1 /* 2 * Extensible Firmware Interface 3 * 4 * Based on Extensible Firmware Interface Specification version 0.9 5 * April 30, 1999 6 * 7 * Copyright (C) 1999 VA Linux Systems 8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 9 * Copyright (C) 1999-2003 Hewlett-Packard Co. 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * Stephane Eranian <eranian@hpl.hp.com> 12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. 13 * Bjorn Helgaas <bjorn.helgaas@hp.com> 14 * 15 * All EFI Runtime Services are not implemented yet as EFI only 16 * supports physical mode addressing on SoftSDV. This is to be fixed 17 * in a future version. --drummond 1999-07-20 18 * 19 * Implemented EFI runtime services and virtual mode calls. --davidm 20 * 21 * Goutham Rao: <goutham.rao@intel.com> 22 * Skip non-WB memory and ignore empty memory ranges. 23 */ 24 #include <linux/module.h> 25 #include <linux/bootmem.h> 26 #include <linux/crash_dump.h> 27 #include <linux/kernel.h> 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/time.h> 32 #include <linux/efi.h> 33 #include <linux/kexec.h> 34 #include <linux/mm.h> 35 36 #include <asm/io.h> 37 #include <asm/kregs.h> 38 #include <asm/meminit.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/mca.h> 42 #include <asm/setup.h> 43 #include <asm/tlbflush.h> 44 45 #define EFI_DEBUG 0 46 47 static __initdata unsigned long palo_phys; 48 49 static __initdata efi_config_table_type_t arch_tables[] = { 50 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys}, 51 {NULL_GUID, NULL, 0}, 52 }; 53 54 extern efi_status_t efi_call_phys (void *, ...); 55 56 static efi_runtime_services_t *runtime; 57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; 58 59 #define efi_call_virt(f, args...) (*(f))(args) 60 61 #define STUB_GET_TIME(prefix, adjust_arg) \ 62 static efi_status_t \ 63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 64 { \ 65 struct ia64_fpreg fr[6]; \ 66 efi_time_cap_t *atc = NULL; \ 67 efi_status_t ret; \ 68 \ 69 if (tc) \ 70 atc = adjust_arg(tc); \ 71 ia64_save_scratch_fpregs(fr); \ 72 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \ 73 adjust_arg(tm), atc); \ 74 ia64_load_scratch_fpregs(fr); \ 75 return ret; \ 76 } 77 78 #define STUB_SET_TIME(prefix, adjust_arg) \ 79 static efi_status_t \ 80 prefix##_set_time (efi_time_t *tm) \ 81 { \ 82 struct ia64_fpreg fr[6]; \ 83 efi_status_t ret; \ 84 \ 85 ia64_save_scratch_fpregs(fr); \ 86 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \ 87 adjust_arg(tm)); \ 88 ia64_load_scratch_fpregs(fr); \ 89 return ret; \ 90 } 91 92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 93 static efi_status_t \ 94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \ 95 efi_time_t *tm) \ 96 { \ 97 struct ia64_fpreg fr[6]; \ 98 efi_status_t ret; \ 99 \ 100 ia64_save_scratch_fpregs(fr); \ 101 ret = efi_call_##prefix( \ 102 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 103 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 104 ia64_load_scratch_fpregs(fr); \ 105 return ret; \ 106 } 107 108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 109 static efi_status_t \ 110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 111 { \ 112 struct ia64_fpreg fr[6]; \ 113 efi_time_t *atm = NULL; \ 114 efi_status_t ret; \ 115 \ 116 if (tm) \ 117 atm = adjust_arg(tm); \ 118 ia64_save_scratch_fpregs(fr); \ 119 ret = efi_call_##prefix( \ 120 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 121 enabled, atm); \ 122 ia64_load_scratch_fpregs(fr); \ 123 return ret; \ 124 } 125 126 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 127 static efi_status_t \ 128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 129 unsigned long *data_size, void *data) \ 130 { \ 131 struct ia64_fpreg fr[6]; \ 132 u32 *aattr = NULL; \ 133 efi_status_t ret; \ 134 \ 135 if (attr) \ 136 aattr = adjust_arg(attr); \ 137 ia64_save_scratch_fpregs(fr); \ 138 ret = efi_call_##prefix( \ 139 (efi_get_variable_t *) __va(runtime->get_variable), \ 140 adjust_arg(name), adjust_arg(vendor), aattr, \ 141 adjust_arg(data_size), adjust_arg(data)); \ 142 ia64_load_scratch_fpregs(fr); \ 143 return ret; \ 144 } 145 146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 147 static efi_status_t \ 148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \ 149 efi_guid_t *vendor) \ 150 { \ 151 struct ia64_fpreg fr[6]; \ 152 efi_status_t ret; \ 