xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision 79f08d9e)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35 
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44 
45 #define EFI_DEBUG	0
46 
47 static __initdata unsigned long palo_phys;
48 
49 static __initdata efi_config_table_type_t arch_tables[] = {
50 	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51 	{NULL_GUID, NULL, 0},
52 };
53 
54 extern efi_status_t efi_call_phys (void *, ...);
55 
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58 
59 #define efi_call_virt(f, args...)	(*(f))(args)
60 
61 #define STUB_GET_TIME(prefix, adjust_arg)				       \
62 static efi_status_t							       \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
64 {									       \
65 	struct ia64_fpreg fr[6];					       \
66 	efi_time_cap_t *atc = NULL;					       \
67 	efi_status_t ret;						       \
68 									       \
69 	if (tc)								       \
70 		atc = adjust_arg(tc);					       \
71 	ia64_save_scratch_fpregs(fr);					       \
72 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
73 				adjust_arg(tm), atc);			       \
74 	ia64_load_scratch_fpregs(fr);					       \
75 	return ret;							       \
76 }
77 
78 #define STUB_SET_TIME(prefix, adjust_arg)				       \
79 static efi_status_t							       \
80 prefix##_set_time (efi_time_t *tm)					       \
81 {									       \
82 	struct ia64_fpreg fr[6];					       \
83 	efi_status_t ret;						       \
84 									       \
85 	ia64_save_scratch_fpregs(fr);					       \
86 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
87 				adjust_arg(tm));			       \
88 	ia64_load_scratch_fpregs(fr);					       \
89 	return ret;							       \
90 }
91 
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
93 static efi_status_t							       \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
95 			  efi_time_t *tm)				       \
96 {									       \
97 	struct ia64_fpreg fr[6];					       \
98 	efi_status_t ret;						       \
99 									       \
100 	ia64_save_scratch_fpregs(fr);					       \
101 	ret = efi_call_##prefix(					       \
102 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
103 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
104 	ia64_load_scratch_fpregs(fr);					       \
105 	return ret;							       \
106 }
107 
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
109 static efi_status_t							       \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
111 {									       \
112 	struct ia64_fpreg fr[6];					       \
113 	efi_time_t *atm = NULL;						       \
114 	efi_status_t ret;						       \
115 									       \
116 	if (tm)								       \
117 		atm = adjust_arg(tm);					       \
118 	ia64_save_scratch_fpregs(fr);					       \
119 	ret = efi_call_##prefix(					       \
120 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
121 		enabled, atm);						       \
122 	ia64_load_scratch_fpregs(fr);					       \
123 	return ret;							       \
124 }
125 
126 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
127 static efi_status_t							       \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
129 		       unsigned long *data_size, void *data)		       \
130 {									       \
131 	struct ia64_fpreg fr[6];					       \
132 	u32 *aattr = NULL;						       \
133 	efi_status_t ret;						       \
134 									       \
135 	if (attr)							       \
136 		aattr = adjust_arg(attr);				       \
137 	ia64_save_scratch_fpregs(fr);					       \
138 	ret = efi_call_##prefix(					       \
139 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
140 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
141 		adjust_arg(data_size), adjust_arg(data));		       \
142 	ia64_load_scratch_fpregs(fr);					       \
143 	return ret;							       \
144 }
145 
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
147 static efi_status_t							       \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
149 			    efi_guid_t *vendor)				       \
150 {									       \
151 	struct ia64_fpreg fr[6];					       \
152 	efi_status_t ret;						       \
153 									       \
154 	ia64_save_scratch_fpregs(fr);					       \
155 	ret = efi_call_##prefix(					       \
156 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
157 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
158 	ia64_load_scratch_fpregs(fr);					       \
159 	return ret;							       \
160 }
161 
162 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
163 static efi_status_t							       \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
165 		       u32 attr, unsigned long data_size,		       \
166 		       void *data)					       \
167 {									       \
168 	struct ia64_fpreg fr[6];					       \
169 	efi_status_t ret;						       \
170 									       \
171 	ia64_save_scratch_fpregs(fr);					       \
172 	ret = efi_call_##prefix(					       \
173 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
174 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
175 		adjust_arg(data));					       \
176 	ia64_load_scratch_fpregs(fr);					       \
177 	return ret;							       \
178 }
179 
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
181 static efi_status_t							       \
182 prefix##_get_next_high_mono_count (u32 *count)				       \
183 {									       \
184 	struct ia64_fpreg fr[6];					       \
185 	efi_status_t ret;						       \
186 									       \
