xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision 643d1f7f)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2003 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
13  *
14  * All EFI Runtime Services are not implemented yet as EFI only
15  * supports physical mode addressing on SoftSDV. This is to be fixed
16  * in a future version.  --drummond 1999-07-20
17  *
18  * Implemented EFI runtime services and virtual mode calls.  --davidm
19  *
20  * Goutham Rao: <goutham.rao@intel.com>
21  *	Skip non-WB memory and ignore empty memory ranges.
22  */
23 #include <linux/module.h>
24 #include <linux/bootmem.h>
25 #include <linux/kernel.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/time.h>
29 #include <linux/efi.h>
30 #include <linux/kexec.h>
31 #include <linux/mm.h>
32 
33 #include <asm/io.h>
34 #include <asm/kregs.h>
35 #include <asm/meminit.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/mca.h>
39 
40 #define EFI_DEBUG	0
41 
42 extern efi_status_t efi_call_phys (void *, ...);
43 
44 struct efi efi;
45 EXPORT_SYMBOL(efi);
46 static efi_runtime_services_t *runtime;
47 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
48 
49 #define efi_call_virt(f, args...)	(*(f))(args)
50 
51 #define STUB_GET_TIME(prefix, adjust_arg)							  \
52 static efi_status_t										  \
53 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)						  \
54 {												  \
55 	struct ia64_fpreg fr[6];								  \
56 	efi_time_cap_t *atc = NULL;								  \
57 	efi_status_t ret;									  \
58 												  \
59 	if (tc)											  \
60 		atc = adjust_arg(tc);								  \
61 	ia64_save_scratch_fpregs(fr);								  \
62 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
63 	ia64_load_scratch_fpregs(fr);								  \
64 	return ret;										  \
65 }
66 
67 #define STUB_SET_TIME(prefix, adjust_arg)							\
68 static efi_status_t										\
69 prefix##_set_time (efi_time_t *tm)								\
70 {												\
71 	struct ia64_fpreg fr[6];								\
72 	efi_status_t ret;									\
73 												\
74 	ia64_save_scratch_fpregs(fr);								\
75 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));	\
76 	ia64_load_scratch_fpregs(fr);								\
77 	return ret;										\
78 }
79 
80 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)						\
81 static efi_status_t										\
82 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)		\
83 {												\
84 	struct ia64_fpreg fr[6];								\
85 	efi_status_t ret;									\
86 												\
87 	ia64_save_scratch_fpregs(fr);								\
88 	ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),	\
89 				adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));	\
90 	ia64_load_scratch_fpregs(fr);								\
91 	return ret;										\
92 }
93 
94 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)						\
95 static efi_status_t										\
96 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)					\
97 {												\
98 	struct ia64_fpreg fr[6];								\
99 	efi_time_t *atm = NULL;									\
100 	efi_status_t ret;									\
101 												\
102 	if (tm)											\
103 		atm = adjust_arg(tm);								\
104 	ia64_save_scratch_fpregs(fr);								\
105 	ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),	\
106 				enabled, atm);							\
107 	ia64_load_scratch_fpregs(fr);								\
108 	return ret;										\
109 }
110 
111 #define STUB_GET_VARIABLE(prefix, adjust_arg)						\
112 static efi_status_t									\
113 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,		\
114 		       unsigned long *data_size, void *data)				\
115 {											\
116 	struct ia64_fpreg fr[6];							\
117 	u32 *aattr = NULL;									\
118 	efi_status_t ret;								\
119 											\
120 	if (attr)									\
121 		aattr = adjust_arg(attr);						\
122 	ia64_save_scratch_fpregs(fr);							\
123 	ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),	\
124 				adjust_arg(name), adjust_arg(vendor), aattr,		\
125 				adjust_arg(data_size), adjust_arg(data));		\
126 	ia64_load_scratch_fpregs(fr);							\
127 	return ret;									\
128 }
129 
130 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)						\
131 static efi_status_t										\
132 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)	\
133 {												\
134 	struct ia64_fpreg fr[6];								\
135 	efi_status_t ret;									\
136 												\
137 	ia64_save_scratch_fpregs(fr);								\
138 	ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),	\
139 				adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));	\
140 	ia64_load_scratch_fpregs(fr);								\
141 	return ret;										\
142 }
143 
144 #define STUB_SET_VARIABLE(prefix, adjust_arg)						\
145 static efi_status_t									\
146 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,	\
147 		       unsigned long data_size, void *data)				\
