xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision 4bdf0bb7)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33 
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40 #include <asm/tlbflush.h>
41 
42 #define EFI_DEBUG	0
43 
44 extern efi_status_t efi_call_phys (void *, ...);
45 
46 struct efi efi;
47 EXPORT_SYMBOL(efi);
48 static efi_runtime_services_t *runtime;
49 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
50 
51 #define efi_call_virt(f, args...)	(*(f))(args)
52 
53 #define STUB_GET_TIME(prefix, adjust_arg)				       \
54 static efi_status_t							       \
55 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
56 {									       \
57 	struct ia64_fpreg fr[6];					       \
58 	efi_time_cap_t *atc = NULL;					       \
59 	efi_status_t ret;						       \
60 									       \
61 	if (tc)								       \
62 		atc = adjust_arg(tc);					       \
63 	ia64_save_scratch_fpregs(fr);					       \
64 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
65 				adjust_arg(tm), atc);			       \
66 	ia64_load_scratch_fpregs(fr);					       \
67 	return ret;							       \
68 }
69 
70 #define STUB_SET_TIME(prefix, adjust_arg)				       \
71 static efi_status_t							       \
72 prefix##_set_time (efi_time_t *tm)					       \
73 {									       \
74 	struct ia64_fpreg fr[6];					       \
75 	efi_status_t ret;						       \
76 									       \
77 	ia64_save_scratch_fpregs(fr);					       \
78 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
79 				adjust_arg(tm));			       \
80 	ia64_load_scratch_fpregs(fr);					       \
81 	return ret;							       \
82 }
83 
84 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
85 static efi_status_t							       \
86 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
87 			  efi_time_t *tm)				       \
88 {									       \
89 	struct ia64_fpreg fr[6];					       \
90 	efi_status_t ret;						       \
91 									       \
92 	ia64_save_scratch_fpregs(fr);					       \
93 	ret = efi_call_##prefix(					       \
94 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
95 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
96 	ia64_load_scratch_fpregs(fr);					       \
97 	return ret;							       \
98 }
99 
100 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
101 static efi_status_t							       \
102 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
103 {									       \
104 	struct ia64_fpreg fr[6];					       \
105 	efi_time_t *atm = NULL;						       \
106 	efi_status_t ret;						       \
107 									       \
108 	if (tm)								       \
109 		atm = adjust_arg(tm);					       \
110 	ia64_save_scratch_fpregs(fr);					       \
111 	ret = efi_call_##prefix(					       \
112 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
113 		enabled, atm);						       \
114 	ia64_load_scratch_fpregs(fr);					       \
115 	return ret;							       \
116 }
117 
118 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
119 static efi_status_t							       \
120 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
121 		       unsigned long *data_size, void *data)		       \
122 {									       \
123 	struct ia64_fpreg fr[6];					       \
124 	u32 *aattr = NULL;						       \
125 	efi_status_t ret;						       \
126 									       \
127 	if (attr)							       \
128 		aattr = adjust_arg(attr);				       \
129 	ia64_save_scratch_fpregs(fr);					       \
130 	ret = efi_call_##prefix(					       \
131 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
132 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
133 		adjust_arg(data_size), adjust_arg(data));		       \
134 	ia64_load_scratch_fpregs(fr);					       \
135 	return ret;							       \
136 }
137 
138 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
139 static efi_status_t							       \
140 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
141 			    efi_guid_t *vendor)				       \
142 {									       \
143 	struct ia64_fpreg fr[6];					       \
144 	efi_status_t ret;						       \
145 									       \
146 	ia64_save_scratch_fpregs(fr);					       \
147 	ret = efi_call_##prefix(					       \
148 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
149 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
150 	ia64_load_scratch_fpregs(fr);					       \
151 	return ret;							       \
152 }
153 
154 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
155 static efi_status_t							       \
156 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
157 		       unsigned long attr, unsigned long data_size,	       \
158 		       void *data)					       \
159 {									       \
160 	struct ia64_fpreg fr[6];					       \
161 	efi_status_t ret;						       \
162 									       \
163 	ia64_save_scratch_fpregs(fr);					       \
164 	ret = efi_call_##prefix(					       \
165 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
166 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
167 		adjust_arg(data));					       \
168 	ia64_load_scratch_fpregs(fr);					       \
169 	return ret;							       \
170 }
171 
172 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
173 static efi_status_t							       \
174 prefix##_get_next_high_mono_count (u32 *count)				       \
175 {									       \
176 	struct ia64_fpreg fr[6];					       \
177 	efi_status_t ret;						       \
178 									       \
179 	ia64_save_scratch_fpregs(fr);					       \
180 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
181 				__va(runtime->get_next_high_mono_count),       \
