			unsigned long size;
567 			char buf[64];
568 
569 			md = p;
570 			size = md->num_pages << EFI_PAGE_SHIFT;
571 
572 			if ((size >> 40) > 0) {
573 				size >>= 40;
574 				unit = "TB";
575 			} else if ((size >> 30) > 0) {
576 				size >>= 30;
577 				unit = "GB";
578 			} else if ((size >> 20) > 0) {
579 				size >>= 20;
580 				unit = "MB";
581 			} else {
582 				size >>= 10;
583 				unit = "KB";
584 			}
585 
586 			printk("mem%02d: %s "
587 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
588 			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
589 			       md->phys_addr,
590 			       md->phys_addr + efi_md_size(md), size, unit);
591 		}
592 	}
593 #endif
594 
595 	efi_map_pal_code();
596 	efi_enter_virtual_mode();
597 }
598 
599 void
600 efi_enter_virtual_mode (void)
601 {
602 	void *efi_map_start, *efi_map_end, *p;
603 	efi_memory_desc_t *md;
604 	efi_status_t status;
605 	u64 efi_desc_size;
606 
607 	efi_map_start = __va(ia64_boot_param->efi_memmap);
608 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
609 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
610 
611 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
612 		md = p;
613 		if (md->attribute & EFI_MEMORY_RUNTIME) {
614 			/*
615 			 * Some descriptors have multiple bits set, so the
616 			 * order of the tests is relevant.
617 			 */
618 			if (md->attribute & EFI_MEMORY_WB) {
619 				md->virt_addr = (u64) __va(md->phys_addr);
620 			} else if (md->attribute & EFI_MEMORY_UC) {
621 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
622 			} else if (md->attribute & EFI_MEMORY_WC) {
623 #if 0
624 				md->virt_addr = ia64_remap(md->phys_addr,
625 							   (_PAGE_A |
626 							    _PAGE_P |
627 							    _PAGE_D |
628 							    _PAGE_MA_WC |
629 							    _PAGE_PL_0 |
630 							    _PAGE_AR_RW));
631 #else
632 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
633 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
634 #endif
635 			} else if (md->attribute & EFI_MEMORY_WT) {
636 #if 0
637 				md->virt_addr = ia64_remap(md->phys_addr,
638 							   (_PAGE_A |
639 							    _PAGE_P |
640 							    _PAGE_D |
641 							    _PAGE_MA_WT |
642 							    _PAGE_PL_0 |
643 							    _PAGE_AR_RW));
644 #else
645 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
646 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
647 #endif
648 			}
649 		}
650 	}
651 
652 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
653 			       ia64_boot_param->efi_memmap_size,
654 			       efi_desc_size,
655 			       ia64_boot_param->efi_memdesc_version,
656 			       ia64_boot_param->efi_memmap);
657 	if (status != EFI_SUCCESS) {
658 		printk(KERN_WARNING "warning: unable to switch EFI into "
659 		       "virtual mode (status=%lu)\n", status);
660 		return;
661 	}
662 
663 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
664 
665 	/*
666 	 * Now that EFI is in virtual mode, we call the EFI functions more
667 	 * efficiently:
668 	 */
669 	efi.get_time = virt_get_time;
670 	efi.set_time = virt_set_time;
671 	efi.get_wakeup_time = virt_get_wakeup_time;
672 	efi.set_wakeup_time = virt_set_wakeup_time;
673 	efi.get_variable = virt_get_variable;
674 	efi.get_next_variable = virt_get_next_variable;
675 	efi.set_variable = virt_set_variable;
676 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
677 	efi.reset_system = virt_reset_system;
678 }
679 
680 /*
681  * Walk the EFI memory map looking for the I/O port range.  There can only be
682  * one entry of this type, other I/O port ranges should be described via ACPI.
