xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision 48c926cd)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35 
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44 
45 #define EFI_DEBUG	0
46 
47 static __initdata unsigned long palo_phys;
48 
49 static __initdata efi_config_table_type_t arch_tables[] = {
50 	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51 	{NULL_GUID, NULL, 0},
52 };
53 
54 extern efi_status_t efi_call_phys (void *, ...);
55 
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58 
59 #define efi_call_virt(f, args...)	(*(f))(args)
60 
61 #define STUB_GET_TIME(prefix, adjust_arg)				       \
62 static efi_status_t							       \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
64 {									       \
65 	struct ia64_fpreg fr[6];					       \
66 	efi_time_cap_t *atc = NULL;					       \
67 	efi_status_t ret;						       \
68 									       \
69 	if (tc)								       \
70 		atc = adjust_arg(tc);					       \
71 	ia64_save_scratch_fpregs(fr);					       \
72 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
73 				adjust_arg(tm), atc);			       \
74 	ia64_load_scratch_fpregs(fr);					       \
75 	return ret;							       \
76 }
77 
78 #define STUB_SET_TIME(prefix, adjust_arg)				       \
79 static efi_status_t							       \
80 prefix##_set_time (efi_time_t *tm)					       \
81 {									       \
82 	struct ia64_fpreg fr[6];					       \
83 	efi_status_t ret;						       \
84 									       \
85 	ia64_save_scratch_fpregs(fr);					       \
86 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
87 				adjust_arg(tm));			       \
88 	ia64_load_scratch_fpregs(fr);					       \
89 	return ret;							       \
90 }
91 
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
93 static efi_status_t							       \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
95 			  efi_time_t *tm)				       \
96 {									       \
97 	struct ia64_fpreg fr[6];					       \
98 	efi_status_t ret;						       \
99 									       \
100 	ia64_save_scratch_fpregs(fr);					       \
101 	ret = efi_call_##prefix(					       \
102 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
103 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
104 	ia64_load_scratch_fpregs(fr);					       \
105 	return ret;							       \
106 }
107 
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
109 static efi_status_t							       \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
111 {									       \
112 	struct ia64_fpreg fr[6];					       \
113 	efi_time_t *atm = NULL;						       \
114 	efi_status_t ret;						       \
115 									       \
116 	if (tm)								       \
117 		atm = adjust_arg(tm);					       \
118 	ia64_save_scratch_fpregs(fr);					       \
119 	ret = efi_call_##prefix(					       \
120 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
121 		enabled, atm);						       \
122 	ia64_load_scratch_fpregs(fr);					       \
123 	return ret;							       \
124 }
125 
126 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
127 static efi_status_t							       \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
129 		       unsigned long *data_size, void *data)		       \
130 {									       \
131 	struct ia64_fpreg fr[6];					       \
132 	u32 *aattr = NULL;						       \
133 	efi_status_t ret;						       \
134 									       \
135 	if (attr)							       \
136 		aattr = adjust_arg(attr);				       \
137 	ia64_save_scratch_fpregs(fr);					       \
138 	ret = efi_call_##prefix(					       \
139 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
140 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
141 		adjust_arg(data_size), adjust_arg(data));		       \
142 	ia64_load_scratch_fpregs(fr);					       \
143 	return ret;							       \
144 }
145 
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
147 static efi_status_t							       \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
149 			    efi_guid_t *vendor)				       \
150 {									       \
151 	struct ia64_fpreg fr[6];					       \
152 	efi_status_t ret;						       \
153 									       \
154 	ia64_save_scratch_fpregs(fr);					       \
155 	ret = efi_call_##prefix(					       \
156 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
157 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
158 	ia64_load_scratch_fpregs(fr);					       \
159 	return ret;							       \
160 }
161 
162 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
163 static efi_status_t							       \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
165 		       u32 attr, unsigned long data_size,		       \
166 		       void *data)					       \
167 {									       \
168 	struct ia64_fpreg fr[6];					       \
169 	efi_status_t ret;						       \
170 									       \
171 	ia64_save_scratch_fpregs(fr);					       \
172 	ret = efi_call_##prefix(					       \
173 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
174 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
175 		adjust_arg(data));					       \
176 	ia64_load_scratch_fpregs(fr);					       \
177 	return ret;							       \
178 }
179 
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
181 static efi_status_t							       \
182 prefix##_get_next_high_mono_count (u32 *count)				       \
183 {									       \
184 	struct ia64_fpreg fr[6];					       \
185 	efi_status_t ret;						       \
186 									       \