187 	ia64_save_scratch_fpregs(fr);					       \
188 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
189 				__va(runtime->get_next_high_mono_count),       \
190 				adjust_arg(count));			       \
191 	ia64_load_scratch_fpregs(fr);					       \
192 	return ret;							       \
193 }
194 
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
196 static void								       \
197 prefix##_reset_system (int reset_type, efi_status_t status,		       \
198 		       unsigned long data_size, efi_char16_t *data)	       \
199 {									       \
200 	struct ia64_fpreg fr[6];					       \
201 	efi_char16_t *adata = NULL;					       \
202 									       \
203 	if (data)							       \
204 		adata = adjust_arg(data);				       \
205 									       \
206 	ia64_save_scratch_fpregs(fr);					       \
207 	efi_call_##prefix(						       \
208 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
209 		reset_type, status, data_size, adata);			       \
210 	/* should not return, but just in case... */			       \
211 	ia64_load_scratch_fpregs(fr);					       \
212 }
213 
214 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
215 
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225 
226 #define id(arg)	arg
227 
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237 
238 void
239 efi_gettimeofday (struct timespec *ts)
240 {
241 	efi_time_t tm;
242 
243 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244 		memset(ts, 0, sizeof(*ts));
245 		return;
246 	}
247 
248 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
249 			    tm.hour, tm.minute, tm.second);
250 	ts->tv_nsec = tm.nanosecond;
251 }
252 
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256 	if (!(md->attribute & EFI_MEMORY_WB))
257 		return 0;
258 
259 	switch (md->type) {
260 	      case EFI_LOADER_CODE:
261 	      case EFI_LOADER_DATA:
262 	      case EFI_BOOT_SERVICES_CODE:
263 	      case EFI_BOOT_SERVICES_DATA:
264 	      case EFI_CONVENTIONAL_MEMORY:
265 		return 1;
266 	}
267 	return 0;
268 }
269 
270 typedef struct kern_memdesc {
271 	u64 attribute;
272 	u64 start;
273 	u64 num_pages;
274 } kern_memdesc_t;
275 
276 static kern_memdesc_t *kern_memmap;
277 
278 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
279 
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285 
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289 	return (md->phys_addr + efi_md_size(md));
290 }
291 
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295 	return (md->attribute & EFI_MEMORY_WB);
296 }
297 
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301 	return (md->attribute & EFI_MEMORY_UC);
302 }
303 
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307 	kern_memdesc_t *k;
308 	u64 start, end, voff;
309 
310 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311 	for (k = kern_memmap; k->start != ~0UL; k++) {
312 		if (k->attribute != attr)
313 			continue;
314 		start = PAGE_ALIGN(k->start);
315 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316 		if (start < end)
317 			if ((*callback)(start + voff, end + voff, arg) < 0)
318 				return;
319 	}
320 }
321 
322 /*
323  * Walk the EFI memory map and call CALLBACK once for each EFI memory
324  * descriptor that has memory that is available for OS use.
325  */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329 	walk(callback, arg, EFI_MEMORY_WB);
330 }
331 
332 /*
333  * Walk the EFI memory map and call CALLBACK once for each EFI memory
334  * descriptor that has memory that is available for uncached allocator.
335  */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339 	walk(callback, arg, EFI_MEMORY_UC);
340 }
341 
342 /*
343  * Look for the PAL_CODE region reported by EFI and map it using an
344  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
345  * Abstraction Layer chapter 11 in ADAG
346  */
347 void *
348 efi_get_pal_addr (void)
349 {
350 	void *efi_map_start, *efi_map_end, *p;
351 	efi_memory_desc_t *md;
352 	u64 efi_desc_size;
353 	int pal_code_count = 0;
354 	u64 vaddr, mask;
355 
356 	efi_map_start = __va(ia64_boot_param->efi_memmap);
357 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
358 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
359 
360 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361 		md = p;
362 		if (md->type != EFI_PAL_CODE)
363 			continue;
364 
365 		if (++pal_code_count > 1) {
366 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367 			       "dropped @ %llx\n", md->phys_addr);
368 			continue;
369 		}
370 		/*
371 		 * The only ITLB entry in region 7 that is used is the one
372 		 * installed by __start().  That entry covers a 64MB range.
373 		 */
374 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375 		vaddr = PAGE_OFFSET + md->phys_addr;
376 
377 		/*
378 		 * We must check that the PAL mapping won't overlap with the
379 		 * kernel mapping.
380 		 *
381 		 * PAL code is guaranteed to be aligned on a power of 2 between
382 		 * 4k and 256KB and that only one ITR is needed to map it. This
383 		 * implies that the PAL code is always aligned on its size,
384 		 * i.e., the closest matching page size supported by the TLB.
385 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
386 		 * it is bigger than 64MB (very unlikely!).  So for now the
387 		 * following test is enough to determine whether or not we need
388 		 * a dedicated ITR for the PAL code.