148 {											\
149 	struct ia64_fpreg fr[6];							\
150 	efi_status_t ret;								\
151 											\
152 	ia64_save_scratch_fpregs(fr);							\
153 	ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),	\
154 				adjust_arg(name), adjust_arg(vendor), attr, data_size,	\
155 				adjust_arg(data));					\
156 	ia64_load_scratch_fpregs(fr);							\
157 	return ret;									\
158 }
159 
160 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)					\
161 static efi_status_t										\
162 prefix##_get_next_high_mono_count (u32 *count)							\
163 {												\
164 	struct ia64_fpreg fr[6];								\
165 	efi_status_t ret;									\
166 												\
167 	ia64_save_scratch_fpregs(fr);								\
168 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)				\
169 				__va(runtime->get_next_high_mono_count), adjust_arg(count));	\
170 	ia64_load_scratch_fpregs(fr);								\
171 	return ret;										\
172 }
173 
174 #define STUB_RESET_SYSTEM(prefix, adjust_arg)					\
175 static void									\
176 prefix##_reset_system (int reset_type, efi_status_t status,			\
177 		       unsigned long data_size, efi_char16_t *data)		\
178 {										\
179 	struct ia64_fpreg fr[6];						\
180 	efi_char16_t *adata = NULL;						\
181 										\
182 	if (data)								\
183 		adata = adjust_arg(data);					\
184 										\
185 	ia64_save_scratch_fpregs(fr);						\
186 	efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),	\
187 			  reset_type, status, data_size, adata);		\
188 	/* should not return, but just in case... */				\
189 	ia64_load_scratch_fpregs(fr);						\
190 }
191 
192 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
193 
194 STUB_GET_TIME(phys, phys_ptr)
195 STUB_SET_TIME(phys, phys_ptr)
196 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
197 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
198 STUB_GET_VARIABLE(phys, phys_ptr)
199 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
200 STUB_SET_VARIABLE(phys, phys_ptr)
201 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
202 STUB_RESET_SYSTEM(phys, phys_ptr)
203 
204 #define id(arg)	arg
205 
206 STUB_GET_TIME(virt, id)
207 STUB_SET_TIME(virt, id)
208 STUB_GET_WAKEUP_TIME(virt, id)
209 STUB_SET_WAKEUP_TIME(virt, id)
210 STUB_GET_VARIABLE(virt, id)
211 STUB_GET_NEXT_VARIABLE(virt, id)
212 STUB_SET_VARIABLE(virt, id)
213 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
214 STUB_RESET_SYSTEM(virt, id)
215 
216 void
217 efi_gettimeofday (struct timespec *ts)
218 {
219 	efi_time_t tm;
220 
221 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
222 		memset(ts, 0, sizeof(*ts));
223 		return;
224 	}
225 
226 	ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
227 	ts->tv_nsec = tm.nanosecond;
228 }
229 
230 static int
231 is_memory_available (efi_memory_desc_t *md)
232 {
233 	if (!(md->attribute & EFI_MEMORY_WB))
234 		return 0;
235 
236 	switch (md->type) {
237 	      case EFI_LOADER_CODE:
238 	      case EFI_LOADER_DATA:
239 	      case EFI_BOOT_SERVICES_CODE:
240 	      case EFI_BOOT_SERVICES_DATA:
241 	      case EFI_CONVENTIONAL_MEMORY:
242 		return 1;
243 	}
244 	return 0;
245 }
246 
247 typedef struct kern_memdesc {
248 	u64 attribute;
249 	u64 start;
250 	u64 num_pages;
251 } kern_memdesc_t;
252 
253 static kern_memdesc_t *kern_memmap;
254 
255 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
256 
257 static inline u64
258 kmd_end(kern_memdesc_t *kmd)
259 {
260 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
261 }
262 
263 static inline u64
264 efi_md_end(efi_memory_desc_t *md)
265 {
266 	return (md->phys_addr + efi_md_size(md));
267 }
268 
269 static inline int
270 efi_wb(efi_memory_desc_t *md)
271 {
272 	return (md->attribute & EFI_MEMORY_WB);
273 }
274 
275 static inline int
276 efi_uc(efi_memory_desc_t *md)
277 {
278 	return (md->attribute & EFI_MEMORY_UC);
279 }
280 
281 static void
282 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
283 {
284 	kern_memdesc_t *k;
285 	u64 start, end, voff;
286 
287 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
288 	for (k = kern_memmap; k->start != ~0UL; k++) {
289 		if (k->attribute != attr)
290 			continue;
291 		start = PAGE_ALIGN(k->start);
292 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
293 		if (start < end)
294 			if ((*callback)(start + voff, end + voff, arg) < 0)
295 				return;
296 	}
297 }
298 
299 /*
300  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
301  * has memory that is available for OS use.
302  */
303 void
304 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
305 {
306 	walk(callback, arg, EFI_MEMORY_WB);
307 }
308 
309 /*
310  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
311  * has memory that is available for uncached allocator.