187 	ia64_save_scratch_fpregs(fr);					       \
188 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
189 				__va(runtime->get_next_high_mono_count),       \
190 				adjust_arg(count));			       \
191 	ia64_load_scratch_fpregs(fr);					       \
192 	return ret;							       \
193 }
194 
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
196 static void								       \
197 prefix##_reset_system (int reset_type, efi_status_t status,		       \
198 		       unsigned long data_size, efi_char16_t *data)	       \
199 {									       \
200 	struct ia64_fpreg fr[6];					       \
201 	efi_char16_t *adata = NULL;					       \
202 									       \
203 	if (data)							       \
204 		adata = adjust_arg(data);				       \
205 									       \
206 	ia64_save_scratch_fpregs(fr);					       \
207 	efi_call_##prefix(						       \
208 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
209 		reset_type, status, data_size, adata);			       \
210 	/* should not return, but just in case... */			       \
211 	ia64_load_scratch_fpregs(fr);					       \
212 }
213 
214 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
215 
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225 
226 #define id(arg)	arg
227 
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237 
238 void
239 efi_gettimeofday (struct timespec64 *ts)
240 {
241 	efi_time_t tm;
242 
243 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244 		memset(ts, 0, sizeof(*ts));
245 		return;
246 	}
247 
248 	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
249 			    tm.hour, tm.minute, tm.second);
250 	ts->tv_nsec = tm.nanosecond;
251 }
252 
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256 	if (!(md->attribute & EFI_MEMORY_WB))
257 		return 0;
258 
259 	switch (md->type) {
260 	      case EFI_LOADER_CODE:
261 	      case EFI_LOADER_DATA:
262 	      case EFI_BOOT_SERVICES_CODE:
263 	      case EFI_BOOT_SERVICES_DATA:
264 	      case EFI_CONVENTIONAL_MEMORY:
265 		return 1;
266 	}
267 	return 0;
268 }
269 
270 typedef struct kern_memdesc {
271 	u64 attribute;
272 	u64 start;
273 	u64 num_pages;
274 } kern_memdesc_t;
275 
276 static kern_memdesc_t *kern_memmap;
277 
278 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
279 
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285 
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289 	return (md->phys_addr + efi_md_size(md));
290 }
291 
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295 	return (md->attribute & EFI_MEMORY_WB);
296 }
297 
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301 	return (md->attribute & EFI_MEMORY_UC);
302 }
303 
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307 	kern_memdesc_t *k;
308 	u64 start, end, voff;
309 
310 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311 	for (k = kern_memmap; k->start != ~0UL; k++) {
312 		if (k->attribute != attr)
313 			continue;
314 		start = PAGE_ALIGN(k->start);
315 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316 		if (start < end)
317 			if ((*callback)(start + voff, end + voff, arg) < 0)
318 				return;
319 	}
320 }
321 
322 /*
323  * Walk the EFI memory map and call CALLBACK once for each EFI memory
324  * descriptor that has memory that is available for OS use.
325  */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329 	walk(callback, arg, EFI_MEMORY_WB);
330 }
331 
332 /*
333  * Walk the EFI memory map and call CALLBACK once for each EFI memory
334  * descriptor that has memory that is available for uncached allocator.
335  */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339 	walk(callback, arg, EFI_MEMORY_UC);
340 }
341 
342 /*
343  * Look for the PAL_CODE region reported by EFI and map it using an
344  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
345  * Abstraction Layer chapter 11 in ADAG
346  */
347 void *
348 efi_get_pal_addr (void)
349 {
350 	void *efi_map_start, *efi_map_end, *p;
351 	efi_memory_desc_t *md;
352 	u64 efi_desc_size;
353 	int pal_code_count = 0;
354 	u64 vaddr, mask;
355 
356 	efi_map_start = __va(ia64_boot_param->efi_memmap);
357 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
358 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
359 
360 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361 		md = p;
362 		if (md->type != EFI_PAL_CODE)
363 			continue;
364 
365 		if (++pal_code_count > 1) {
366 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367 			       "dropped @ %llx\n", md->phys_addr);
368 			continue;
369 		}
370 		/*
371 		 * The only ITLB entry in region 7 that is used is the one
372 		 * installed by __start().  That entry covers a 64MB range.
373 		 */
374 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375 		vaddr = PAGE_OFFSET + md->phys_addr;
376 
377 		/*
378 		 * We must check that the PAL mapping won't overlap with the
379 		 * kernel mapping.
380 		 *
381 		 * PAL code is guaranteed to be aligned on a power of 2 between
382 		 * 4k and 256KB and that only one ITR is needed to map it. This
383 		 * implies that the PAL code is always aligned on its size,
384 		 * i.e., the closest matching page size supported by the TLB.
385 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
386 		 * it is bigger than 64MB (very unlikely!).  So for now the
387 		 * following test is enough to determine whether or not we need
388 		 * a dedicated ITR for the PAL code.