389 		 */
390 		if ((vaddr & mask) == (KERNEL_START & mask)) {
391 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392 			       __func__);
393 			continue;
394 		}
395 
396 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
397 			panic("Whoa!  PAL code size bigger than a granule!");
398 
399 #if EFI_DEBUG
400 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
401 
402 		printk(KERN_INFO "CPU %d: mapping PAL code "
403                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404                        smp_processor_id(), md->phys_addr,
405                        md->phys_addr + efi_md_size(md),
406                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408 		return __va(md->phys_addr);
409 	}
410 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411 	       __func__);
412 	return NULL;
413 }
414 
415 
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418 	u8 sum = 0;
419 	u8 *end = buffer + length;
420 
421 	while (buffer < end)
422 		sum = (u8) (sum + *(buffer++));
423 
424 	return sum;
425 }
426 
427 /*
428  * Parse and handle PALO table which is published at:
429  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430  */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433 	struct palo_table *palo = __va(phys_addr);
434 	u8  checksum;
435 
436 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437 		printk(KERN_INFO "PALO signature incorrect.\n");
438 		return;
439 	}
440 
441 	checksum = palo_checksum((u8 *)palo, palo->length);
442 	if (checksum) {
443 		printk(KERN_INFO "PALO checksum incorrect.\n");
444 		return;
445 	}
446 
447 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449 
450 void
451 efi_map_pal_code (void)
452 {
453 	void *pal_vaddr = efi_get_pal_addr ();
454 	u64 psr;
455 
456 	if (!pal_vaddr)
457 		return;
458 
459 	/*
460 	 * Cannot write to CRx with PSR.ic=1
461 	 */
462 	psr = ia64_clear_ic();
463 	ia64_itr(0x1, IA64_TR_PALCODE,
464 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466 		 IA64_GRANULE_SHIFT);
467 	paravirt_dv_serialize_data();
468 	ia64_set_psr(psr);		/* restore psr */
469 }
470 
471 void __init
472 efi_init (void)
473 {
474 	void *efi_map_start, *efi_map_end;
475 	efi_char16_t *c16;
476 	u64 efi_desc_size;
477 	char *cp, vendor[100] = "unknown";
478 	int i;
479 
480 	/*
481 	 * It's too early to be able to use the standard kernel command line
482 	 * support...
483 	 */
484 	for (cp = boot_command_line; *cp; ) {
485 		if (memcmp(cp, "mem=", 4) == 0) {
486 			mem_limit = memparse(cp + 4, &cp);
487 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
488 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
489 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
490 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
491 		} else {
492 			while (*cp != ' ' && *cp)
493 				++cp;
494 			while (*cp == ' ')
495 				++cp;
496 		}
497 	}
498 	if (min_addr != 0UL)
499 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
500 		       min_addr >> 20);
501 	if (max_addr != ~0UL)
502 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
503 		       max_addr >> 20);
504 
505 	efi.systab = __va(ia64_boot_param->efi_systab);
506 
507 	/*
508 	 * Verify the EFI Table
509 	 */
510 	if (efi.systab == NULL)
511 		panic("Whoa! Can't find EFI system table.\n");
512 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
513 		panic("Whoa! EFI system table signature incorrect\n");
514 	if ((efi.systab->hdr.revision >> 16) == 0)
515 		printk(KERN_WARNING "Warning: EFI system table version "
516 		       "%d.%02d, expected 1.00 or greater\n",
517 		       efi.systab->hdr.revision >> 16,
518 		       efi.systab->hdr.revision & 0xffff);
519 
520 	/* Show what we know for posterity */
521 	c16 = __va(efi.systab->fw_vendor);
522 	if (c16) {
523 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
524 			vendor[i] = *c16++;
525 		vendor[i] = '\0';
526 	}
527 
528 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
529 	       efi.systab->hdr.revision >> 16,
530 	       efi.systab->hdr.revision & 0xffff, vendor);
531 
532 	palo_phys      = EFI_INVALID_TABLE_ADDR;
533 
534 	if (efi_config_init(arch_tables) != 0)
535 		return;
536 
537 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
538 		handle_palo(palo_phys);
539 
540 	runtime = __va(efi.systab->runtime);