312  */
313 void
314 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
315 {
316 	walk(callback, arg, EFI_MEMORY_UC);
317 }
318 
319 /*
320  * Look for the PAL_CODE region reported by EFI and maps it using an
321  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
322  * Abstraction Layer chapter 11 in ADAG
323  */
324 
325 void *
326 efi_get_pal_addr (void)
327 {
328 	void *efi_map_start, *efi_map_end, *p;
329 	efi_memory_desc_t *md;
330 	u64 efi_desc_size;
331 	int pal_code_count = 0;
332 	u64 vaddr, mask;
333 
334 	efi_map_start = __va(ia64_boot_param->efi_memmap);
335 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
336 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
337 
338 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
339 		md = p;
340 		if (md->type != EFI_PAL_CODE)
341 			continue;
342 
343 		if (++pal_code_count > 1) {
344 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
345 			       md->phys_addr);
346 			continue;
347 		}
348 		/*
349 		 * The only ITLB entry in region 7 that is used is the one installed by
350 		 * __start().  That entry covers a 64MB range.
351 		 */
352 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
353 		vaddr = PAGE_OFFSET + md->phys_addr;
354 
355 		/*
356 		 * We must check that the PAL mapping won't overlap with the kernel
357 		 * mapping.
358 		 *
359 		 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
360 		 * 256KB and that only one ITR is needed to map it. This implies that the
361 		 * PAL code is always aligned on its size, i.e., the closest matching page
362 		 * size supported by the TLB. Therefore PAL code is guaranteed never to
363 		 * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
364 		 * now the following test is enough to determine whether or not we need a
365 		 * dedicated ITR for the PAL code.
366 		 */
367 		if ((vaddr & mask) == (KERNEL_START & mask)) {
368 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
369 			       __FUNCTION__);
370 			continue;
371 		}
372 
373 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
374 			panic("Woah!  PAL code size bigger than a granule!");
375 
376 #if EFI_DEBUG
377 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
378 
379 		printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
380 			smp_processor_id(), md->phys_addr,
381 			md->phys_addr + efi_md_size(md),
382 			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
383 #endif
384 		return __va(md->phys_addr);
385 	}
386 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
387 	       __FUNCTION__);
388 	return NULL;
389 }
390 
391 void
392 efi_map_pal_code (void)
393 {
394 	void *pal_vaddr = efi_get_pal_addr ();
395 	u64 psr;
396 
397 	if (!pal_vaddr)
398 		return;
399 
400 	/*
401 	 * Cannot write to CRx with PSR.ic=1
402 	 */
403 	psr = ia64_clear_ic();
404 	ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
405 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
406 		 IA64_GRANULE_SHIFT);
407 	ia64_set_psr(psr);		/* restore psr */
408 	ia64_srlz_i();
409 }
410 
411 void __init
412 efi_init (void)
413 {
414 	void *efi_map_start, *efi_map_end;
415 	efi_config_table_t *config_tables;
416 	efi_char16_t *c16;
417 	u64 efi_desc_size;
418 	char *cp, vendor[100] = "unknown";
419 	int i;
420 
421 	/* it's too early to be able to use the standard kernel command line support... */
422 	for (cp = boot_command_line; *cp; ) {
423 		if (memcmp(cp, "mem=", 4) == 0) {
424 			mem_limit = memparse(cp + 4, &cp);
425 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
426 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
427 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
428 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
429 		} else {
430 			while (*cp != ' ' && *cp)
431 				++cp;
432 			while (*cp == ' ')
433 				++cp;
434 		}
435 	}
436 	if (min_addr != 0UL)
437 		printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
438 	if (max_addr != ~0UL)
439 		printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
440 
441 	efi.systab = __va(ia64_boot_param->efi_systab);
442 
443 	/*
444 	 * Verify the EFI Table
445 	 */
446 	if (efi.systab == NULL)
447 		panic("Woah! Can't find EFI system table.\n");
448 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
449 		panic("Woah! EFI system table signature incorrect\n");
450 	if ((efi.systab->hdr.revision >> 16) == 0)
451 		printk(KERN_WARNING "Warning: EFI system table version "
452 		       "%d.%02d, expected 1.00 or greater\n",
453 		       efi.systab->hdr.revision >> 16,
454 		       efi.systab->hdr.revision & 0xffff);
455 
456 	config_tables = __va(efi.systab->tables);
457 
458 	/* Show what we know for posterity */
459 	c16 = __va(efi.systab->fw_vendor);
460 	if (c16) {
461 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
462 			vendor[i] = *c16++;
463 		vendor[i] = '\0';
464 	}
465 
466 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
467 	       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
468 
469 	efi.mps        = EFI_INVALID_TABLE_ADDR;
470 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