389 		 */
390 		if ((vaddr & mask) == (KERNEL_START & mask)) {
391 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392 			       __func__);
393 			continue;
394 		}
395 
396 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
397 			panic("Whoa!  PAL code size bigger than a granule!");
398 
399 #if EFI_DEBUG
400 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
401 
402 		printk(KERN_INFO "CPU %d: mapping PAL code "
403                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404                        smp_processor_id(), md->phys_addr,
405                        md->phys_addr + efi_md_size(md),
406                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408 		return __va(md->phys_addr);
409 	}
410 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411 	       __func__);
412 	return NULL;
413 }
414 
415 
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418 	u8 sum = 0;
419 	u8 *end = buffer + length;
420 
421 	while (buffer < end)
422 		sum = (u8) (sum + *(buffer++));
423 
424 	return sum;
425 }
426 
427 /*
428  * Parse and handle PALO table which is published at:
429  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430  */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433 	struct palo_table *palo = __va(phys_addr);
434 	u8  checksum;
435 
436 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437 		printk(KERN_INFO "PALO signature incorrect.\n");
438 		return;
439 	}
440 
441 	checksum = palo_checksum((u8 *)palo, palo->length);
442 	if (checksum) {
443 		printk(KERN_INFO "PALO checksum incorrect.\n");
444 		return;
445 	}
446 
447 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449 
450 void
451 efi_map_pal_code (void)
452 {
453 	void *pal_vaddr = efi_get_pal_addr ();
454 	u64 psr;
455 
456 	if (!pal_vaddr)
457 		return;
458 
459 	/*
460 	 * Cannot write to CRx with PSR.ic=1
461 	 */
462 	psr = ia64_clear_ic();
463 	ia64_itr(0x1, IA64_TR_PALCODE,
464 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466 		 IA64_GRANULE_SHIFT);
467 	ia64_set_psr(psr);		/* restore psr */
468 }
469 
470 void __init
471 efi_init (void)
472 {
473 	void *efi_map_start, *efi_map_end;
474 	efi_char16_t *c16;
475 	u64 efi_desc_size;
476 	char *cp, vendor[100] = "unknown";
477 	int i;
478 
479 	set_bit(EFI_BOOT, &efi.flags);
480 	set_bit(EFI_64BIT, &efi.flags);
481 
482 	/*
483 	 * It's too early to be able to use the standard kernel command line
484 	 * support...
485 	 */
486 	for (cp = boot_command_line; *cp; ) {
487 		if (memcmp(cp, "mem=", 4) == 0) {
488 			mem_limit = memparse(cp + 4, &cp);
489 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
490 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
491 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
492 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
493 		} else {
494 			while (*cp != ' ' && *cp)
495 				++cp;
496 			while (*cp == ' ')
497 				++cp;
498 		}
499 	}
500 	if (min_addr != 0UL)
501 		printk(KERN_INFO "Ignoring memory below %lluMB\n",
502 		       min_addr >> 20);
503 	if (max_addr != ~0UL)
504 		printk(KERN_INFO "Ignoring memory above %lluMB\n",
505 		       max_addr >> 20);
506 
507 	efi.systab = __va(ia64_boot_param->efi_systab);
508 
509 	/*
510 	 * Verify the EFI Table
511 	 */
512 	if (efi.systab == NULL)
513 		panic("Whoa! Can't find EFI system table.\n");
514 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
515 		panic("Whoa! EFI system table signature incorrect\n");
516 	if ((efi.systab->hdr.revision >> 16) == 0)
517 		printk(KERN_WARNING "Warning: EFI system table version "
518 		       "%d.%02d, expected 1.00 or greater\n",
519 		       efi.systab->hdr.revision >> 16,
520 		       efi.systab->hdr.revision & 0xffff);
521 
522 	/* Show what we know for posterity */
523 	c16 = __va(efi.systab->fw_vendor);
524 	if (c16) {
525 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
526 			vendor[i] = *c16++;
527 		vendor[i] = '\0';
528 	}
529 
530 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
531 	       efi.systab->hdr.revision >> 16,
532 	       efi.systab->hdr.revision & 0xffff, vendor);
533 
534 	palo_phys      = EFI_INVALID_TABLE_ADDR;
535 
536 	if (efi_config_init(arch_tables) != 0)
537 		return;
538 
539 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
540 		handle_palo(palo_phys);
541 
542 	runtime = __va(efi.systab->runtime);
543 	efi.get_time = phys_get_time;
544 	efi.set_time = phys_set_time;
545 	efi.get_wakeup_time = phys_get_wakeup_time;
546 	efi.set_wakeup_time = phys_set_wakeup_time;
547 	efi.get_variable = phys_get_variable;
548 	efi.get_next_variable = phys_get_next_variable;
549 	efi.set_variable = phys_set_variable;
550 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
551 	efi.reset_system = phys_reset_system;
552 
553 	efi_map_start = __va(ia64_boot_param->efi_memmap);
554 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
555 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
556 
557 #if EFI_DEBUG
558 	/* print EFI memory map: */
559 	{
560 		efi_memory_desc_t *md;
561 		void *p;
562 
563 		for (i = 0, p = efi_map_start; p < efi_map_end;
564 		     ++i, p += efi_desc_size)
565 		{
566 			const char *unit;
567 			unsigned long size;
568 			char buf[64];
569 
570 			md = p;
571 			size = md->num_pages << EFI_PAGE_SHIFT;
572 
573 			if ((size >> 40) > 0) {
574 				size >>= 40;
575 				unit = "TB";
576 			} else if ((size >> 30) > 0) {
577 				size >>= 30;
578 				unit = "GB";
579 			} else if ((size >> 20) > 0) {
580 				size >>= 20;
581 				unit = "MB";
582 			} else {
583 				size >>= 10;
584 				unit = "KB";
585 			}
586 
587 			printk("mem%02d: %s "
588 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
589 			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
590 			       md->phys_addr,
591 			       md->phys_addr + efi_md_size(md), size, unit);
592 		}
593 	}
594 #endif
595 
596 	efi_map_pal_code();
597 	efi_enter_virtual_mode();
598 }
599 
600 void
601 efi_enter_virtual_mode (void)
602 {
603 	void *efi_map_start, *efi_map_end, *p;
604 	efi_memory_desc_t *md;
605 	efi_status_t status;
606 	u64 efi_desc_size;
607 
608 	efi_map_start = __va(ia64_boot_param->efi_memmap);
609 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
610 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
611 
612 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
613 		md = p;
614 		if (md->attribute & EFI_MEMORY_RUNTIME) {
615 			/*
616 			 * Some descriptors have multiple bits set, so the
617 			 * order of the tests is relevant.