182 				adjust_arg(count));			       \
183 	ia64_load_scratch_fpregs(fr);					       \
184 	return ret;							       \
185 }
186 
187 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
188 static void								       \
189 prefix##_reset_system (int reset_type, efi_status_t status,		       \
190 		       unsigned long data_size, efi_char16_t *data)	       \
191 {									       \
192 	struct ia64_fpreg fr[6];					       \
193 	efi_char16_t *adata = NULL;					       \
194 									       \
195 	if (data)							       \
196 		adata = adjust_arg(data);				       \
197 									       \
198 	ia64_save_scratch_fpregs(fr);					       \
199 	efi_call_##prefix(						       \
200 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
201 		reset_type, status, data_size, adata);			       \
202 	/* should not return, but just in case... */			       \
203 	ia64_load_scratch_fpregs(fr);					       \
204 }
205 
206 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
207 
208 STUB_GET_TIME(phys, phys_ptr)
209 STUB_SET_TIME(phys, phys_ptr)
210 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
212 STUB_GET_VARIABLE(phys, phys_ptr)
213 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
214 STUB_SET_VARIABLE(phys, phys_ptr)
215 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
216 STUB_RESET_SYSTEM(phys, phys_ptr)
217 
218 #define id(arg)	arg
219 
220 STUB_GET_TIME(virt, id)
221 STUB_SET_TIME(virt, id)
222 STUB_GET_WAKEUP_TIME(virt, id)
223 STUB_SET_WAKEUP_TIME(virt, id)
224 STUB_GET_VARIABLE(virt, id)
225 STUB_GET_NEXT_VARIABLE(virt, id)
226 STUB_SET_VARIABLE(virt, id)
227 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
228 STUB_RESET_SYSTEM(virt, id)
229 
230 void
231 efi_gettimeofday (struct timespec *ts)
232 {
233 	efi_time_t tm;
234 
235 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
236 		memset(ts, 0, sizeof(*ts));
237 		return;
238 	}
239 
240 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
241 			    tm.hour, tm.minute, tm.second);
242 	ts->tv_nsec = tm.nanosecond;
243 }
244 
245 static int
246 is_memory_available (efi_memory_desc_t *md)
247 {
248 	if (!(md->attribute & EFI_MEMORY_WB))
249 		return 0;
250 
251 	switch (md->type) {
252 	      case EFI_LOADER_CODE:
253 	      case EFI_LOADER_DATA:
254 	      case EFI_BOOT_SERVICES_CODE:
255 	      case EFI_BOOT_SERVICES_DATA:
256 	      case EFI_CONVENTIONAL_MEMORY:
257 		return 1;
258 	}
259 	return 0;
260 }
261 
262 typedef struct kern_memdesc {
263 	u64 attribute;
264 	u64 start;
265 	u64 num_pages;
266 } kern_memdesc_t;
267 
268 static kern_memdesc_t *kern_memmap;
269 
270 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
271 
272 static inline u64
273 kmd_end(kern_memdesc_t *kmd)
274 {
275 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
276 }
277 
278 static inline u64
279 efi_md_end(efi_memory_desc_t *md)
280 {
281 	return (md->phys_addr + efi_md_size(md));
282 }
283 
284 static inline int
285 efi_wb(efi_memory_desc_t *md)
286 {
287 	return (md->attribute & EFI_MEMORY_WB);
288 }
289 
290 static inline int
291 efi_uc(efi_memory_desc_t *md)
292 {
293 	return (md->attribute & EFI_MEMORY_UC);
294 }
295 
296 static void
297 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
298 {
299 	kern_memdesc_t *k;
300 	u64 start, end, voff;
301 
302 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
303 	for (k = kern_memmap; k->start != ~0UL; k++) {
304 		if (k->attribute != attr)
305 			continue;
306 		start = PAGE_ALIGN(k->start);
307 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
308 		if (start < end)
309 			if ((*callback)(start + voff, end + voff, arg) < 0)
310 				return;
311 	}
312 }
313 
314 /*
315  * Walk the EFI memory map and call CALLBACK once for each EFI memory
316  * descriptor that has memory that is available for OS use.
317  */
318 void
319 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
320 {
321 	walk(callback, arg, EFI_MEMORY_WB);
322 }
323 
324 /*
325  * Walk the EFI memory map and call CALLBACK once for each EFI memory
326  * descriptor that has memory that is available for uncached allocator.
327  */
328 void
329 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
330 {
331 	walk(callback, arg, EFI_MEMORY_UC);
332 }
333 
334 /*
335  * Look for the PAL_CODE region reported by EFI and map it using an
336  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
337  * Abstraction Layer chapter 11 in ADAG
338  */
339 void *
340 efi_get_pal_addr (void)
341 {
342 	void *efi_map_start, *efi_map_end, *p;
343 	efi_memory_desc_t *md;
344 	u64 efi_desc_size;
345 	int pal_code_count = 0;
346 	u64 vaddr, mask;
347 
348 	efi_map_start = __va(ia64_boot_param->efi_memmap);
349 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
350 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
351 
352 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
353 		md = p;
354 		if (md->type != EFI_PAL_CODE)
355 			continue;
356 
357 		if (++pal_code_count > 1) {
358 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
359 			       "dropped @ %llx\n", md->phys_addr);
360 			continue;
361 		}
362 		/*
363 		 * The only ITLB entry in region 7 that is used is the one
364 		 * installed by __start().  That entry covers a 64MB range.
365 		 */
366 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
367 		vaddr = PAGE_OFFSET + md->phys_addr;
368 
369 		/*
370 		 * We must check that the PAL mapping won't overlap with the
371 		 * kernel mapping.