471 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
472 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
473 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
474 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
475 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
476 	efi.uga        = EFI_INVALID_TABLE_ADDR;
477 
478 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
479 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
480 			efi.mps = config_tables[i].table;
481 			printk(" MPS=0x%lx", config_tables[i].table);
482 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
483 			efi.acpi20 = config_tables[i].table;
484 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
485 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
486 			efi.acpi = config_tables[i].table;
487 			printk(" ACPI=0x%lx", config_tables[i].table);
488 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
489 			efi.smbios = config_tables[i].table;
490 			printk(" SMBIOS=0x%lx", config_tables[i].table);
491 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
492 			efi.sal_systab = config_tables[i].table;
493 			printk(" SALsystab=0x%lx", config_tables[i].table);
494 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
495 			efi.hcdp = config_tables[i].table;
496 			printk(" HCDP=0x%lx", config_tables[i].table);
497 		}
498 	}
499 	printk("\n");
500 
501 	runtime = __va(efi.systab->runtime);
502 	efi.get_time = phys_get_time;
503 	efi.set_time = phys_set_time;
504 	efi.get_wakeup_time = phys_get_wakeup_time;
505 	efi.set_wakeup_time = phys_set_wakeup_time;
506 	efi.get_variable = phys_get_variable;
507 	efi.get_next_variable = phys_get_next_variable;
508 	efi.set_variable = phys_set_variable;
509 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
510 	efi.reset_system = phys_reset_system;
511 
512 	efi_map_start = __va(ia64_boot_param->efi_memmap);
513 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
514 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
515 
516 #if EFI_DEBUG
517 	/* print EFI memory map: */
518 	{
519 		efi_memory_desc_t *md;
520 		void *p;
521 
522 		for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
523 			md = p;
524 			printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
525 			       i, md->type, md->attribute, md->phys_addr,
526 			       md->phys_addr + efi_md_size(md),
527 			       md->num_pages >> (20 - EFI_PAGE_SHIFT));
528 		}
529 	}
530 #endif
531 
532 	efi_map_pal_code();
533 	efi_enter_virtual_mode();
534 }
535 
536 void
537 efi_enter_virtual_mode (void)
538 {
539 	void *efi_map_start, *efi_map_end, *p;
540 	efi_memory_desc_t *md;
541 	efi_status_t status;
542 	u64 efi_desc_size;
543 
544 	efi_map_start = __va(ia64_boot_param->efi_memmap);
545 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
546 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
547 
548 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
549 		md = p;
550 		if (md->attribute & EFI_MEMORY_RUNTIME) {
551 			/*
552 			 * Some descriptors have multiple bits set, so the order of
553 			 * the tests is relevant.
554 			 */
555 			if (md->attribute & EFI_MEMORY_WB) {
556 				md->virt_addr = (u64) __va(md->phys_addr);
557 			} else if (md->attribute & EFI_MEMORY_UC) {
558 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
559 			} else if (md->attribute & EFI_MEMORY_WC) {
560 #if 0
561 				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
562 									   | _PAGE_D
563 									   | _PAGE_MA_WC
564 									   | _PAGE_PL_0
565 									   | _PAGE_AR_RW));
566 #else
567 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
568 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
569 #endif
570 			} else if (md->attribute & EFI_MEMORY_WT) {
571 #if 0
572 				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
573 									   | _PAGE_D | _PAGE_MA_WT
574 									   | _PAGE_PL_0
575 									   | _PAGE_AR_RW));
576 #else
577 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
578 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
579 #endif
580 			}
581 		}
582 	}
583 
584 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
585 			       ia64_boot_param->efi_memmap_size,
586 			       efi_desc_size, ia64_boot_param->efi_memdesc_version,
587 			       ia64_boot_param->efi_memmap);
588 	if (status != EFI_SUCCESS) {
589 		printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
590 		       "(status=%lu)\n", status);
591 		return;
592 	}
593 
594 	/*
595 	 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
596 	 */
597 	efi.get_time = virt_get_time;
598 	efi.set_time = virt_set_time;
599 	efi.get_wakeup_time = virt_get_wakeup_time;
600 	efi.set_wakeup_time = virt_set_wakeup_time;
601 	efi.get_variable = virt_get_variable;
602 	efi.get_next_variable = virt_get_next_variable;
603 	efi.set_variable = virt_set_variable;
604 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
605 	efi.reset_system = virt_reset_system;
606 }
607 
608 /*
609  * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
610  * this type, other I/O port ranges should be described via ACPI.