618 			 */
619 			if (md->attribute & EFI_MEMORY_WB) {
620 				md->virt_addr = (u64) __va(md->phys_addr);
621 			} else if (md->attribute & EFI_MEMORY_UC) {
622 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
623 			} else if (md->attribute & EFI_MEMORY_WC) {
624 #if 0
625 				md->virt_addr = ia64_remap(md->phys_addr,
626 							   (_PAGE_A |
627 							    _PAGE_P |
628 							    _PAGE_D |
629 							    _PAGE_MA_WC |
630 							    _PAGE_PL_0 |
631 							    _PAGE_AR_RW));
632 #else
633 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
634 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
635 #endif
636 			} else if (md->attribute & EFI_MEMORY_WT) {
637 #if 0
638 				md->virt_addr = ia64_remap(md->phys_addr,
639 							   (_PAGE_A |
640 							    _PAGE_P |
641 							    _PAGE_D |
642 							    _PAGE_MA_WT |
643 							    _PAGE_PL_0 |
644 							    _PAGE_AR_RW));
645 #else
646 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
647 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648 #endif
649 			}
650 		}
651 	}
652 
653 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
654 			       ia64_boot_param->efi_memmap_size,
655 			       efi_desc_size,
656 			       ia64_boot_param->efi_memdesc_version,
657 			       ia64_boot_param->efi_memmap);
658 	if (status != EFI_SUCCESS) {
659 		printk(KERN_WARNING "warning: unable to switch EFI into "
660 		       "virtual mode (status=%lu)\n", status);
661 		return;
662 	}
663 
664 	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
665 
666 	/*
667 	 * Now that EFI is in virtual mode, we call the EFI functions more
668 	 * efficiently:
669 	 */
670 	efi.get_time = virt_get_time;
671 	efi.set_time = virt_set_time;
672 	efi.get_wakeup_time = virt_get_wakeup_time;
673 	efi.set_wakeup_time = virt_set_wakeup_time;
674 	efi.get_variable = virt_get_variable;
675 	efi.get_next_variable = virt_get_next_variable;
676 	efi.set_variable = virt_set_variable;
677 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
678 	efi.reset_system = virt_reset_system;
679 }
680 
681 /*
682  * Walk the EFI memory map looking for the I/O port range.  There can only be
683  * one entry of this type, other I/O port ranges should be described via ACPI.