372 		 *
373 		 * PAL code is guaranteed to be aligned on a power of 2 between
374 		 * 4k and 256KB and that only one ITR is needed to map it. This
375 		 * implies that the PAL code is always aligned on its size,
376 		 * i.e., the closest matching page size supported by the TLB.
377 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
378 		 * it is bigger than 64MB (very unlikely!).  So for now the
379 		 * following test is enough to determine whether or not we need
380 		 * a dedicated ITR for the PAL code.
381 		 */
382 		if ((vaddr & mask) == (KERNEL_START & mask)) {
383 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
384 			       __func__);
385 			continue;
386 		}
387 
388 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
389 			panic("Whoa!  PAL code size bigger than a granule!");
390 
391 #if EFI_DEBUG
392 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
393 
394 		printk(KERN_INFO "CPU %d: mapping PAL code "
395                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
396                        smp_processor_id(), md->phys_addr,
397                        md->phys_addr + efi_md_size(md),
398                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
399 #endif
400 		return __va(md->phys_addr);
401 	}
402 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
403 	       __func__);
404 	return NULL;
405 }
406 
407 
408 static u8 __init palo_checksum(u8 *buffer, u32 length)
409 {
410 	u8 sum = 0;
411 	u8 *end = buffer + length;
412 
413 	while (buffer < end)
414 		sum = (u8) (sum + *(buffer++));
415 
416 	return sum;
417 }
418 
419 /*
420  * Parse and handle PALO table which is published at:
421  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
422  */
423 static void __init handle_palo(unsigned long palo_phys)
424 {
425 	struct palo_table *palo = __va(palo_phys);
426 	u8  checksum;
427 
428 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
429 		printk(KERN_INFO "PALO signature incorrect.\n");
430 		return;
431 	}
432 
433 	checksum = palo_checksum((u8 *)palo, palo->length);
434 	if (checksum) {
435 		printk(KERN_INFO "PALO checksum incorrect.\n");
436 		return;
437 	}
438 
439 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
440 }
441 
442 void
443 efi_map_pal_code (void)
444 {
445 	void *pal_vaddr = efi_get_pal_addr ();
446 	u64 psr;
447 
448 	if (!pal_vaddr)
449 		return;
450 
451 	/*
452 	 * Cannot write to CRx with PSR.ic=1
453 	 */
454 	psr = ia64_clear_ic();
455 	ia64_itr(0x1, IA64_TR_PALCODE,
456 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
457 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
458 		 IA64_GRANULE_SHIFT);
459 	paravirt_dv_serialize_data();
460 	ia64_set_psr(psr);		/* restore psr */
461 }
462 
463 void __init
464 efi_init (void)
465 {
466 	void *efi_map_start, *efi_map_end;
467 	efi_config_table_t *config_tables;
468 	efi_char16_t *c16;
469 	u64 efi_desc_size;
470 	char *cp, vendor[100] = "unknown";
471 	int i;
472 	unsigned long palo_phys;
473 
474 	/*
475 	 * It's too early to be able to use the standard kernel command line
476 	 * support...
477 	 */
478 	for (cp = boot_command_line; *cp; ) {
479 		if (memcmp(cp, "mem=", 4) == 0) {
480 			mem_limit = memparse(cp + 4, &cp);
481 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
482 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
483 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
484 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
485 		} else {
486 			while (*cp != ' ' && *cp)
487 				++cp;
488 			while (*cp == ' ')
489 				++cp;
490 		}
491 	}
492 	if (min_addr != 0UL)
493 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
494 		       min_addr >> 20);
495 	if (max_addr != ~0UL)
496 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
497 		       max_addr >> 20);
498 
499 	efi.systab = __va(ia64_boot_param->efi_systab);
500 
501 	/*
502 	 * Verify the EFI Table
503 	 */
504 	if (efi.systab == NULL)
505 		panic("Whoa! Can't find EFI system table.\n");
506 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
507 		panic("Whoa! EFI system table signature incorrect\n");
508 	if ((efi.systab->hdr.revision >> 16) == 0)
509 		printk(KERN_WARNING "Warning: EFI system table version "
510 		       "%d.%02d, expected 1.00 or greater\n",
511 		       efi.systab->hdr.revision >> 16,
512 		       efi.systab->hdr.revision & 0xffff);
513 
514 	config_tables = __va(efi.systab->tables);
515 
516 	/* Show what we know for posterity */
517 	c16 = __va(efi.systab->fw_vendor);
518 	if (c16) {
519 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
520 			vendor[i] = *c16++;
521 		vendor[i] = '\0';
522 	}
523 
524 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
525 	       efi.systab->hdr.revision >> 16,
526 	       efi.systab->hdr.revision & 0xffff, vendor);
527 
528 	efi.mps        = EFI_INVALID_TABLE_ADDR;
529 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
530 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
531 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
532 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
533 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
534 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
535 	efi.uga        = EFI_INVALID_TABLE_ADDR;
536 
537 	palo_phys      = EFI_INVALID_TABLE_ADDR;
538 
539 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
540 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
541 			efi.mps = config_tables[i].table;
542 			printk(" MPS=0x%lx", config_tables[i].table);