611  */
612 u64
613 efi_get_iobase (void)
614 {
615 	void *efi_map_start, *efi_map_end, *p;
616 	efi_memory_desc_t *md;
617 	u64 efi_desc_size;
618 
619 	efi_map_start = __va(ia64_boot_param->efi_memmap);
620 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
621 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
622 
623 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
624 		md = p;
625 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
626 			if (md->attribute & EFI_MEMORY_UC)
627 				return md->phys_addr;
628 		}
629 	}
630 	return 0;
631 }
632 
633 static struct kern_memdesc *
634 kern_memory_descriptor (unsigned long phys_addr)
635 {
636 	struct kern_memdesc *md;
637 
638 	for (md = kern_memmap; md->start != ~0UL; md++) {
639 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
640 			 return md;
641 	}
642 	return NULL;
643 }
644 
645 static efi_memory_desc_t *
646 efi_memory_descriptor (unsigned long phys_addr)
647 {
648 	void *efi_map_start, *efi_map_end, *p;
649 	efi_memory_desc_t *md;
650 	u64 efi_desc_size;
651 
652 	efi_map_start = __va(ia64_boot_param->efi_memmap);
653 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
654 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
655 
656 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
657 		md = p;
658 
659 		if (phys_addr - md->phys_addr < efi_md_size(md))
660 			 return md;
661 	}
662 	return NULL;
663 }
664 
665 static int
666 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
667 {
668 	void *efi_map_start, *efi_map_end, *p;
669 	efi_memory_desc_t *md;
670 	u64 efi_desc_size;
671 	unsigned long end;
672 
673 	efi_map_start = __va(ia64_boot_param->efi_memmap);
674 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
675 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
676 
677 	end = phys_addr + size;
678 
679 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
680 		md = p;
681 
682 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
683 			return 1;
684 	}
685 	return 0;
686 }
687 
688 u32
689 efi_mem_type (unsigned long phys_addr)
690 {
691 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
692 
693 	if (md)
694 		return md->type;
695 	return 0;
696 }
697 
698 u64
699 efi_mem_attributes (unsigned long phys_addr)
700 {
701 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
702 
703 	if (md)
704 		return md->attribute;
705 	return 0;
706 }
707 EXPORT_SYMBOL(efi_mem_attributes);
708 
709 u64
710 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
711 {
712 	unsigned long end = phys_addr + size;
713 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
714 	u64 attr;
715 
716 	if (!md)
717 		return 0;
718 
719 	/*
720 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
721 	 * the kernel that firmware needs this region mapped.
722 	 */
723 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
724 	do {
725 		unsigned long md_end = efi_md_end(md);
726 
727 		if (end <= md_end)
728 			return attr;
729 
730 		md = efi_memory_descriptor(md_end);
731 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
732 			return 0;
733 	} while (md);
734 	return 0;
735 }
736 
737 u64
738 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
739 {
740 	unsigned long end = phys_addr + size;
741 	struct kern_memdesc *md;
742 	u64 attr;
743 
744 	/*
745 	 * This is a hack for ioremap calls before we set up kern_memmap.
746 	 * Maybe we should do efi_memmap_init() earlier instead.
747 	 */
748 	if (!kern_memmap) {
749 		attr = efi_mem_attribute(phys_addr, size);
750 		if (attr & EFI_MEMORY_WB)
751 			return EFI_MEMORY_WB;
752 		return 0;
753 	}
754 
755 	md = kern_memory_descriptor(phys_addr);
756 	if (!md)
757 		return 0;
758 
759 	attr = md->attribute;
760 	do {
761 		unsigned long md_end = kmd_end(md);
762 
763 		if (end <= md_end)
764 			return attr;
765 
766 		md = kern_memory_descriptor(md_end);
767 		if (!md || md->attribute != attr)
768 			return 0;
769 	} while (md);
770 	return 0;
771 }
772 EXPORT_SYMBOL(kern_mem_attribute);
773 
774 int
775 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
776 {
777 	u64 attr;
778 
779 	/*
780 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
781 	 * uses a granule-sized kernel identity mapping.  It's really
782 	 * only safe to do this for regions in kern_memmap.  For more
783 	 * details, see Documentation/ia64/aliasing.txt.
784 	 */
785 	attr = kern_mem_attribute(phys_addr, size);
786 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
787 		return 1;
788 	return 0;
789 }
790 
791 int
792 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
793 {
794 	unsigned long phys_addr = pfn << PAGE_SHIFT;
795 	u64 attr;
796 
797 	attr = efi_mem_attribute(phys_addr, size);
798 
799 	/*
800 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
801 	 * granule, but the entire region we're mapping must support the same
802 	 * attribute.
803 	 */
804 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
805 		return 1;
806 
807 	/*
808 	 * Intel firmware doesn't tell us about all the MMIO regions, so
809 	 * in general we have to allow mmap requests.  But if EFI *does*
810 	 * tell us about anything inside this region, we should deny it.
811 	 * The user can always map a smaller region to avoid the overlap.