541 	efi.get_time = phys_get_time;
542 	efi.set_time = phys_set_time;
543 	efi.get_wakeup_time = phys_get_wakeup_time;
544 	efi.set_wakeup_time = phys_set_wakeup_time;
545 	efi.get_variable = phys_get_variable;
546 	efi.get_next_variable = phys_get_next_variable;
547 	efi.set_variable = phys_set_variable;
548 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
549 	efi.reset_system = phys_reset_system;
550 
551 	efi_map_start = __va(ia64_boot_param->efi_memmap);
552 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
553 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
554 
555 #if EFI_DEBUG
556 	/* print EFI memory map: */
557 	{
558 		efi_memory_desc_t *md;
559 		void *p;
560 
561 		for (i = 0, p = efi_map_start; p < efi_map_end;
562 		     ++i, p += efi_desc_size)
563 		{
564 			const char *unit;
565 			unsigned long size;
566 
567 			md = p;
568 			size = md->num_pages << EFI_PAGE_SHIFT;
569 
570 			if ((size >> 40) > 0) {
571 				size >>= 40;
572 				unit = "TB";
573 			} else if ((size >> 30) > 0) {
574 				size >>= 30;
575 				unit = "GB";
576 			} else if ((size >> 20) > 0) {
577 				size >>= 20;
578 				unit = "MB";
579 			} else {
580 				size >>= 10;
581 				unit = "KB";
582 			}
583 
584 			printk("mem%02d: type=%2u, attr=0x%016lx, "
585 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
586 			       i, md->type, md->attribute, md->phys_addr,
587 			       md->phys_addr + efi_md_size(md), size, unit);
588 		}
589 	}
590 #endif
591 
592 	efi_map_pal_code();
593 	efi_enter_virtual_mode();
594 }
595 
596 void
597 efi_enter_virtual_mode (void)
598 {
599 	void *efi_map_start, *efi_map_end, *p;
600 	efi_memory_desc_t *md;
601 	efi_status_t status;
602 	u64 efi_desc_size;
603 
604 	efi_map_start = __va(ia64_boot_param->efi_memmap);
605 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
606 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
607 
608 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
609 		md = p;
610 		if (md->attribute & EFI_MEMORY_RUNTIME) {
611 			/*
612 			 * Some descriptors have multiple bits set, so the
613 			 * order of the tests is relevant.
614 			 */
615 			if (md->attribute & EFI_MEMORY_WB) {
616 				md->virt_addr = (u64) __va(md->phys_addr);
617 			} else if (md->attribute & EFI_MEMORY_UC) {
618 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
619 			} else if (md->attribute & EFI_MEMORY_WC) {
620 #if 0
621 				md->virt_addr = ia64_remap(md->phys_addr,
622 							   (_PAGE_A |
623 							    _PAGE_P |
624 							    _PAGE_D |
625 							    _PAGE_MA_WC |
626 							    _PAGE_PL_0 |
627 							    _PAGE_AR_RW));
628 #else
629 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
630 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
631 #endif
632 			} else if (md->attribute & EFI_MEMORY_WT) {
633 #if 0
634 				md->virt_addr = ia64_remap(md->phys_addr,
635 							   (_PAGE_A |
636 							    _PAGE_P |
637 							    _PAGE_D |
638 							    _PAGE_MA_WT |
639 							    _PAGE_PL_0 |
640 							    _PAGE_AR_RW));
641 #else
642 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
643 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
644 #endif
645 			}
646 		}
647 	}
648 
649 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
650 			       ia64_boot_param->efi_memmap_size,
651 			       efi_desc_size,
652 			       ia64_boot_param->efi_memdesc_version,
653 			       ia64_boot_param->efi_memmap);
654 	if (status != EFI_SUCCESS) {
655 		printk(KERN_WARNING "warning: unable to switch EFI into "
656 		       "virtual mode (status=%lu)\n", status);
657 		return;
658 	}
659 
660 	/*
661 	 * Now that EFI is in virtual mode, we call the EFI functions more
662 	 * efficiently:
663 	 */
664 	efi.get_time = virt_get_time;
665 	efi.set_time = virt_set_time;
666 	efi.get_wakeup_time = virt_get_wakeup_time;
667 	efi.set_wakeup_time = virt_set_wakeup_time;
668 	efi.get_variable = virt_get_variable;
669 	efi.get_next_variable = virt_get_next_variable;
670 	efi.set_variable = virt_set_variable;
671 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
672 	efi.reset_system = virt_reset_system;
673 }
674 
675 /*
676  * Walk the EFI memory map looking for the I/O port range.  There can only be
677  * one entry of this type, other I/O port ranges should be described via ACPI.