684  */
685 u64
686 efi_get_iobase (void)
687 {
688 	void *efi_map_start, *efi_map_end, *p;
689 	efi_memory_desc_t *md;
690 	u64 efi_desc_size;
691 
692 	efi_map_start = __va(ia64_boot_param->efi_memmap);
693 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
694 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
695 
696 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
697 		md = p;
698 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
699 			if (md->attribute & EFI_MEMORY_UC)
700 				return md->phys_addr;
701 		}
702 	}
703 	return 0;
704 }
705 
706 static struct kern_memdesc *
707 kern_memory_descriptor (unsigned long phys_addr)
708 {
709 	struct kern_memdesc *md;
710 
711 	for (md = kern_memmap; md->start != ~0UL; md++) {
712 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
713 			 return md;
714 	}
715 	return NULL;
716 }
717 
718 static efi_memory_desc_t *
719 efi_memory_descriptor (unsigned long phys_addr)
720 {
721 	void *efi_map_start, *efi_map_end, *p;
722 	efi_memory_desc_t *md;
723 	u64 efi_desc_size;
724 
725 	efi_map_start = __va(ia64_boot_param->efi_memmap);
726 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
727 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
728 
729 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
730 		md = p;
731 
732 		if (phys_addr - md->phys_addr < efi_md_size(md))
733 			 return md;
734 	}
735 	return NULL;
736 }
737 
738 static int
739 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
740 {
741 	void *efi_map_start, *efi_map_end, *p;
742 	efi_memory_desc_t *md;
743 	u64 efi_desc_size;
744 	unsigned long end;
745 
746 	efi_map_start = __va(ia64_boot_param->efi_memmap);
747 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
748 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
749 
750 	end = phys_addr + size;
751 
752 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
753 		md = p;
754 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
755 			return 1;
756 	}
757 	return 0;
758 }
759 
760 int
761 efi_mem_type (unsigned long phys_addr)
762 {
763 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
764 
765 	if (md)
766 		return md->type;
767 	return -EINVAL;
768 }
769 
770 u64
771 efi_mem_attributes (unsigned long phys_addr)
772 {
773 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
774 
775 	if (md)
776 		return md->attribute;
777 	return 0;
778 }
779 EXPORT_SYMBOL(efi_mem_attributes);
780 
781 u64
782 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
783 {
784 	unsigned long end = phys_addr + size;
785 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
786 	u64 attr;
787 
788 	if (!md)
789 		return 0;
790 
791 	/*
792 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
793 	 * the kernel that firmware needs this region mapped.
794 	 */
795 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
796 	do {
797 		unsigned long md_end = efi_md_end(md);
798 
799 		if (end <= md_end)
800 			return attr;
801 
802 		md = efi_memory_descriptor(md_end);
803 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
804 			return 0;
805 	} while (md);
806 	return 0;	/* never reached */
807 }
808 
809 u64
810 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
811 {
812 	unsigned long end = phys_addr + size;
813 	struct kern_memdesc *md;
814 	u64 attr;
815 
816 	/*
817 	 * This is a hack for ioremap calls before we set up kern_memmap.
818 	 * Maybe we should do efi_memmap_init() earlier instead.
819 	 */
820 	if (!kern_memmap) {
821 		attr = efi_mem_attribute(phys_addr, size);
822 		if (attr & EFI_MEMORY_WB)
823 			return EFI_MEMORY_WB;
824 		return 0;
825 	}
826 
827 	md = kern_memory_descriptor(phys_addr);
828 	if (!md)
829 		return 0;
830 
831 	attr = md->attribute;
832 	do {
833 		unsigned long md_end = kmd_end(md);
834 
835 		if (end <= md_end)
836 			return attr;
837 
838 		md = kern_memory_descriptor(md_end);
839 		if (!md || md->attribute != attr)
840 			return 0;
841 	} while (md);
842 	return 0;	/* never reached */
843 }
844 EXPORT_SYMBOL(kern_mem_attribute);
845 
846 int
847 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
848 {
849 	u64 attr;
850 
851 	/*
852 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
853 	 * uses a granule-sized kernel identity mapping.  It's really
854 	 * only safe to do this for regions in kern_memmap.  For more
855 	 * details, see Documentation/ia64/aliasing.txt.
856 	 */
857 	attr = kern_mem_attribute(phys_addr, size);
858 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
859 		return 1;
860 	return 0;
861 }
862 
863 int
864 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
865 {
866 	unsigned long phys_addr = pfn << PAGE_SHIFT;
867 	u64 attr;
868 
869 	attr = efi_mem_attribute(phys_addr, size);
870 
871 	/*
872 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
873 	 * granule, but the entire region we're mapping must support the same
874 	 * attribute.
875 	 */
876 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
877 		return 1;
878 
879 	/*
880 	 * Intel firmware doesn't tell us about all the MMIO regions, so
881 	 * in general we have to allow mmap requests.  But if EFI *does*
882 	 * tell us about anything inside this region, we should deny it.
883 	 * The user can always map a smaller region to avoid the overlap.
884 	 */
885 	if (efi_memmap_intersects(phys_addr, size))
886 		return 0;
887 
888 	return 1;
889 }
890 
891 pgprot_t
892 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
893 		     pgprot_t vma_prot)
894 {
895 	unsigned long phys_addr = pfn << PAGE_SHIFT;
896 	u64 attr;
897 
898 	/*
899 	 * For /dev/mem mmap, we use user mappings, but if the region is
900 	 * in kern_memmap (and hence may be covered by a kernel mapping),
901 	 * we must use the same attribute as the kernel mapping.
902 	 */
903 	attr = kern_mem_attribute(phys_addr, size);
904 	if (attr & EFI_MEMORY_WB)
905 		return pgprot_cacheable(vma_prot);
906 	else if (attr & EFI_MEMORY_UC)
907 		return pgprot_noncached(vma_prot);
908 
909 	/*
910 	 * Some chipsets don't support UC access to memory.  If
911 	 * WB is supported, we prefer that.