812 	 */
813 	if (efi_memmap_intersects(phys_addr, size))
814 		return 0;
815 
816 	return 1;
817 }
818 
819 pgprot_t
820 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
821 		     pgprot_t vma_prot)
822 {
823 	unsigned long phys_addr = pfn << PAGE_SHIFT;
824 	u64 attr;
825 
826 	/*
827 	 * For /dev/mem mmap, we use user mappings, but if the region is
828 	 * in kern_memmap (and hence may be covered by a kernel mapping),
829 	 * we must use the same attribute as the kernel mapping.
830 	 */
831 	attr = kern_mem_attribute(phys_addr, size);
832 	if (attr & EFI_MEMORY_WB)
833 		return pgprot_cacheable(vma_prot);
834 	else if (attr & EFI_MEMORY_UC)
835 		return pgprot_noncached(vma_prot);
836 
837 	/*
838 	 * Some chipsets don't support UC access to memory.  If
839 	 * WB is supported, we prefer that.
840 	 */
841 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
842 		return pgprot_cacheable(vma_prot);
843 
844 	return pgprot_noncached(vma_prot);
845 }
846 
847 int __init
848 efi_uart_console_only(void)
849 {
850 	efi_status_t status;
851 	char *s, name[] = "ConOut";
852 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
853 	efi_char16_t *utf16, name_utf16[32];
854 	unsigned char data[1024];
855 	unsigned long size = sizeof(data);
856 	struct efi_generic_dev_path *hdr, *end_addr;
857 	int uart = 0;
858 
859 	/* Convert to UTF-16 */
860 	utf16 = name_utf16;
861 	s = name;
862 	while (*s)
863 		*utf16++ = *s++ & 0x7f;
864 	*utf16 = 0;
865 
866 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
867 	if (status != EFI_SUCCESS) {
868 		printk(KERN_ERR "No EFI %s variable?\n", name);
869 		return 0;
870 	}
871 
872 	hdr = (struct efi_generic_dev_path *) data;
873 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
874 	while (hdr < end_addr) {
875 		if (hdr->type == EFI_DEV_MSG &&
876 		    hdr->sub_type == EFI_DEV_MSG_UART)
877 			uart = 1;
878 		else if (hdr->type == EFI_DEV_END_PATH ||
879 			  hdr->type == EFI_DEV_END_PATH2) {
880 			if (!uart)
881 				return 0;
882 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
883 				return 1;
884 			uart = 0;
885 		}
886 		hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
887 	}
888 	printk(KERN_ERR "Malformed %s value\n", name);
889 	return 0;
890 }
891 
892 /*
893  * Look for the first granule aligned memory descriptor memory
894  * that is big enough to hold EFI memory map. Make sure this
895  * descriptor is atleast granule sized so it does not get trimmed
896  */
897 struct kern_memdesc *
898 find_memmap_space (void)
899 {
900 	u64	contig_low=0, contig_high=0;
901 	u64	as = 0, ae;
902 	void *efi_map_start, *efi_map_end, *p, *q;
903 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
904 	u64	space_needed, efi_desc_size;
905 	unsigned long total_mem = 0;
906 
907 	efi_map_start = __va(ia64_boot_param->efi_memmap);
908 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
909 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
910 
911 	/*
912 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
913 	 * (if every entry has a WB part in the middle, and UC head and tail),
914 	 * plus one for the end marker.
915 	 */
916 	space_needed = sizeof(kern_memdesc_t) *
917 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
918 
919 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
920 		md = p;
921 		if (!efi_wb(md)) {
922 			continue;
923 		}
924 		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
925 			contig_low = GRANULEROUNDUP(md->phys_addr);
926 			contig_high = efi_md_end(md);
927 			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
928 				check_md = q;
929 				if (!efi_wb(check_md))
930 					break;
931 				if (contig_high != check_md->phys_addr)
932 					break;
933 				contig_high = efi_md_end(check_md);
934 			}
935 			contig_high = GRANULEROUNDDOWN(contig_high);
936 		}
937 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
938 			continue;
939 
940 		/* Round ends inward to granule boundaries */
941 		as = max(contig_low, md->phys_addr);
942 		ae = min(contig_high, efi_md_end(md));
943 
944 		/* keep within max_addr= and min_addr= command line arg */
945 		as = max(as, min_addr);
946 		ae = min(ae, max_addr);
947 		if (ae <= as)
948 			continue;
949 
950 		/* avoid going over mem= command line arg */
951 		if (total_mem + (ae - as) > mem_limit)
952 			ae -= total_mem + (ae - as) - mem_limit;
953 
954 		if (ae <= as)
955 			continue;
956 
957 		if (ae - as > space_needed)
958 			break;
959 	}
960 	if (p >= efi_map_end)
961 		panic("Can't allocate space for kernel memory descriptors");
962 
963 	return __va(as);
964 }
965 
966 /*
967  * Walk the EFI memory map and gather all memory available for kernel
968  * to use.  We can allocate partial granules only if the unavailable
969  * parts exist, and are WB.