543 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
544 			efi.acpi20 = config_tables[i].table;
545 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
546 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
547 			efi.acpi = config_tables[i].table;
548 			printk(" ACPI=0x%lx", config_tables[i].table);
549 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
550 			efi.smbios = config_tables[i].table;
551 			printk(" SMBIOS=0x%lx", config_tables[i].table);
552 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
553 			efi.sal_systab = config_tables[i].table;
554 			printk(" SALsystab=0x%lx", config_tables[i].table);
555 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
556 			efi.hcdp = config_tables[i].table;
557 			printk(" HCDP=0x%lx", config_tables[i].table);
558 		} else if (efi_guidcmp(config_tables[i].guid,
559 			 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
560 			palo_phys = config_tables[i].table;
561 			printk(" PALO=0x%lx", config_tables[i].table);
562 		}
563 	}
564 	printk("\n");
565 
566 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
567 		handle_palo(palo_phys);
568 
569 	runtime = __va(efi.systab->runtime);
570 	efi.get_time = phys_get_time;
571 	efi.set_time = phys_set_time;
572 	efi.get_wakeup_time = phys_get_wakeup_time;
573 	efi.set_wakeup_time = phys_set_wakeup_time;
574 	efi.get_variable = phys_get_variable;
575 	efi.get_next_variable = phys_get_next_variable;
576 	efi.set_variable = phys_set_variable;
577 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
578 	efi.reset_system = phys_reset_system;
579 
580 	efi_map_start = __va(ia64_boot_param->efi_memmap);
581 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
582 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
583 
584 #if EFI_DEBUG
585 	/* print EFI memory map: */
586 	{
587 		efi_memory_desc_t *md;
588 		void *p;
589 
590 		for (i = 0, p = efi_map_start; p < efi_map_end;
591 		     ++i, p += efi_desc_size)
592 		{
593 			const char *unit;
594 			unsigned long size;
595 
596 			md = p;
597 			size = md->num_pages << EFI_PAGE_SHIFT;
598 
599 			if ((size >> 40) > 0) {
600 				size >>= 40;
601 				unit = "TB";
602 			} else if ((size >> 30) > 0) {
603 				size >>= 30;
604 				unit = "GB";
605 			} else if ((size >> 20) > 0) {
606 				size >>= 20;
607 				unit = "MB";
608 			} else {
609 				size >>= 10;
610 				unit = "KB";
611 			}
612 
613 			printk("mem%02d: type=%2u, attr=0x%016lx, "
614 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
615 			       i, md->type, md->attribute, md->phys_addr,
616 			       md->phys_addr + efi_md_size(md), size, unit);
617 		}
618 	}
619 #endif
620 
621 	efi_map_pal_code();
622 	efi_enter_virtual_mode();
623 }
624 
625 void
626 efi_enter_virtual_mode (void)
627 {
628 	void *efi_map_start, *efi_map_end, *p;
629 	efi_memory_desc_t *md;
630 	efi_status_t status;
631 	u64 efi_desc_size;
632 
633 	efi_map_start = __va(ia64_boot_param->efi_memmap);
634 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
635 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
636 
637 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
638 		md = p;
639 		if (md->attribute & EFI_MEMORY_RUNTIME) {
640 			/*
641 			 * Some descriptors have multiple bits set, so the
642 			 * order of the tests is relevant.
643 			 */
644 			if (md->attribute & EFI_MEMORY_WB) {
645 				md->virt_addr = (u64) __va(md->phys_addr);
646 			} else if (md->attribute & EFI_MEMORY_UC) {
647 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648 			} else if (md->attribute & EFI_MEMORY_WC) {
649 #if 0
650 				md->virt_addr = ia64_remap(md->phys_addr,
651 							   (_PAGE_A |
652 							    _PAGE_P |
653 							    _PAGE_D |
654 							    _PAGE_MA_WC |
655 							    _PAGE_PL_0 |
656 							    _PAGE_AR_RW));
657 #else
658 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
659 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
660 #endif
661 			} else if (md->attribute & EFI_MEMORY_WT) {
662 #if 0
663 				md->virt_addr = ia64_remap(md->phys_addr,
664 							   (_PAGE_A |
665 							    _PAGE_P |
666 							    _PAGE_D |
667 							    _PAGE_MA_WT |
668 							    _PAGE_PL_0 |
669 							    _PAGE_AR_RW));
670 #else
671 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
672 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
673 #endif
674 			}
675 		}
676 	}
677 
678 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
679 			       ia64_boot_param->efi_memmap_size,
680 			       efi_desc_size,
681 			       ia64_boot_param->efi_memdesc_version,
682 			       ia64_boot_param->efi_memmap);
683 	if (status != EFI_SUCCESS) {
684 		printk(KERN_WARNING "warning: unable to switch EFI into "
685 		       "virtual mode (status=%lu)\n", status);
686 		return;
687 	}
688 
689 	/*
690 	 * Now that EFI is in virtual mode, we call the EFI functions more
691 	 * efficiently:
692 	 */
693 	efi.get_time = virt_get_time;
694 	efi.set_time = virt_set_time;
695 	efi.get_wakeup_time = virt_get_wakeup_time;
696 	efi.set_wakeup_time = virt_set_wakeup_time;
697 	efi.get_variable = virt_get_variable;
698 	efi.get_next_variable = virt_get_next_variable;
699 	efi.set_variable = virt_set_variable;
700 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
701 	efi.reset_system = virt_reset_system;
702 }
703 
704 /*
705  * Walk the EFI memory map looking for the I/O port range.  There can only be
706  * one entry of this type, other I/O port ranges should be described via ACPI.