912 	 */
913 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
914 		return pgprot_cacheable(vma_prot);
915 
916 	return pgprot_noncached(vma_prot);
917 }
918 
919 int __init
920 efi_uart_console_only(void)
921 {
922 	efi_status_t status;
923 	char *s, name[] = "ConOut";
924 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
925 	efi_char16_t *utf16, name_utf16[32];
926 	unsigned char data[1024];
927 	unsigned long size = sizeof(data);
928 	struct efi_generic_dev_path *hdr, *end_addr;
929 	int uart = 0;
930 
931 	/* Convert to UTF-16 */
932 	utf16 = name_utf16;
933 	s = name;
934 	while (*s)
935 		*utf16++ = *s++ & 0x7f;
936 	*utf16 = 0;
937 
938 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
939 	if (status != EFI_SUCCESS) {
940 		printk(KERN_ERR "No EFI %s variable?\n", name);
941 		return 0;
942 	}
943 
944 	hdr = (struct efi_generic_dev_path *) data;
945 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
946 	while (hdr < end_addr) {
947 		if (hdr->type == EFI_DEV_MSG &&
948 		    hdr->sub_type == EFI_DEV_MSG_UART)
949 			uart = 1;
950 		else if (hdr->type == EFI_DEV_END_PATH ||
951 			  hdr->type == EFI_DEV_END_PATH2) {
952 			if (!uart)
953 				return 0;
954 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
955 				return 1;
956 			uart = 0;
957 		}
958 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
959 	}
960 	printk(KERN_ERR "Malformed %s value\n", name);
961 	return 0;
962 }
963 
964 /*
965  * Look for the first granule aligned memory descriptor memory
966  * that is big enough to hold EFI memory map. Make sure this
967  * descriptor is at least granule sized so it does not get trimmed
968  */
969 struct kern_memdesc *
970 find_memmap_space (void)
971 {
972 	u64	contig_low=0, contig_high=0;
973 	u64	as = 0, ae;
974 	void *efi_map_start, *efi_map_end, *p, *q;
975 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
976 	u64	space_needed, efi_desc_size;
977 	unsigned long total_mem = 0;
978 
979 	efi_map_start = __va(ia64_boot_param->efi_memmap);
980 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
981 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
982 
983 	/*
984 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
985 	 * (if every entry has a WB part in the middle, and UC head and tail),
986 	 * plus one for the end marker.
987 	 */
988 	space_needed = sizeof(kern_memdesc_t) *
989 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
990 
991 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
992 		md = p;
993 		if (!efi_wb(md)) {
994 			continue;
995 		}
996 		if (pmd == NULL || !efi_wb(pmd) ||
997 		    efi_md_end(pmd) != md->phys_addr) {
998 			contig_low = GRANULEROUNDUP(md->phys_addr);
999 			contig_high = efi_md_end(md);
1000 			for (q = p + efi_desc_size; q < efi_map_end;
1001 			     q += efi_desc_size) {
1002 				check_md = q;
1003 				if (!efi_wb(check_md))
1004 					break;
1005 				if (contig_high != check_md->phys_addr)
1006 					break;
1007 				contig_high = efi_md_end(check_md);
1008 			}
1009 			contig_high = GRANULEROUNDDOWN(contig_high);
1010 		}
1011 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1012 			continue;
1013 
1014 		/* Round ends inward to granule boundaries */
1015 		as = max(contig_low, md->phys_addr);
1016 		ae = min(contig_high, efi_md_end(md));
1017 
1018 		/* keep within max_addr= and min_addr= command line arg */
1019 		as = max(as, min_addr);
1020 		ae = min(ae, max_addr);
1021 		if (ae <= as)
1022 			continue;
1023 
1024 		/* avoid going over mem= command line arg */
1025 		if (total_mem + (ae - as) > mem_limit)
1026 			ae -= total_mem + (ae - as) - mem_limit;
1027 
1028 		if (ae <= as)
1029 			continue;
1030 
1031 		if (ae - as > space_needed)
1032 			break;
1033 	}
1034 	if (p >= efi_map_end)
1035 		panic("Can't allocate space for kernel memory descriptors");
1036 
1037 	return __va(as);
1038 }
1039 
1040 /*
1041  * Walk the EFI memory map and gather all memory available for kernel
1042  * to use.  We can allocate partial granules only if the unavailable
1043  * parts exist, and are WB.