683  */
684 u64
685 efi_get_iobase (void)
686 {
687 	void *efi_map_start, *efi_map_end, *p;
688 	efi_memory_desc_t *md;
689 	u64 efi_desc_size;
690 
691 	efi_map_start = __va(ia64_boot_param->efi_memmap);
692 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
693 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
694 
695 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
696 		md = p;
697 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
698 			if (md->attribute & EFI_MEMORY_UC)
699 				return md->phys_addr;
700 		}
701 	}
702 	return 0;
703 }
704 
705 static struct kern_memdesc *
706 kern_memory_descriptor (unsigned long phys_addr)
707 {
708 	struct kern_memdesc *md;
709 
710 	for (md = kern_memmap; md->start != ~0UL; md++) {
711 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
712 			 return md;
713 	}
714 	return NULL;
715 }
716 
717 static efi_memory_desc_t *
718 efi_memory_descriptor (unsigned long phys_addr)
719 {
720 	void *efi_map_start, *efi_map_end, *p;
721 	efi_memory_desc_t *md;
722 	u64 efi_desc_size;
723 
724 	efi_map_start = __va(ia64_boot_param->efi_memmap);
725 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
726 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
727 
728 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
729 		md = p;
730 
731 		if (phys_addr - md->phys_addr < efi_md_size(md))
732 			 return md;
733 	}
734 	return NULL;
735 }
736 
737 static int
738 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
739 {
740 	void *efi_map_start, *efi_map_end, *p;
741 	efi_memory_desc_t *md;
742 	u64 efi_desc_size;
743 	unsigned long end;
744 
745 	efi_map_start = __va(ia64_boot_param->efi_memmap);
746 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
747 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
748 
749 	end = phys_addr + size;
750 
751 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
752 		md = p;
753 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
754 			return 1;
755 	}
756 	return 0;
757 }
758 
759 int
760 efi_mem_type (unsigned long phys_addr)
761 {
762 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
763 
764 	if (md)
765 		return md->type;
766 	return -EINVAL;
767 }
768 
769 u64
770 efi_mem_attributes (unsigned long phys_addr)
771 {
772 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
773 
774 	if (md)
775 		return md->attribute;
776 	return 0;
777 }
778 EXPORT_SYMBOL(efi_mem_attributes);
779 
780 u64
781 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
782 {
783 	unsigned long end = phys_addr + size;
784 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
785 	u64 attr;
786 
787 	if (!md)
788 		return 0;
789 
790 	/*
791 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
792 	 * the kernel that firmware needs this region mapped.
793 	 */
794 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
795 	do {
796 		unsigned long md_end = efi_md_end(md);
797 
798 		if (end <= md_end)
799 			return attr;
800 
801 		md = efi_memory_descriptor(md_end);
802 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
803 			return 0;
804 	} while (md);
805 	return 0;	/* never reached */
806 }
807 
808 u64
809 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
810 {
811 	unsigned long end = phys_addr + size;
812 	struct kern_memdesc *md;
813 	u64 attr;
814 
815 	/*
816 	 * This is a hack for ioremap calls before we set up kern_memmap.
817 	 * Maybe we should do efi_memmap_init() earlier instead.
818 	 */
819 	if (!kern_memmap) {
820 		attr = efi_mem_attribute(phys_addr, size);
821 		if (attr & EFI_MEMORY_WB)
822 			return EFI_MEMORY_WB;
823 		return 0;
824 	}
825 
826 	md = kern_memory_descriptor(phys_addr);
827 	if (!md)
828 		return 0;
829 
830 	attr = md->attribute;
831 	do {
832 		unsigned long md_end = kmd_end(md);
833 
834 		if (end <= md_end)
835 			return attr;
836 
837 		md = kern_memory_descriptor(md_end);
838 		if (!md || md->attribute != attr)
839 			return 0;
840 	} while (md);
841 	return 0;	/* never reached */
842 }
843 
844 int
845 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
846 {
847 	u64 attr;
848 
849 	/*
850 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
851 	 * uses a granule-sized kernel identity mapping.  It's really
852 	 * only safe to do this for regions in kern_memmap.  For more
853 	 * details, see Documentation/ia64/aliasing.rst.
854 	 */
855 	attr = kern_mem_attribute(phys_addr, size);
856 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
857 		return 1;
858 	return 0;
859 }
860 
861 int
862 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
863 {
864 	unsigned long phys_addr = pfn << PAGE_SHIFT;
865 	u64 attr;
866 
867 	attr = efi_mem_attribute(phys_addr, size);
868 
869 	/*
870 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
871 	 * granule, but the entire region we're mapping must support the same
872 	 * attribute.