707  */
708 u64
709 efi_get_iobase (void)
710 {
711 	void *efi_map_start, *efi_map_end, *p;
712 	efi_memory_desc_t *md;
713 	u64 efi_desc_size;
714 
715 	efi_map_start = __va(ia64_boot_param->efi_memmap);
716 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
717 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
718 
719 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
720 		md = p;
721 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
722 			if (md->attribute & EFI_MEMORY_UC)
723 				return md->phys_addr;
724 		}
725 	}
726 	return 0;
727 }
728 
729 static struct kern_memdesc *
730 kern_memory_descriptor (unsigned long phys_addr)
731 {
732 	struct kern_memdesc *md;
733 
734 	for (md = kern_memmap; md->start != ~0UL; md++) {
735 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
736 			 return md;
737 	}
738 	return NULL;
739 }
740 
741 static efi_memory_desc_t *
742 efi_memory_descriptor (unsigned long phys_addr)
743 {
744 	void *efi_map_start, *efi_map_end, *p;
745 	efi_memory_desc_t *md;
746 	u64 efi_desc_size;
747 
748 	efi_map_start = __va(ia64_boot_param->efi_memmap);
749 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
750 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
751 
752 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
753 		md = p;
754 
755 		if (phys_addr - md->phys_addr < efi_md_size(md))
756 			 return md;
757 	}
758 	return NULL;
759 }
760 
761 static int
762 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
763 {
764 	void *efi_map_start, *efi_map_end, *p;
765 	efi_memory_desc_t *md;
766 	u64 efi_desc_size;
767 	unsigned long end;
768 
769 	efi_map_start = __va(ia64_boot_param->efi_memmap);
770 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
771 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
772 
773 	end = phys_addr + size;
774 
775 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
776 		md = p;
777 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
778 			return 1;
779 	}
780 	return 0;
781 }
782 
783 u32
784 efi_mem_type (unsigned long phys_addr)
785 {
786 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
787 
788 	if (md)
789 		return md->type;
790 	return 0;
791 }
792 
793 u64
794 efi_mem_attributes (unsigned long phys_addr)
795 {
796 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
797 
798 	if (md)
799 		return md->attribute;
800 	return 0;
801 }
802 EXPORT_SYMBOL(efi_mem_attributes);
803 
804 u64
805 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
806 {
807 	unsigned long end = phys_addr + size;
808 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
809 	u64 attr;
810 
811 	if (!md)
812 		return 0;
813 
814 	/*
815 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
816 	 * the kernel that firmware needs this region mapped.
817 	 */
818 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
819 	do {
820 		unsigned long md_end = efi_md_end(md);
821 
822 		if (end <= md_end)
823 			return attr;
824 
825 		md = efi_memory_descriptor(md_end);
826 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
827 			return 0;
828 	} while (md);
829 	return 0;	/* never reached */
830 }
831 
832 u64
833 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
834 {
835 	unsigned long end = phys_addr + size;
836 	struct kern_memdesc *md;
837 	u64 attr;
838 
839 	/*
840 	 * This is a hack for ioremap calls before we set up kern_memmap.
841 	 * Maybe we should do efi_memmap_init() earlier instead.
842 	 */
843 	if (!kern_memmap) {
844 		attr = efi_mem_attribute(phys_addr, size);
845 		if (attr & EFI_MEMORY_WB)
846 			return EFI_MEMORY_WB;
847 		return 0;
848 	}
849 
850 	md = kern_memory_descriptor(phys_addr);
851 	if (!md)
852 		return 0;
853 
854 	attr = md->attribute;
855 	do {
856 		unsigned long md_end = kmd_end(md);
857 
858 		if (end <= md_end)
859 			return attr;
860 
861 		md = kern_memory_descriptor(md_end);
862 		if (!md || md->attribute != attr)
863 			return 0;
864 	} while (md);
865 	return 0;	/* never reached */
866 }
867 EXPORT_SYMBOL(kern_mem_attribute);
868 
869 int
870 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
871 {
872 	u64 attr;
873 
874 	/*
875 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
876 	 * uses a granule-sized kernel identity mapping.  It's really
877 	 * only safe to do this for regions in kern_memmap.  For more
878 	 * details, see Documentation/ia64/aliasing.txt.
879 	 */
880 	attr = kern_mem_attribute(phys_addr, size);
881 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
882 		return 1;
883 	return 0;
884 }
885 
886 int
887 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
888 {
889 	unsigned long phys_addr = pfn << PAGE_SHIFT;
890 	u64 attr;
891 
892 	attr = efi_mem_attribute(phys_addr, size);
893 
894 	/*
895 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
896 	 * granule, but the entire region we're mapping must support the same
897 	 * attribute.