678  */
679 u64
680 efi_get_iobase (void)
681 {
682 	void *efi_map_start, *efi_map_end, *p;
683 	efi_memory_desc_t *md;
684 	u64 efi_desc_size;
685 
686 	efi_map_start = __va(ia64_boot_param->efi_memmap);
687 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
688 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
689 
690 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
691 		md = p;
692 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
693 			if (md->attribute & EFI_MEMORY_UC)
694 				return md->phys_addr;
695 		}
696 	}
697 	return 0;
698 }
699 
700 static struct kern_memdesc *
701 kern_memory_descriptor (unsigned long phys_addr)
702 {
703 	struct kern_memdesc *md;
704 
705 	for (md = kern_memmap; md->start != ~0UL; md++) {
706 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
707 			 return md;
708 	}
709 	return NULL;
710 }
711 
712 static efi_memory_desc_t *
713 efi_memory_descriptor (unsigned long phys_addr)
714 {
715 	void *efi_map_start, *efi_map_end, *p;
716 	efi_memory_desc_t *md;
717 	u64 efi_desc_size;
718 
719 	efi_map_start = __va(ia64_boot_param->efi_memmap);
720 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
721 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
722 
723 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
724 		md = p;
725 
726 		if (phys_addr - md->phys_addr < efi_md_size(md))
727 			 return md;
728 	}
729 	return NULL;
730 }
731 
732 static int
733 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
734 {
735 	void *efi_map_start, *efi_map_end, *p;
736 	efi_memory_desc_t *md;
737 	u64 efi_desc_size;
738 	unsigned long end;
739 
740 	efi_map_start = __va(ia64_boot_param->efi_memmap);
741 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
742 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
743 
744 	end = phys_addr + size;
745 
746 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
747 		md = p;
748 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
749 			return 1;
750 	}
751 	return 0;
752 }
753 
754 u32
755 efi_mem_type (unsigned long phys_addr)
756 {
757 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
758 
759 	if (md)
760 		return md->type;
761 	return 0;
762 }
763 
764 u64
765 efi_mem_attributes (unsigned long phys_addr)
766 {
767 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
768 
769 	if (md)
770 		return md->attribute;
771 	return 0;
772 }
773 EXPORT_SYMBOL(efi_mem_attributes);
774 
775 u64
776 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
777 {
778 	unsigned long end = phys_addr + size;
779 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
780 	u64 attr;
781 
782 	if (!md)
783 		return 0;
784 
785 	/*
786 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
787 	 * the kernel that firmware needs this region mapped.
788 	 */
789 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
790 	do {
791 		unsigned long md_end = efi_md_end(md);
792 
793 		if (end <= md_end)
794 			return attr;
795 
796 		md = efi_memory_descriptor(md_end);
797 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
798 			return 0;
799 	} while (md);
800 	return 0;	/* never reached */
801 }
802 
803 u64
804 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
805 {
806 	unsigned long end = phys_addr + size;
807 	struct kern_memdesc *md;
808 	u64 attr;
809 
810 	/*
811 	 * This is a hack for ioremap calls before we set up kern_memmap.
812 	 * Maybe we should do efi_memmap_init() earlier instead.
813 	 */
814 	if (!kern_memmap) {
815 		attr = efi_mem_attribute(phys_addr, size);
816 		if (attr & EFI_MEMORY_WB)
817 			return EFI_MEMORY_WB;
818 		return 0;
819 	}
820 
821 	md = kern_memory_descriptor(phys_addr);
822 	if (!md)
823 		return 0;
824 
825 	attr = md->attribute;
826 	do {
827 		unsigned long md_end = kmd_end(md);
828 
829 		if (end <= md_end)
830 			return attr;
831 
832 		md = kern_memory_descriptor(md_end);
833 		if (!md || md->attribute != attr)
834 			return 0;
835 	} while (md);
836 	return 0;	/* never reached */
837 }
838 EXPORT_SYMBOL(kern_mem_attribute);
839 
840 int
841 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
842 {
843 	u64 attr;
844 
845 	/*
846 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
847 	 * uses a granule-sized kernel identity mapping.  It's really
848 	 * only safe to do this for regions in kern_memmap.  For more
849 	 * details, see Documentation/ia64/aliasing.txt.
850 	 */
851 	attr = kern_mem_attribute(phys_addr, size);
852 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
853 		return 1;
854 	return 0;
855 }
856 
857 int
858 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
859 {
860 	unsigned long phys_addr = pfn << PAGE_SHIFT;
861 	u64 attr;
862 
863 	attr = efi_mem_attribute(phys_addr, size);
864 
865 	/*
866 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
867 	 * granule, but the entire region we're mapping must support the same
868 	 * attribute.
869 	 */
870 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
871 		return 1;
872 
873 	/*
874 	 * Intel firmware doesn't tell us about all the MMIO regions, so
875 	 * in general we have to allow mmap requests.  But if EFI *does*
876 	 * tell us about anything inside this region, we should deny it.
877 	 * The user can always map a smaller region to avoid the overlap.
878 	 */
879 	if (efi_memmap_intersects(phys_addr, size))
880 		return 0;
881 
882 	return 1;
883 }
884 
885 pgprot_t
886 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
887 		     pgprot_t vma_prot)
888 {
889 	unsigned long phys_addr = pfn << PAGE_SHIFT;
890 	u64 attr;
891 
892 	/*
893 	 * For /dev/mem mmap, we use user mappings, but if the region is
894 	 * in kern_memmap (and hence may be covered by a kernel mapping),
895 	 * we must use the same attribute as the kernel mapping.