873 	 */
874 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
875 		return 1;
876 
877 	/*
878 	 * Intel firmware doesn't tell us about all the MMIO regions, so
879 	 * in general we have to allow mmap requests.  But if EFI *does*
880 	 * tell us about anything inside this region, we should deny it.
881 	 * The user can always map a smaller region to avoid the overlap.
882 	 */
883 	if (efi_memmap_intersects(phys_addr, size))
884 		return 0;
885 
886 	return 1;
887 }
888 
889 pgprot_t
890 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
891 		     pgprot_t vma_prot)
892 {
893 	unsigned long phys_addr = pfn << PAGE_SHIFT;
894 	u64 attr;
895 
896 	/*
897 	 * For /dev/mem mmap, we use user mappings, but if the region is
898 	 * in kern_memmap (and hence may be covered by a kernel mapping),
899 	 * we must use the same attribute as the kernel mapping.
900 	 */
901 	attr = kern_mem_attribute(phys_addr, size);
902 	if (attr & EFI_MEMORY_WB)
903 		return pgprot_cacheable(vma_prot);
904 	else if (attr & EFI_MEMORY_UC)
905 		return pgprot_noncached(vma_prot);
906 
907 	/*
908 	 * Some chipsets don't support UC access to memory.  If
909 	 * WB is supported, we prefer that.
910 	 */
911 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
912 		return pgprot_cacheable(vma_prot);
913 
914 	return pgprot_noncached(vma_prot);
915 }
916 
917 int __init
918 efi_uart_console_only(void)
919 {
920 	efi_status_t status;
921 	char *s, name[] = "ConOut";
922 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
923 	efi_char16_t *utf16, name_utf16[32];
924 	unsigned char data[1024];
925 	unsigned long size = sizeof(data);
926 	struct efi_generic_dev_path *hdr, *end_addr;
927 	int uart = 0;
928 
929 	/* Convert to UTF-16 */
930 	utf16 = name_utf16;
931 	s = name;
932 	while (*s)
933 		*utf16++ = *s++ & 0x7f;
934 	*utf16 = 0;
935 
936 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
937 	if (status != EFI_SUCCESS) {
938 		printk(KERN_ERR "No EFI %s variable?\n", name);
939 		return 0;
940 	}
941 
942 	hdr = (struct efi_generic_dev_path *) data;
943 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
944 	while (hdr < end_addr) {
945 		if (hdr->type == EFI_DEV_MSG &&
946 		    hdr->sub_type == EFI_DEV_MSG_UART)
947 			uart = 1;
948 		else if (hdr->type == EFI_DEV_END_PATH ||
949 			  hdr->type == EFI_DEV_END_PATH2) {
950 			if (!uart)
951 				return 0;
952 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
953 				return 1;
954 			uart = 0;
955 		}
956 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
957 	}
958 	printk(KERN_ERR "Malformed %s value\n", name);
959 	return 0;
960 }
961 
962 /*
963  * Look for the first granule aligned memory descriptor memory
964  * that is big enough to hold EFI memory map. Make sure this
965  * descriptor is at least granule sized so it does not get trimmed
966  */
967 struct kern_memdesc *
968 find_memmap_space (void)
969 {
970 	u64	contig_low=0, contig_high=0;
971 	u64	as = 0, ae;
972 	void *efi_map_start, *efi_map_end, *p, *q;
973 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
974 	u64	space_needed, efi_desc_size;
975 	unsigned long total_mem = 0;
976 
977 	efi_map_start = __va(ia64_boot_param->efi_memmap);
978 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
979 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
980 
981 	/*
982 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
983 	 * (if every entry has a WB part in the middle, and UC head and tail),
984 	 * plus one for the end marker.