970  */
971 unsigned long
972 efi_memmap_init(unsigned long *s, unsigned long *e)
973 {
974 	struct kern_memdesc *k, *prev = NULL;
975 	u64	contig_low=0, contig_high=0;
976 	u64	as, ae, lim;
977 	void *efi_map_start, *efi_map_end, *p, *q;
978 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
979 	u64	efi_desc_size;
980 	unsigned long total_mem = 0;
981 
982 	k = kern_memmap = find_memmap_space();
983 
984 	efi_map_start = __va(ia64_boot_param->efi_memmap);
985 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
986 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
987 
988 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
989 		md = p;
990 		if (!efi_wb(md)) {
991 			if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
992 				    	   md->type == EFI_BOOT_SERVICES_DATA)) {
993 				k->attribute = EFI_MEMORY_UC;
994 				k->start = md->phys_addr;
995 				k->num_pages = md->num_pages;
996 				k++;
997 			}
998 			continue;
999 		}
1000 		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
1001 			contig_low = GRANULEROUNDUP(md->phys_addr);
1002 			contig_high = efi_md_end(md);
1003 			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
1004 				check_md = q;
1005 				if (!efi_wb(check_md))
1006 					break;
1007 				if (contig_high != check_md->phys_addr)
1008 					break;
1009 				contig_high = efi_md_end(check_md);
1010 			}
1011 			contig_high = GRANULEROUNDDOWN(contig_high);
1012 		}
1013 		if (!is_memory_available(md))
1014 			continue;
1015 
1016 #ifdef CONFIG_CRASH_DUMP
1017 		/* saved_max_pfn should ignore max_addr= command line arg */
1018 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1019 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1020 #endif
1021 		/*
1022 		 * Round ends inward to granule boundaries
1023 		 * Give trimmings to uncached allocator
1024 		 */
1025 		if (md->phys_addr < contig_low) {
1026 			lim = min(efi_md_end(md), contig_low);
1027 			if (efi_uc(md)) {
1028 				if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
1029 				    kmd_end(k-1) == md->phys_addr) {
1030 					(k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1031 				} else {
1032 					k->attribute = EFI_MEMORY_UC;
1033 					k->start = md->phys_addr;
1034 					k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1035 					k++;
1036 				}
1037 			}
1038 			as = contig_low;
1039 		} else
1040 			as = md->phys_addr;
1041 
1042 		if (efi_md_end(md) > contig_high) {
1043 			lim = max(md->phys_addr, contig_high);
1044 			if (efi_uc(md)) {
1045 				if (lim == md->phys_addr && k > kern_memmap &&
1046 				    (k-1)->attribute == EFI_MEMORY_UC &&
1047 				    kmd_end(k-1) == md->phys_addr) {
1048 					(k-1)->num_pages += md->num_pages;
1049 				} else {
1050 					k->attribute = EFI_MEMORY_UC;
1051 					k->start = lim;
1052 					k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1053 					k++;
1054 				}
1055 			}
1056 			ae = contig_high;
1057 		} else
1058 			ae = efi_md_end(md);
1059 
1060 		/* keep within max_addr= and min_addr= command line arg */
1061 		as = max(as, min_addr);
1062 		ae = min(ae, max_addr);
1063 		if (ae <= as)
1064 			continue;
1065 
1066 		/* avoid going over mem= command line arg */
1067 		if (total_mem + (ae - as) > mem_limit)
1068 			ae -= total_mem + (ae - as) - mem_limit;
1069 
1070 		if (ae <= as)
1071 			continue;
1072 		if (prev && kmd_end(prev) == md->phys_addr) {
1073 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1074 			total_mem += ae - as;
1075 			continue;
1076 		}
1077 		k->attribute = EFI_MEMORY_WB;
1078 		k->start = as;
1079 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1080 		total_mem += ae - as;
1081 		prev = k++;
1082 	}
1083 	k->start = ~0L; /* end-marker */
1084 
1085 	/* reserve the memory we are using for kern_memmap */
1086 	*s = (u64)kern_memmap;
1087 	*e = (u64)++k;
1088 
1089 	return total_mem;
1090 }
1091 
1092 void
1093 efi_initialize_iomem_resources(struct resource *code_resource,
1094 			       struct resource *data_resource,
1095 			       struct resource *bss_resource)
1096 {
1097 	struct resource *res;
1098 	void *efi_map_start, *efi_map_end, *p;
1099 	efi_memory_desc_t *md;
1100 	u64 efi_desc_size;
1101 	char *name;
1102 	unsigned long flags;
1103 
1104 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1105 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1106 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1107 
1108 	res = NULL;