1044  */
1045 unsigned long
1046 efi_memmap_init(u64 *s, u64 *e)
1047 {
1048 	struct kern_memdesc *k, *prev = NULL;
1049 	u64	contig_low=0, contig_high=0;
1050 	u64	as, ae, lim;
1051 	void *efi_map_start, *efi_map_end, *p, *q;
1052 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1053 	u64	efi_desc_size;
1054 	unsigned long total_mem = 0;
1055 
1056 	k = kern_memmap = find_memmap_space();
1057 
1058 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1059 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1060 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1061 
1062 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1063 		md = p;
1064 		if (!efi_wb(md)) {
1065 			if (efi_uc(md) &&
1066 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1067 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1068 				k->attribute = EFI_MEMORY_UC;
1069 				k->start = md->phys_addr;
1070 				k->num_pages = md->num_pages;
1071 				k++;
1072 			}
1073 			continue;
1074 		}
1075 		if (pmd == NULL || !efi_wb(pmd) ||
1076 		    efi_md_end(pmd) != md->phys_addr) {
1077 			contig_low = GRANULEROUNDUP(md->phys_addr);
1078 			contig_high = efi_md_end(md);
1079 			for (q = p + efi_desc_size; q < efi_map_end;
1080 			     q += efi_desc_size) {
1081 				check_md = q;
1082 				if (!efi_wb(check_md))
1083 					break;
1084 				if (contig_high != check_md->phys_addr)
1085 					break;
1086 				contig_high = efi_md_end(check_md);
1087 			}
1088 			contig_high = GRANULEROUNDDOWN(contig_high);
1089 		}
1090 		if (!is_memory_available(md))
1091 			continue;
1092 
1093 		/*
1094 		 * Round ends inward to granule boundaries
1095 		 * Give trimmings to uncached allocator
1096 		 */
1097 		if (md->phys_addr < contig_low) {
1098 			lim = min(efi_md_end(md), contig_low);
1099 			if (efi_uc(md)) {
1100 				if (k > kern_memmap &&
1101 				    (k-1)->attribute == EFI_MEMORY_UC &&
1102 				    kmd_end(k-1) == md->phys_addr) {
1103 					(k-1)->num_pages +=
1104 						(lim - md->phys_addr)
1105 						>> EFI_PAGE_SHIFT;
1106 				} else {
1107 					k->attribute = EFI_MEMORY_UC;
1108 					k->start = md->phys_addr;
1109 					k->num_pages = (lim - md->phys_addr)
1110 						>> EFI_PAGE_SHIFT;
1111 					k++;
1112 				}
1113 			}
1114 			as = contig_low;
1115 		} else
1116 			as = md->phys_addr;
1117 
1118 		if (efi_md_end(md) > contig_high) {
1119 			lim = max(md->phys_addr, contig_high);
1120 			if (efi_uc(md)) {
1121 				if (lim == md->phys_addr && k > kern_memmap &&
1122 				    (k-1)->attribute == EFI_MEMORY_UC &&
1123 				    kmd_end(k-1) == md->phys_addr) {
1124 					(k-1)->num_pages += md->num_pages;
1125 				} else {
1126 					k->attribute = EFI_MEMORY_UC;
1127 					k->start = lim;
1128 					k->num_pages = (efi_md_end(md) - lim)
1129 						>> EFI_PAGE_SHIFT;
1130 					k++;
1131 				}
1132 			}
1133 			ae = contig_high;
1134 		} else
1135 			ae = efi_md_end(md);
1136 
1137 		/* keep within max_addr= and min_addr= command line arg */
1138 		as = max(as, min_addr);
1139 		ae = min(ae, max_addr);
1140 		if (ae <= as)
1141 			continue;
1142 
1143 		/* avoid going over mem= command line arg */
1144 		if (total_mem + (ae - as) > mem_limit)
1145 			ae -= total_mem + (ae - as) - mem_limit;
1146 
1147 		if (ae <= as)
1148 			continue;
1149 		if (prev && kmd_end(prev) == md->phys_addr) {
1150 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1151 			total_mem += ae - as;
1152 			continue;
1153 		}
1154 		k->attribute = EFI_MEMORY_WB;
1155 		k->start = as;
1156 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1157 		total_mem += ae - as;
1158 		prev = k++;
1159 	}
1160 	k->start = ~0L; /* end-marker */
1161 
1162 	/* reserve the memory we are using for kern_memmap */
1163 	*s = (u64)kern_memmap;
1164 	*e = (u64)++k;
1165 
1166 	return total_mem;
1167 }
1168 
1169 void
1170 efi_initialize_iomem_resources(struct resource *code_resource,
1171 			       struct resource *data_resource,
1172 			       struct resource *bss_resource)
1173 {
1174 	struct resource *res;
1175 	void *efi_map_start, *efi_map_end, *p;
1176 	efi_memory_desc_t *md;
1177 	u64 efi_desc_size;
1178 	char *name;
1179 	unsigned long flags, desc;
1180 
1181 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1182 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1183 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1184 
1185 	res = NULL;
1186 
1187 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1188 		md = p;
1189 
1190 		if (md->num_pages == 0) /* should not happen */
1191 			continue;
1192 
1193 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1194 		desc = IORES_DESC_NONE;