985 	 */
986 	space_needed = sizeof(kern_memdesc_t) *
987 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
988 
989 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
990 		md = p;
991 		if (!efi_wb(md)) {
992 			continue;
993 		}
994 		if (pmd == NULL || !efi_wb(pmd) ||
995 		    efi_md_end(pmd) != md->phys_addr) {
996 			contig_low = GRANULEROUNDUP(md->phys_addr);
997 			contig_high = efi_md_end(md);
998 			for (q = p + efi_desc_size; q < efi_map_end;
999 			     q += efi_desc_size) {
1000 				check_md = q;
1001 				if (!efi_wb(check_md))
1002 					break;
1003 				if (contig_high != check_md->phys_addr)
1004 					break;
1005 				contig_high = efi_md_end(check_md);
1006 			}
1007 			contig_high = GRANULEROUNDDOWN(contig_high);
1008 		}
1009 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1010 			continue;
1011 
1012 		/* Round ends inward to granule boundaries */
1013 		as = max(contig_low, md->phys_addr);
1014 		ae = min(contig_high, efi_md_end(md));
1015 
1016 		/* keep within max_addr= and min_addr= command line arg */
1017 		as = max(as, min_addr);
1018 		ae = min(ae, max_addr);
1019 		if (ae <= as)
1020 			continue;
1021 
1022 		/* avoid going over mem= command line arg */
1023 		if (total_mem + (ae - as) > mem_limit)
1024 			ae -= total_mem + (ae - as) - mem_limit;
1025 
1026 		if (ae <= as)
1027 			continue;
1028 
1029 		if (ae - as > space_needed)
1030 			break;
1031 	}
1032 	if (p >= efi_map_end)
1033 		panic("Can't allocate space for kernel memory descriptors");
1034 
1035 	return __va(as);
1036 }
1037 
1038 /*
1039  * Walk the EFI memory map and gather all memory available for kernel
1040  * to use.  We can allocate partial granules only if the unavailable
1041  * parts exist, and are WB.
1042  */
1043 unsigned long
1044 efi_memmap_init(u64 *s, u64 *e)
1045 {
1046 	struct kern_memdesc *k, *prev = NULL;
1047 	u64	contig_low=0, contig_high=0;
1048 	u64	as, ae, lim;
1049 	void *efi_map_start, *efi_map_end, *p, *q;
1050 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1051 	u64	efi_desc_size;
1052 	unsigned long total_mem = 0;
1053 
1054 	k = kern_memmap = find_memmap_space();
1055 
1056 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1057 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1058 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1059 
1060 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1061 		md = p;
1062 		if (!efi_wb(md)) {
1063 			if (efi_uc(md) &&
1064 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1065 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1066 				k->attribute = EFI_MEMORY_UC;
1067 				k->start = md->phys_addr;
1068 				k->num_pages = md->num_pages;
1069 				k++;
1070 			}
1071 			continue;
1072 		}
1073 		if (pmd == NULL || !efi_wb(pmd) ||
1074 		    efi_md_end(pmd) != md->phys_addr) {
1075 			contig_low = GRANULEROUNDUP(md->phys_addr);
1076 			contig_high = efi_md_end(md);
1077 			for (q = p + efi_desc_size; q < efi_map_end;
1078 			     q += efi_desc_size) {
1079 				check_md = q;
1080 				if (!efi_wb(check_md))
1081 					break;
1082 				if (contig_high != check_md->phys_addr)
1083 					break;
1084 				contig_high = efi_md_end(check_md);
1085 			}
1086 			contig_high = GRANULEROUNDDOWN(contig_high);
1087 		}
1088 		if (!is_memory_available(md))
1089 			continue;
1090 
1091 		/*
1092 		 * Round ends inward to granule boundaries
1093 		 * Give trimmings to uncached allocator
1094 		 */
1095 		if (md->phys_addr < contig_low) {
1096 			lim = min(efi_md_end(md), contig_low);
1097 			if (efi_uc(md)) {
1098 				if (k > kern_memmap &&
1099 				    (k-1)->attribute == EFI_MEMORY_UC &&
1100 				    kmd_end(k-1) == md->phys_addr) {
1101 					(k-1)->num_pages +=
1102 						(lim - md->phys_addr)