898 	 */
899 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
900 		return 1;
901 
902 	/*
903 	 * Intel firmware doesn't tell us about all the MMIO regions, so
904 	 * in general we have to allow mmap requests.  But if EFI *does*
905 	 * tell us about anything inside this region, we should deny it.
906 	 * The user can always map a smaller region to avoid the overlap.
907 	 */
908 	if (efi_memmap_intersects(phys_addr, size))
909 		return 0;
910 
911 	return 1;
912 }
913 
914 pgprot_t
915 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
916 		     pgprot_t vma_prot)
917 {
918 	unsigned long phys_addr = pfn << PAGE_SHIFT;
919 	u64 attr;
920 
921 	/*
922 	 * For /dev/mem mmap, we use user mappings, but if the region is
923 	 * in kern_memmap (and hence may be covered by a kernel mapping),
924 	 * we must use the same attribute as the kernel mapping.
925 	 */
926 	attr = kern_mem_attribute(phys_addr, size);
927 	if (attr & EFI_MEMORY_WB)
928 		return pgprot_cacheable(vma_prot);
929 	else if (attr & EFI_MEMORY_UC)
930 		return pgprot_noncached(vma_prot);
931 
932 	/*
933 	 * Some chipsets don't support UC access to memory.  If
934 	 * WB is supported, we prefer that.
935 	 */
936 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
937 		return pgprot_cacheable(vma_prot);
938 
939 	return pgprot_noncached(vma_prot);
940 }
941 
942 int __init
943 efi_uart_console_only(void)
944 {
945 	efi_status_t status;
946 	char *s, name[] = "ConOut";
947 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
948 	efi_char16_t *utf16, name_utf16[32];
949 	unsigned char data[1024];
950 	unsigned long size = sizeof(data);
951 	struct efi_generic_dev_path *hdr, *end_addr;
952 	int uart = 0;
953 
954 	/* Convert to UTF-16 */
955 	utf16 = name_utf16;
956 	s = name;
957 	while (*s)
958 		*utf16++ = *s++ & 0x7f;
959 	*utf16 = 0;
960 
961 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
962 	if (status != EFI_SUCCESS) {
963 		printk(KERN_ERR "No EFI %s variable?\n", name);
964 		return 0;
965 	}
966 
967 	hdr = (struct efi_generic_dev_path *) data;
968 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
969 	while (hdr < end_addr) {
970 		if (hdr->type == EFI_DEV_MSG &&
971 		    hdr->sub_type == EFI_DEV_MSG_UART)
972 			uart = 1;
973 		else if (hdr->type == EFI_DEV_END_PATH ||
974 			  hdr->type == EFI_DEV_END_PATH2) {
975 			if (!uart)
976 				return 0;
977 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
978 				return 1;
979 			uart = 0;
980 		}
981 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
982 	}
983 	printk(KERN_ERR "Malformed %s value\n", name);
984 	return 0;
985 }
986 
987 /*
988  * Look for the first granule aligned memory descriptor memory
989  * that is big enough to hold EFI memory map. Make sure this
990  * descriptor is atleast granule sized so it does not get trimmed
991  */
992 struct kern_memdesc *
993 find_memmap_space (void)
994 {
995 	u64	contig_low=0, contig_high=0;
996 	u64	as = 0, ae;
997 	void *efi_map_start, *efi_map_end, *p, *q;
998 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
999 	u64	space_needed, efi_desc_size;
1000 	unsigned long total_mem = 0;
1001 
1002 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1003 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1004 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1005 
1006 	/*
1007 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
1008 	 * (if every entry has a WB part in the middle, and UC head and tail),
1009 	 * plus one for the end marker.
1010 	 */
1011 	space_needed = sizeof(kern_memdesc_t) *
1012 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1013 
1014 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1015 		md = p;
1016 		if (!efi_wb(md)) {
1017 			continue;
1018 		}
1019 		if (pmd == NULL || !efi_wb(pmd) ||
1020 		    efi_md_end(pmd) != md->phys_addr) {
1021 			contig_low = GRANULEROUNDUP(md->phys_addr);
1022 			contig_high = efi_md_end(md);
1023 			for (q = p + efi_desc_size; q < efi_map_end;
1024 			     q += efi_desc_size) {
1025 				check_md = q;
1026 				if (!efi_wb(check_md))
1027 					break;
1028 				if (contig_high != check_md->phys_addr)
1029 					break;
1030 				contig_high = efi_md_end(check_md);
1031 			}
1032 			contig_high = GRANULEROUNDDOWN(contig_high);
1033 		}
1034 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1035 			continue;
1036 
1037 		/* Round ends inward to granule boundaries */
1038 		as = max(contig_low, md->phys_addr);
1039 		ae = min(contig_high, efi_md_end(md));
1040 
1041 		/* keep within max_addr= and min_addr= command line arg */
1042 		as = max(as, min_addr);
1043 		ae = min(ae, max_addr);
1044 		if (ae <= as)
1045 			continue;
1046 
1047 		/* avoid going over mem= command line arg */
1048 		if (total_mem + (ae - as) > mem_limit)
1049 			ae -= total_mem + (ae - as) - mem_limit;
1050 
1051 		if (ae <= as)
1052 			continue;
1053 
1054 		if (ae - as > space_needed)
1055 			break;
1056 	}
1057 	if (p >= efi_map_end)
1058 		panic("Can't allocate space for kernel memory descriptors");
1059 
1060 	return __va(as);
1061 }
1062 
1063 /*
1064  * Walk the EFI memory map and gather all memory available for kernel
1065  * to use.  We can allocate partial granules only if the unavailable
1066  * parts exist, and are WB.