1195 
1196 		switch (md->type) {
1197 
1198 			case EFI_MEMORY_MAPPED_IO:
1199 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1200 				continue;
1201 
1202 			case EFI_LOADER_CODE:
1203 			case EFI_LOADER_DATA:
1204 			case EFI_BOOT_SERVICES_DATA:
1205 			case EFI_BOOT_SERVICES_CODE:
1206 			case EFI_CONVENTIONAL_MEMORY:
1207 				if (md->attribute & EFI_MEMORY_WP) {
1208 					name = "System ROM";
1209 					flags |= IORESOURCE_READONLY;
1210 				} else if (md->attribute == EFI_MEMORY_UC) {
1211 					name = "Uncached RAM";
1212 				} else {
1213 					name = "System RAM";
1214 					flags |= IORESOURCE_SYSRAM;
1215 				}
1216 				break;
1217 
1218 			case EFI_ACPI_MEMORY_NVS:
1219 				name = "ACPI Non-volatile Storage";
1220 				desc = IORES_DESC_ACPI_NV_STORAGE;
1221 				break;
1222 
1223 			case EFI_UNUSABLE_MEMORY:
1224 				name = "reserved";
1225 				flags |= IORESOURCE_DISABLED;
1226 				break;
1227 
1228 			case EFI_PERSISTENT_MEMORY:
1229 				name = "Persistent Memory";
1230 				desc = IORES_DESC_PERSISTENT_MEMORY;
1231 				break;
1232 
1233 			case EFI_RESERVED_TYPE:
1234 			case EFI_RUNTIME_SERVICES_CODE:
1235 			case EFI_RUNTIME_SERVICES_DATA:
1236 			case EFI_ACPI_RECLAIM_MEMORY:
1237 			default:
1238 				name = "reserved";
1239 				break;
1240 		}
1241 
1242 		if ((res = kzalloc(sizeof(struct resource),
1243 				   GFP_KERNEL)) == NULL) {
1244 			printk(KERN_ERR
1245 			       "failed to allocate resource for iomem\n");
1246 			return;
1247 		}
1248 
1249 		res->name = name;
1250 		res->start = md->phys_addr;
1251 		res->end = md->phys_addr + efi_md_size(md) - 1;
1252 		res->flags = flags;
1253 		res->desc = desc;
1254 
1255 		if (insert_resource(&iomem_resource, res) < 0)
1256 			kfree(res);
1257 		else {
1258 			/*
1259 			 * We don't know which region contains
1260 			 * kernel data so we try it repeatedly and
1261 			 * let the resource manager test it.
1262 			 */
1263 			insert_resource(res, code_resource);
1264 			insert_resource(res, data_resource);
1265 			insert_resource(res, bss_resource);
1266 #ifdef CONFIG_KEXEC
1267                         insert_resource(res, &efi_memmap_res);
1268                         insert_resource(res, &boot_param_res);
1269 			if (crashk_res.end > crashk_res.start)
1270 				insert_resource(res, &crashk_res);
1271 #endif
1272 		}
1273 	}
1274 }
1275 
1276 #ifdef CONFIG_KEXEC
1277 /* find a block of memory aligned to 64M exclude reserved regions
1278    rsvd_regions are sorted
1279  */
1280 unsigned long __init
1281 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1282 {
1283 	int i;
1284 	u64 start, end;
1285 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1286 	void *efi_map_start, *efi_map_end, *p;
1287 	efi_memory_desc_t *md;
1288 	u64 efi_desc_size;
1289 
1290 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1291 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1292 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1293 
1294 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1295 		md = p;
1296 		if (!efi_wb(md))
1297 			continue;
1298 		start = ALIGN(md->phys_addr, alignment);
1299 		end = efi_md_end(md);
1300 		for (i = 0; i < n; i++) {
1301 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1302 				if (__pa(r[i].start) > start + size)
1303 					return start;
1304 				start = ALIGN(__pa(r[i].end), alignment);
1305 				if (i < n-1 &&
1306 				    __pa(r[i+1].start) < start + size)
1307 					continue;
1308 				else
1309 					break;
1310 			}
1311 		}
1312 		if (end > start + size)
1313 			return start;
1314 	}
1315 
1316 	printk(KERN_WARNING
1317 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1318 	return ~0UL;
1319 }
1320 #endif
1321 
1322 #ifdef CONFIG_CRASH_DUMP
1323 /* locate the size find a the descriptor at a certain address */
1324 unsigned long __init
1325 vmcore_find_descriptor_size (unsigned long address)
1326 {
1327 	void *efi_map_start, *efi_map_end, *p;
1328 	efi_memory_desc_t *md;
1329 	u64 efi_desc_size;
1330 	unsigned long ret = 0;
1331 
1332 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1333 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1334 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1335 
1336 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1337 		md = p;
1338 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1339 		    && md->phys_addr == address) {
1340 			ret = efi_md_size(md);
1341 			break;
1342 		}
1343 	}
1344 
1345 	if (ret == 0)
1346 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1347 
1348 	return ret;
1349 }
1350 #endif
1351