896 	 */
897 	attr = kern_mem_attribute(phys_addr, size);
898 	if (attr & EFI_MEMORY_WB)
899 		return pgprot_cacheable(vma_prot);
900 	else if (attr & EFI_MEMORY_UC)
901 		return pgprot_noncached(vma_prot);
902 
903 	/*
904 	 * Some chipsets don't support UC access to memory.  If
905 	 * WB is supported, we prefer that.
906 	 */
907 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
908 		return pgprot_cacheable(vma_prot);
909 
910 	return pgprot_noncached(vma_prot);
911 }
912 
913 int __init
914 efi_uart_console_only(void)
915 {
916 	efi_status_t status;
917 	char *s, name[] = "ConOut";
918 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
919 	efi_char16_t *utf16, name_utf16[32];
920 	unsigned char data[1024];
921 	unsigned long size = sizeof(data);
922 	struct efi_generic_dev_path *hdr, *end_addr;
923 	int uart = 0;
924 
925 	/* Convert to UTF-16 */
926 	utf16 = name_utf16;
927 	s = name;
928 	while (*s)
929 		*utf16++ = *s++ & 0x7f;
930 	*utf16 = 0;
931 
932 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
933 	if (status != EFI_SUCCESS) {
934 		printk(KERN_ERR "No EFI %s variable?\n", name);
935 		return 0;
936 	}
937 
938 	hdr = (struct efi_generic_dev_path *) data;
939 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
940 	while (hdr < end_addr) {
941 		if (hdr->type == EFI_DEV_MSG &&
942 		    hdr->sub_type == EFI_DEV_MSG_UART)
943 			uart = 1;
944 		else if (hdr->type == EFI_DEV_END_PATH ||
945 			  hdr->type == EFI_DEV_END_PATH2) {
946 			if (!uart)
947 				return 0;
948 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
949 				return 1;
950 			uart = 0;
951 		}
952 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
953 	}
954 	printk(KERN_ERR "Malformed %s value\n", name);
955 	return 0;
956 }
957 
958 /*
959  * Look for the first granule aligned memory descriptor memory
960  * that is big enough to hold EFI memory map. Make sure this
961  * descriptor is atleast granule sized so it does not get trimmed
962  */
963 struct kern_memdesc *
964 find_memmap_space (void)
965 {
966 	u64	contig_low=0, contig_high=0;
967 	u64	as = 0, ae;
968 	void *efi_map_start, *efi_map_end, *p, *q;
969 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
970 	u64	space_needed, efi_desc_size;
971 	unsigned long total_mem = 0;
972 
973 	efi_map_start = __va(ia64_boot_param->efi_memmap);
974 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
975 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
976 
977 	/*
978 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
979 	 * (if every entry has a WB part in the middle, and UC head and tail),
980 	 * plus one for the end marker.
981 	 */
982 	space_needed = sizeof(kern_memdesc_t) *
983 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
984 
985 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
986 		md = p;
987 		if (!efi_wb(md)) {
988 			continue;
989 		}
990 		if (pmd == NULL || !efi_wb(pmd) ||
991 		    efi_md_end(pmd) != md->phys_addr) {
992 			contig_low = GRANULEROUNDUP(md->phys_addr);
993 			contig_high = efi_md_end(md);
994 			for (q = p + efi_desc_size; q < efi_map_end;
995 			     q += efi_desc_size) {
996 				check_md = q;
997 				if (!efi_wb(check_md))
998 					break;
999 				if (contig_high != check_md->phys_addr)
1000 					break;
1001 				contig_high = efi_md_end(check_md);
1002 			}
1003 			contig_high = GRANULEROUNDDOWN(contig_high);
1004 		}
1005 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1006 			continue;
1007 
1008 		/* Round ends inward to granule boundaries */
1009 		as = max(contig_low, md->phys_addr);
1010 		ae = min(contig_high, efi_md_end(md));
1011 
1012 		/* keep within max_addr= and min_addr= command line arg */
1013 		as = max(as, min_addr);
1014 		ae = min(ae, max_addr);
1015 		if (ae <= as)
1016 			continue;
1017 
1018 		/* avoid going over mem= command line arg */
1019 		if (total_mem + (ae - as) > mem_limit)
1020 			ae -= total_mem + (ae - as) - mem_limit;
1021 
1022 		if (ae <= as)
1023 			continue;
1024 
1025 		if (ae - as > space_needed)
1026 			break;
1027 	}
1028 	if (p >= efi_map_end)
1029 		panic("Can't allocate space for kernel memory descriptors");
1030 
1031 	return __va(as);
1032 }
1033 
1034 /*
1035  * Walk the EFI memory map and gather all memory available for kernel
1036  * to use.  We can allocate partial granules only if the unavailable
1037  * parts exist, and are WB.