1067  */
1068 unsigned long
1069 efi_memmap_init(u64 *s, u64 *e)
1070 {
1071 	struct kern_memdesc *k, *prev = NULL;
1072 	u64	contig_low=0, contig_high=0;
1073 	u64	as, ae, lim;
1074 	void *efi_map_start, *efi_map_end, *p, *q;
1075 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1076 	u64	efi_desc_size;
1077 	unsigned long total_mem = 0;
1078 
1079 	k = kern_memmap = find_memmap_space();
1080 
1081 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1082 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1083 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1084 
1085 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1086 		md = p;
1087 		if (!efi_wb(md)) {
1088 			if (efi_uc(md) &&
1089 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1090 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1091 				k->attribute = EFI_MEMORY_UC;
1092 				k->start = md->phys_addr;
1093 				k->num_pages = md->num_pages;
1094 				k++;
1095 			}
1096 			continue;
1097 		}
1098 		if (pmd == NULL || !efi_wb(pmd) ||
1099 		    efi_md_end(pmd) != md->phys_addr) {
1100 			contig_low = GRANULEROUNDUP(md->phys_addr);
1101 			contig_high = efi_md_end(md);
1102 			for (q = p + efi_desc_size; q < efi_map_end;
1103 			     q += efi_desc_size) {
1104 				check_md = q;
1105 				if (!efi_wb(check_md))
1106 					break;
1107 				if (contig_high != check_md->phys_addr)
1108 					break;
1109 				contig_high = efi_md_end(check_md);
1110 			}
1111 			contig_high = GRANULEROUNDDOWN(contig_high);
1112 		}
1113 		if (!is_memory_available(md))
1114 			continue;
1115 
1116 #ifdef CONFIG_CRASH_DUMP
1117 		/* saved_max_pfn should ignore max_addr= command line arg */
1118 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1119 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1120 #endif
1121 		/*
1122 		 * Round ends inward to granule boundaries
1123 		 * Give trimmings to uncached allocator
1124 		 */
1125 		if (md->phys_addr < contig_low) {
1126 			lim = min(efi_md_end(md), contig_low);
1127 			if (efi_uc(md)) {
1128 				if (k > kern_memmap &&
1129 				    (k-1)->attribute == EFI_MEMORY_UC &&
1130 				    kmd_end(k-1) == md->phys_addr) {
1131 					(k-1)->num_pages +=
1132 						(lim - md->phys_addr)
1133 						>> EFI_PAGE_SHIFT;
1134 				} else {
1135 					k->attribute = EFI_MEMORY_UC;
1136 					k->start = md->phys_addr;
1137 					k->num_pages = (lim - md->phys_addr)
1138 						>> EFI_PAGE_SHIFT;
1139 					k++;
1140 				}
1141 			}
1142 			as = contig_low;
1143 		} else
1144 			as = md->phys_addr;
1145 
1146 		if (efi_md_end(md) > contig_high) {
1147 			lim = max(md->phys_addr, contig_high);
1148 			if (efi_uc(md)) {
1149 				if (lim == md->phys_addr && k > kern_memmap &&
1150 				    (k-1)->attribute == EFI_MEMORY_UC &&
1151 				    kmd_end(k-1) == md->phys_addr) {
1152 					(k-1)->num_pages += md->num_pages;
1153 				} else {
1154 					k->attribute = EFI_MEMORY_UC;
1155 					k->start = lim;
1156 					k->num_pages = (efi_md_end(md) - lim)
1157 						>> EFI_PAGE_SHIFT;
1158 					k++;
1159 				}
1160 			}
1161 			ae = contig_high;
1162 		} else
1163 			ae = efi_md_end(md);
1164 
1165 		/* keep within max_addr= and min_addr= command line arg */
1166 		as = max(as, min_addr);
1167 		ae = min(ae, max_addr);
1168 		if (ae <= as)
1169 			continue;
1170 
1171 		/* avoid going over mem= command line arg */
1172 		if (total_mem + (ae - as) > mem_limit)
1173 			ae -= total_mem + (ae - as) - mem_limit;
1174 
1175 		if (ae <= as)
1176 			continue;
1177 		if (prev && kmd_end(prev) == md->phys_addr) {
1178 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1179 			total_mem += ae - as;
1180 			continue;
1181 		}
1182 		k->attribute = EFI_MEMORY_WB;
1183 		k->start = as;
1184 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1185 		total_mem += ae - as;
1186 		prev = k++;
1187 	}
1188 	k->start = ~0L; /* end-marker */
1189 
1190 	/* reserve the memory we are using for kern_memmap */
1191 	*s = (u64)kern_memmap;
1192 	*e = (u64)++k;
1193 
1194 	return total_mem;
1195 }
1196 
1197 void
1198 efi_initialize_iomem_resources(struct resource *code_resource,
1199 			       struct resource *data_resource,
1200 			       struct resource *bss_resource)
1201 {
1202 	struct resource *res;
1203 	void *efi_map_start, *efi_map_end, *p;
1204 	efi_memory_desc_t *md;
1205 	u64 efi_desc_size;
1206 	char *name;
1207 	unsigned long flags;
1208 
1209 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1210 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1211 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1212 