1109 
1110 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1111 		md = p;
1112 
1113 		if (md->num_pages == 0) /* should not happen */
1114 			continue;
1115 
1116 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1117 		switch (md->type) {
1118 
1119 			case EFI_MEMORY_MAPPED_IO:
1120 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1121 				continue;
1122 
1123 			case EFI_LOADER_CODE:
1124 			case EFI_LOADER_DATA:
1125 			case EFI_BOOT_SERVICES_DATA:
1126 			case EFI_BOOT_SERVICES_CODE:
1127 			case EFI_CONVENTIONAL_MEMORY:
1128 				if (md->attribute & EFI_MEMORY_WP) {
1129 					name = "System ROM";
1130 					flags |= IORESOURCE_READONLY;
1131 				} else {
1132 					name = "System RAM";
1133 				}
1134 				break;
1135 
1136 			case EFI_ACPI_MEMORY_NVS:
1137 				name = "ACPI Non-volatile Storage";
1138 				break;
1139 
1140 			case EFI_UNUSABLE_MEMORY:
1141 				name = "reserved";
1142 				flags |= IORESOURCE_DISABLED;
1143 				break;
1144 
1145 			case EFI_RESERVED_TYPE:
1146 			case EFI_RUNTIME_SERVICES_CODE:
1147 			case EFI_RUNTIME_SERVICES_DATA:
1148 			case EFI_ACPI_RECLAIM_MEMORY:
1149 			default:
1150 				name = "reserved";
1151 				break;
1152 		}
1153 
1154 		if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1155 			printk(KERN_ERR "failed to alocate resource for iomem\n");
1156 			return;
1157 		}
1158 
1159 		res->name = name;
1160 		res->start = md->phys_addr;
1161 		res->end = md->phys_addr + efi_md_size(md) - 1;
1162 		res->flags = flags;
1163 
1164 		if (insert_resource(&iomem_resource, res) < 0)
1165 			kfree(res);
1166 		else {
1167 			/*
1168 			 * We don't know which region contains
1169 			 * kernel data so we try it repeatedly and
1170 			 * let the resource manager test it.
1171 			 */
1172 			insert_resource(res, code_resource);
1173 			insert_resource(res, data_resource);
1174 			insert_resource(res, bss_resource);
1175 #ifdef CONFIG_KEXEC
1176                         insert_resource(res, &efi_memmap_res);
1177                         insert_resource(res, &boot_param_res);
1178 			if (crashk_res.end > crashk_res.start)
1179 				insert_resource(res, &crashk_res);
1180 #endif
1181 		}
1182 	}
1183 }
1184 
1185 #ifdef CONFIG_KEXEC
1186 /* find a block of memory aligned to 64M exclude reserved regions
1187    rsvd_regions are sorted
1188  */
1189 unsigned long __init
1190 kdump_find_rsvd_region (unsigned long size,
1191 		struct rsvd_region *r, int n)
1192 {
1193   int i;
1194   u64 start, end;
1195   u64 alignment = 1UL << _PAGE_SIZE_64M;
1196   void *efi_map_start, *efi_map_end, *p;
1197   efi_memory_desc_t *md;
1198   u64 efi_desc_size;
1199 
1200   efi_map_start = __va(ia64_boot_param->efi_memmap);
1201   efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1202   efi_desc_size = ia64_boot_param->efi_memdesc_size;
1203 
1204   for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1205 	  md = p;
1206 	  if (!efi_wb(md))
1207 		  continue;
1208 	  start = ALIGN(md->phys_addr, alignment);
1209 	  end = efi_md_end(md);
1210 	  for (i = 0; i < n; i++) {
1211 		if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1212 			if (__pa(r[i].start) > start + size)
1213 				return start;
1214 			start = ALIGN(__pa(r[i].end), alignment);
1215 			if (i < n-1 && __pa(r[i+1].start) < start + size)
1216 				continue;
1217 			else
1218 				break;
1219 		}
1220 	  }
1221 	  if (end > start + size)
1222 		return start;
1223   }
1224 
1225   printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1226 	size);
1227   return ~0UL;
1228 }
1229 #endif
1230 
1231 #ifdef CONFIG_PROC_VMCORE
1232 /* locate the size find a the descriptor at a certain address */
1233 unsigned long __init
1234 vmcore_find_descriptor_size (unsigned long address)
1235 {
1236 	void *efi_map_start, *efi_map_end, *p;
1237 	efi_memory_desc_t *md;
1238 	u64 efi_desc_size;
1239 	unsigned long ret = 0;
1240 
1241 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1242 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1243 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1244 
1245 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1246 		md = p;
1247 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1248 		    && md->phys_addr == address) {
1249 			ret = efi_md_size(md);
1250 			break;
1251 		}
1252 	}
1253 
1254 	if (ret == 0)
1255 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1256 
1257 	return ret;
1258 }
1259 #endif
1260