1038  */
1039 unsigned long
1040 efi_memmap_init(u64 *s, u64 *e)
1041 {
1042 	struct kern_memdesc *k, *prev = NULL;
1043 	u64	contig_low=0, contig_high=0;
1044 	u64	as, ae, lim;
1045 	void *efi_map_start, *efi_map_end, *p, *q;
1046 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1047 	u64	efi_desc_size;
1048 	unsigned long total_mem = 0;
1049 
1050 	k = kern_memmap = find_memmap_space();
1051 
1052 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1053 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1054 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1055 
1056 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1057 		md = p;
1058 		if (!efi_wb(md)) {
1059 			if (efi_uc(md) &&
1060 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1061 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1062 				k->attribute = EFI_MEMORY_UC;
1063 				k->start = md->phys_addr;
1064 				k->num_pages = md->num_pages;
1065 				k++;
1066 			}
1067 			continue;
1068 		}
1069 		if (pmd == NULL || !efi_wb(pmd) ||
1070 		    efi_md_end(pmd) != md->phys_addr) {
1071 			contig_low = GRANULEROUNDUP(md->phys_addr);
1072 			contig_high = efi_md_end(md);
1073 			for (q = p + efi_desc_size; q < efi_map_end;
1074 			     q += efi_desc_size) {
1075 				check_md = q;
1076 				if (!efi_wb(check_md))
1077 					break;
1078 				if (contig_high != check_md->phys_addr)
1079 					break;
1080 				contig_high = efi_md_end(check_md);
1081 			}
1082 			contig_high = GRANULEROUNDDOWN(contig_high);
1083 		}
1084 		if (!is_memory_available(md))
1085 			continue;
1086 
1087 		/*
1088 		 * Round ends inward to granule boundaries
1089 		 * Give trimmings to uncached allocator
1090 		 */
1091 		if (md->phys_addr < contig_low) {
1092 			lim = min(efi_md_end(md), contig_low);
1093 			if (efi_uc(md)) {
1094 				if (k > kern_memmap &&
1095 				    (k-1)->attribute == EFI_MEMORY_UC &&
1096 				    kmd_end(k-1) == md->phys_addr) {
1097 					(k-1)->num_pages +=
1098 						(lim - md->phys_addr)
1099 						>> EFI_PAGE_SHIFT;
1100 				} else {
1101 					k->attribute = EFI_MEMORY_UC;
1102 					k->start = md->phys_addr;
1103 					k->num_pages = (lim - md->phys_addr)
1104 						>> EFI_PAGE_SHIFT;
1105 					k++;
1106 				}
1107 			}
1108 			as = contig_low;
1109 		} else
1110 			as = md->phys_addr;
1111 
1112 		if (efi_md_end(md) > contig_high) {
1113 			lim = max(md->phys_addr, contig_high);
1114 			if (efi_uc(md)) {
1115 				if (lim == md->phys_addr && k > kern_memmap &&
1116 				    (k-1)->attribute == EFI_MEMORY_UC &&
1117 				    kmd_end(k-1) == md->phys_addr) {
1118 					(k-1)->num_pages += md->num_pages;
1119 				} else {
1120 					k->attribute = EFI_MEMORY_UC;
1121 					k->start = lim;
1122 					k->num_pages = (efi_md_end(md) - lim)
1123 						>> EFI_PAGE_SHIFT;
1124 					k++;
1125 				}
1126 			}
1127 			ae = contig_high;
1128 		} else
1129 			ae = efi_md_end(md);
1130 
1131 		/* keep within max_addr= and min_addr= command line arg */
1132 		as = max(as, min_addr);
1133 		ae = min(ae, max_addr);
1134 		if (ae <= as)
1135 			continue;
1136 
1137 		/* avoid going over mem= command line arg */
1138 		if (total_mem + (ae - as) > mem_limit)
1139 			ae -= total_mem + (ae - as) - mem_limit;
1140 
1141 		if (ae <= as)
1142 			continue;
1143 		if (prev && kmd_end(prev) == md->phys_addr) {
1144 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1145 			total_mem += ae - as;
1146 			continue;
1147 		}
1148 		k->attribute = EFI_MEMORY_WB;
1149 		k->start = as;
1150 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1151 		total_mem += ae - as;
1152 		prev = k++;
1153 	}
1154 	k->start = ~0L; /* end-marker */
1155 
1156 	/* reserve the memory we are using for kern_memmap */
1157 	*s = (u64)kern_memmap;
1158 	*e = (u64)++k;
1159 
1160 	return total_mem;
1161 }
1162 
1163 void
1164 efi_initialize_iomem_resources(struct resource *code_resource,
1165 			       struct resource *data_resource,
1166 			       struct resource *bss_resource)
1167 {
1168 	struct resource *res;
1169 	void *efi_map_start, *efi_map_end, *p;
1170 	efi_memory_desc_t *md;
1171 	u64 efi_desc_size;
1172 	char *name;
1173 	unsigned long flags;
1174 
1175 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1176 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1177 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1178 
1179 	res = NULL;
1180 
1181 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1182 		md = p;
1183 