1103 						>> EFI_PAGE_SHIFT;
1104 				} else {
1105 					k->attribute = EFI_MEMORY_UC;
1106 					k->start = md->phys_addr;
1107 					k->num_pages = (lim - md->phys_addr)
1108 						>> EFI_PAGE_SHIFT;
1109 					k++;
1110 				}
1111 			}
1112 			as = contig_low;
1113 		} else
1114 			as = md->phys_addr;
1115 
1116 		if (efi_md_end(md) > contig_high) {
1117 			lim = max(md->phys_addr, contig_high);
1118 			if (efi_uc(md)) {
1119 				if (lim == md->phys_addr && k > kern_memmap &&
1120 				    (k-1)->attribute == EFI_MEMORY_UC &&
1121 				    kmd_end(k-1) == md->phys_addr) {
1122 					(k-1)->num_pages += md->num_pages;
1123 				} else {
1124 					k->attribute = EFI_MEMORY_UC;
1125 					k->start = lim;
1126 					k->num_pages = (efi_md_end(md) - lim)
1127 						>> EFI_PAGE_SHIFT;
1128 					k++;
1129 				}
1130 			}
1131 			ae = contig_high;
1132 		} else
1133 			ae = efi_md_end(md);
1134 
1135 		/* keep within max_addr= and min_addr= command line arg */
1136 		as = max(as, min_addr);
1137 		ae = min(ae, max_addr);
1138 		if (ae <= as)
1139 			continue;
1140 
1141 		/* avoid going over mem= command line arg */
1142 		if (total_mem + (ae - as) > mem_limit)
1143 			ae -= total_mem + (ae - as) - mem_limit;
1144 
1145 		if (ae <= as)
1146 			continue;
1147 		if (prev && kmd_end(prev) == md->phys_addr) {
1148 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1149 			total_mem += ae - as;
1150 			continue;
1151 		}
1152 		k->attribute = EFI_MEMORY_WB;
1153 		k->start = as;
1154 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1155 		total_mem += ae - as;
1156 		prev = k++;
1157 	}
1158 	k->start = ~0L; /* end-marker */
1159 
1160 	/* reserve the memory we are using for kern_memmap */
1161 	*s = (u64)kern_memmap;
1162 	*e = (u64)++k;
1163 
1164 	return total_mem;
1165 }
1166 
1167 void
1168 efi_initialize_iomem_resources(struct resource *code_resource,
1169 			       struct resource *data_resource,
1170 			       struct resource *bss_resource)
1171 {
1172 	struct resource *res;
1173 	void *efi_map_start, *efi_map_end, *p;
1174 	efi_memory_desc_t *md;
1175 	u64 efi_desc_size;
1176 	char *name;
1177 	unsigned long flags, desc;
1178 
1179 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1180 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1181 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1182 
1183 	res = NULL;
1184 
1185 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186 		md = p;
1187 
1188 		if (md->num_pages == 0) /* should not happen */
1189 			continue;
1190 
1191 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1192 		desc = IORES_DESC_NONE;
1193 
1194 		switch (md->type) {
1195 
1196 			case EFI_MEMORY_MAPPED_IO:
1197 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1198 				continue;
1199 
1200 			case EFI_LOADER_CODE:
1201 			case EFI_LOADER_DATA:
1202 			case EFI_BOOT_SERVICES_DATA:
1203 			case EFI_BOOT_SERVICES_CODE:
1204 			case EFI_CONVENTIONAL_MEMORY:
1205 				if (md->attribute & EFI_MEMORY_WP) {
1206 					name = "System ROM";
1207 					flags |= IORESOURCE_READONLY;
1208 				} else if (md->attribute == EFI_MEMORY_UC) {
1209 					name = "Uncached RAM";
1210 				} else {
1211 					name = "System RAM";
1212 					flags |= IORESOURCE_SYSRAM;
1213 				}
1214 				break;
1215 
1216 			case EFI_ACPI_MEMORY_NVS:
1217 				name = "ACPI Non-volatile Storage";
1218 				desc = IORES_DESC_ACPI_NV_STORAGE;
1219 				break;
1220 
1221 			case EFI_UNUSABLE_MEMORY:
1222 				name = "reserved";
1223 				flags |= IORESOURCE_DISABLED;
1224 				break;
1225 
1226 			case EFI_PERSISTENT_MEMORY:
1227 				name = "Persistent Memory";
1228 				desc = IORES_DESC_PERSISTENT_MEMORY;
1229 				break;
1230 
1231 			case EFI_RESERVED_TYPE:
1232 			case EFI_RUNTIME_SERVICES_CODE:
1233 			case EFI_RUNTIME_SERVICES_DATA:
1234 			case EFI_ACPI_RECLAIM_MEMORY:
1235 			default:
1236 				name = "reserved";
1237 				break;
1238 		}
1239 
1240 		if ((res = kzalloc(sizeof(struct resource),
1241 				   GFP_KERNEL)) == NULL) {
1242 			printk(KERN_ERR
1243 			       "failed to allocate resource for iomem\n");
1244 			return;
1245 		}
1246 
1247 		res->name = name;
1248 		res->start = md->phys_addr;
1249 		res->end = md->phys_addr + efi_md_size(md) - 1;
1250 		res->flags = flags;
1251 		res->desc = desc;
1252 
1253 		if (insert_resource(&iomem_resource, res) < 0)
1254 			kfree(res);
1255 		else {
1256 			/*
1257 			 * We don't know which region contains
1258 			 * kernel data so we try it repeatedly and
1259 			 * let the resource manager test it.
1260 			 */
1261 			insert_resource(res, code_resource);
1262 			insert_resource(res, data_resource);
1263 			insert_resource(res, bss_resource);
1264 #ifdef CONFIG_KEXEC
1265                         insert_resource(res, &efi_memmap_res);
1266                         insert_resource(res, &boot_param_res);
1267 			if (crashk_res.end > crashk_res.start)
1268 				insert_resource(res, &crashk_res);
1269 #endif
1270 		}
1271 	}
1272 }
1273 
1274 #ifdef CONFIG_KEXEC
1275 /* find a block of memory aligned to 64M exclude reserved regions
1276    rsvd_regions are sorted
1277  */
1278 unsigned long __init
1279 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280 {
1281 	int i;
1282 	u64 start, end;
1283 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1284 	void *efi_map_start, *efi_map_end, *p;
1285 	efi_memory_desc_t *md;
1286 	u64 efi_desc_size;
1287 
1288 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1289 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1290 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291 
1292 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293 		md = p;
1294 		if (!efi_wb(md))
1295 			continue;
1296 		start = ALIGN(md->phys_addr, alignment);
1297 		end = efi_md_end(md);
1298 		for (i = 0; i < n; i++) {
1299 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300 				if (__pa(r[i].start) > start + size)
1301 					return start;
1302 				start = ALIGN(__pa(r[i].end), alignment);
1303 				if (i < n-1 &&
1304 				    __pa(r[i+1].start) < start + size)
1305 					continue;
1306 				else
1307 					break;
1308 			}
1309 		}
1310 		if (end > start + size)
1311 			return start;
1312 	}
1313 
1314 	printk(KERN_WARNING
1315 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316 	return ~0UL;
1317 }
1318 #endif
1319 
1320 #ifdef CONFIG_CRASH_DUMP
1321 /* locate the size find a the descriptor at a certain address */
1322 unsigned long __init
1323 vmcore_find_descriptor_size (unsigned long address)
1324 {
1325 	void *efi_map_start, *efi_map_end, *p;
1326 	efi_memory_desc_t *md;
1327 	u64 efi_desc_size;
1328 	unsigned long ret = 0;
1329 
1330 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1331 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1332 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333 
1334 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335 		md = p;
1336 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337 		    && md->phys_addr == address) {
1338 			ret = efi_md_size(md);
1339 			break;
1340 		}
1341 	}
1342 
1343 	if (ret == 0)
1344 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345 
1346 	return ret;
1347 }
1348 #endif
1349 
1350 char *efi_systab_show_arch(char *str)
1351 {
1352 	if (mps_phys != EFI_INVALID_TABLE_ADDR)
1353 		str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1354 	if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1355 		str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1356 	return str;
1357 }
1358