1213 	res = NULL;
1214 
1215 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1216 		md = p;
1217 
1218 		if (md->num_pages == 0) /* should not happen */
1219 			continue;
1220 
1221 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1222 		switch (md->type) {
1223 
1224 			case EFI_MEMORY_MAPPED_IO:
1225 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1226 				continue;
1227 
1228 			case EFI_LOADER_CODE:
1229 			case EFI_LOADER_DATA:
1230 			case EFI_BOOT_SERVICES_DATA:
1231 			case EFI_BOOT_SERVICES_CODE:
1232 			case EFI_CONVENTIONAL_MEMORY:
1233 				if (md->attribute & EFI_MEMORY_WP) {
1234 					name = "System ROM";
1235 					flags |= IORESOURCE_READONLY;
1236 				} else if (md->attribute == EFI_MEMORY_UC)
1237 					name = "Uncached RAM";
1238 				else
1239 					name = "System RAM";
1240 				break;
1241 
1242 			case EFI_ACPI_MEMORY_NVS:
1243 				name = "ACPI Non-volatile Storage";
1244 				break;
1245 
1246 			case EFI_UNUSABLE_MEMORY:
1247 				name = "reserved";
1248 				flags |= IORESOURCE_DISABLED;
1249 				break;
1250 
1251 			case EFI_RESERVED_TYPE:
1252 			case EFI_RUNTIME_SERVICES_CODE:
1253 			case EFI_RUNTIME_SERVICES_DATA:
1254 			case EFI_ACPI_RECLAIM_MEMORY:
1255 			default:
1256 				name = "reserved";
1257 				break;
1258 		}
1259 
1260 		if ((res = kzalloc(sizeof(struct resource),
1261 				   GFP_KERNEL)) == NULL) {
1262 			printk(KERN_ERR
1263 			       "failed to allocate resource for iomem\n");
1264 			return;
1265 		}
1266 
1267 		res->name = name;
1268 		res->start = md->phys_addr;
1269 		res->end = md->phys_addr + efi_md_size(md) - 1;
1270 		res->flags = flags;
1271 
1272 		if (insert_resource(&iomem_resource, res) < 0)
1273 			kfree(res);
1274 		else {
1275 			/*
1276 			 * We don't know which region contains
1277 			 * kernel data so we try it repeatedly and
1278 			 * let the resource manager test it.
1279 			 */
1280 			insert_resource(res, code_resource);
1281 			insert_resource(res, data_resource);
1282 			insert_resource(res, bss_resource);
1283 #ifdef CONFIG_KEXEC
1284                         insert_resource(res, &efi_memmap_res);
1285                         insert_resource(res, &boot_param_res);
1286 			if (crashk_res.end > crashk_res.start)
1287 				insert_resource(res, &crashk_res);
1288 #endif
1289 		}
1290 	}
1291 }
1292 
1293 #ifdef CONFIG_KEXEC
1294 /* find a block of memory aligned to 64M exclude reserved regions
1295    rsvd_regions are sorted
1296  */
1297 unsigned long __init
1298 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1299 {
1300 	int i;
1301 	u64 start, end;
1302 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1303 	void *efi_map_start, *efi_map_end, *p;
1304 	efi_memory_desc_t *md;
1305 	u64 efi_desc_size;
1306 
1307 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1308 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1309 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1310 
1311 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1312 		md = p;
1313 		if (!efi_wb(md))
1314 			continue;
1315 		start = ALIGN(md->phys_addr, alignment);
1316 		end = efi_md_end(md);
1317 		for (i = 0; i < n; i++) {
1318 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1319 				if (__pa(r[i].start) > start + size)
1320 					return start;
1321 				start = ALIGN(__pa(r[i].end), alignment);
1322 				if (i < n-1 &&
1323 				    __pa(r[i+1].start) < start + size)
1324 					continue;
1325 				else
1326 					break;
1327 			}
1328 		}
1329 		if (end > start + size)
1330 			return start;
1331 	}
1332 
1333 	printk(KERN_WARNING
1334 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1335 	return ~0UL;
1336 }
1337 #endif
1338 
1339 #ifdef CONFIG_CRASH_DUMP
1340 /* locate the size find a the descriptor at a certain address */
1341 unsigned long __init
1342 vmcore_find_descriptor_size (unsigned long address)
1343 {
1344 	void *efi_map_start, *efi_map_end, *p;
1345 	efi_memory_desc_t *md;
1346 	u64 efi_desc_size;
1347 	unsigned long ret = 0;
1348 
1349 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1350 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1351 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1352 
1353 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1354 		md = p;
1355 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1356 		    && md->phys_addr == address) {
1357 			ret = efi_md_size(md);
1358 			break;
1359 		}
1360 	}
1361 
1362 	if (ret == 0)
1363 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1364 
1365 	return ret;
1366 }
1367 #endif
1368