1184 		if (md->num_pages == 0) /* should not happen */
1185 			continue;
1186 
1187 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1188 		switch (md->type) {
1189 
1190 			case EFI_MEMORY_MAPPED_IO:
1191 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1192 				continue;
1193 
1194 			case EFI_LOADER_CODE:
1195 			case EFI_LOADER_DATA:
1196 			case EFI_BOOT_SERVICES_DATA:
1197 			case EFI_BOOT_SERVICES_CODE:
1198 			case EFI_CONVENTIONAL_MEMORY:
1199 				if (md->attribute & EFI_MEMORY_WP) {
1200 					name = "System ROM";
1201 					flags |= IORESOURCE_READONLY;
1202 				} else if (md->attribute == EFI_MEMORY_UC)
1203 					name = "Uncached RAM";
1204 				else
1205 					name = "System RAM";
1206 				break;
1207 
1208 			case EFI_ACPI_MEMORY_NVS:
1209 				name = "ACPI Non-volatile Storage";
1210 				break;
1211 
1212 			case EFI_UNUSABLE_MEMORY:
1213 				name = "reserved";
1214 				flags |= IORESOURCE_DISABLED;
1215 				break;
1216 
1217 			case EFI_RESERVED_TYPE:
1218 			case EFI_RUNTIME_SERVICES_CODE:
1219 			case EFI_RUNTIME_SERVICES_DATA:
1220 			case EFI_ACPI_RECLAIM_MEMORY:
1221 			default:
1222 				name = "reserved";
1223 				break;
1224 		}
1225 
1226 		if ((res = kzalloc(sizeof(struct resource),
1227 				   GFP_KERNEL)) == NULL) {
1228 			printk(KERN_ERR
1229 			       "failed to allocate resource for iomem\n");
1230 			return;
1231 		}
1232 
1233 		res->name = name;
1234 		res->start = md->phys_addr;
1235 		res->end = md->phys_addr + efi_md_size(md) - 1;
1236 		res->flags = flags;
1237 
1238 		if (insert_resource(&iomem_resource, res) < 0)
1239 			kfree(res);
1240 		else {
1241 			/*
1242 			 * We don't know which region contains
1243 			 * kernel data so we try it repeatedly and
1244 			 * let the resource manager test it.
1245 			 */
1246 			insert_resource(res, code_resource);
1247 			insert_resource(res, data_resource);
1248 			insert_resource(res, bss_resource);
1249 #ifdef CONFIG_KEXEC
1250                         insert_resource(res, &efi_memmap_res);
1251                         insert_resource(res, &boot_param_res);
1252 			if (crashk_res.end > crashk_res.start)
1253 				insert_resource(res, &crashk_res);
1254 #endif
1255 		}
1256 	}
1257 }
1258 
1259 #ifdef CONFIG_KEXEC
1260 /* find a block of memory aligned to 64M exclude reserved regions
1261    rsvd_regions are sorted
1262  */
1263 unsigned long __init
1264 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1265 {
1266 	int i;
1267 	u64 start, end;
1268 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1269 	void *efi_map_start, *efi_map_end, *p;
1270 	efi_memory_desc_t *md;
1271 	u64 efi_desc_size;
1272 
1273 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1274 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1275 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1276 
1277 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1278 		md = p;
1279 		if (!efi_wb(md))
1280 			continue;
1281 		start = ALIGN(md->phys_addr, alignment);
1282 		end = efi_md_end(md);
1283 		for (i = 0; i < n; i++) {
1284 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1285 				if (__pa(r[i].start) > start + size)
1286 					return start;
1287 				start = ALIGN(__pa(r[i].end), alignment);
1288 				if (i < n-1 &&
1289 				    __pa(r[i+1].start) < start + size)
1290 					continue;
1291 				else
1292 					break;
1293 			}
1294 		}
1295 		if (end > start + size)
1296 			return start;
1297 	}
1298 
1299 	printk(KERN_WARNING
1300 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1301 	return ~0UL;
1302 }
1303 #endif
1304 
1305 #ifdef CONFIG_CRASH_DUMP
1306 /* locate the size find a the descriptor at a certain address */
1307 unsigned long __init
1308 vmcore_find_descriptor_size (unsigned long address)
1309 {
1310 	void *efi_map_start, *efi_map_end, *p;
1311 	efi_memory_desc_t *md;
1312 	u64 efi_desc_size;
1313 	unsigned long ret = 0;
1314 
1315 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1316 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1317 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1318 
1319 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1320 		md = p;
1321 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1322 		    && md->phys_addr == address) {
1323 			ret = efi_md_size(md);
1324 			break;
1325 		}
1326 	}
1327 
1328 	if (ret == 0)
1329 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1330 
1331 	return ret;
1332 }
1333 #endif
1334