153 \ 154 ia64_save_scratch_fpregs(fr); \ 155 ret = efi_call_##prefix( \ 156 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 157 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 158 ia64_load_scratch_fpregs(fr); \ 159 return ret; \ 160 } 161 162 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 163 static efi_status_t \ 164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \ 165 u32 attr, unsigned long data_size, \ 166 void *data) \ 167 { \ 168 struct ia64_fpreg fr[6]; \ 169 efi_status_t ret; \ 170 \ 171 ia64_save_scratch_fpregs(fr); \ 172 ret = efi_call_##prefix( \ 173 (efi_set_variable_t *) __va(runtime->set_variable), \ 174 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 175 adjust_arg(data)); \ 176 ia64_load_scratch_fpregs(fr); \ 177 return ret; \ 178 } 179 180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 181 static efi_status_t \ 182 prefix##_get_next_high_mono_count (u32 *count) \ 183 { \ 184 struct ia64_fpreg fr[6]; \ 185 efi_status_t ret; \ 186 \ 187 ia64_save_scratch_fpregs(fr); \ 188 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 189 __va(runtime->get_next_high_mono_count), \ 190 adjust_arg(count)); \ 191 ia64_load_scratch_fpregs(fr); \ 192 return ret; \ 193 } 194 195 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 196 static void \ 197 prefix##_reset_system (int reset_type, efi_status_t status, \ 198 unsigned long data_size, efi_char16_t *data) \ 199 { \ 200 struct ia64_fpreg fr[6]; \ 201 efi_char16_t *adata = NULL; \ 202 \ 203 if (data) \ 204 adata = adjust_arg(data); \ 205 \ 206 ia64_save_scratch_fpregs(fr); \ 207 efi_call_##prefix( \ 208 (efi_reset_system_t *) __va(runtime->reset_system), \ 209 reset_type, status, data_size, adata); \ 210 /* should not return, but just in case... */ \ 211 ia64_load_scratch_fpregs(fr); \ 212 } 213 214 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 215 216 STUB_GET_TIME(phys, phys_ptr) 217 STUB_SET_TIME(phys, phys_ptr) 218 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 219 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 220 STUB_GET_VARIABLE(phys, phys_ptr) 221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 222 STUB_SET_VARIABLE(phys, phys_ptr) 223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 224 STUB_RESET_SYSTEM(phys, phys_ptr) 225 226 #define id(arg) arg 227 228 STUB_GET_TIME(virt, id) 229 STUB_SET_TIME(virt, id) 230 STUB_GET_WAKEUP_TIME(virt, id) 231 STUB_SET_WAKEUP_TIME(virt, id) 232 STUB_GET_VARIABLE(virt, id) 233 STUB_GET_NEXT_VARIABLE(virt, id) 234 STUB_SET_VARIABLE(virt, id) 235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 236 STUB_RESET_SYSTEM(virt, id) 237 238 void 239 efi_gettimeofday (struct timespec64 *ts) 240 { 241 efi_time_t tm; 242 243 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { 244 memset(ts, 0, sizeof(*ts)); 245 return; 246 } 247 248 ts->tv_sec = mktime64(tm.year, tm.month, tm.day, 249 tm.hour, tm.minute, tm.second); 250 ts->tv_nsec = tm.nanosecond; 251 } 252 253 static int 254 is_memory_available (efi_memory_desc_t *md) 255 { 256 if (!(md->attribute & EFI_MEMORY_WB)) 257 return 0; 258 259 switch (md->type) { 260 case EFI_LOADER_CODE: 261 case EFI_LOADER_DATA: 262 case EFI_BOOT_SERVICES_CODE: 263 case EFI_BOOT_SERVICES_DATA: 264 case EFI_CONVENTIONAL_MEMORY: 265 return 1; 266 } 267 return 0; 268 } 269 270 typedef struct kern_memdesc { 271 u64 attribute; 272 u64 start; 273 u64 num_pages; 274 } kern_memdesc_t; 275 276 static kern_memdesc_t *kern_memmap; 277 278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) 279 280 static inline u64 281 kmd_end(kern_memdesc_t *kmd) 282 { 283 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); 284 } 285 286 static inline u64 287 efi_md_end(efi_memory_desc_t *md) 288 { 289 return (md->phys_addr + efi_md_size(md)); 290 } 291 292 static inline int 293 efi_wb(efi_memory_desc_t *md) 294 { 295 return (md->attribute & EFI_MEMORY_WB); 296 } 297 298 static inline int 299 efi_uc(efi_memory_desc_t *md) 300 { 301 return (md->attribute & EFI_MEMORY_UC); 302 } 303 304 static void 305 walk (efi_freemem_callback_t callback, void *arg, u64 attr) 306 { 307 kern_memdesc_t *k; 308 u64 start, end, voff; 309 310 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; 311 for (k = kern_memmap; k->start != ~0UL; k++) { 312 if (k->attribute != attr) 313 continue; 314 start = PAGE_ALIGN(k->start); 315 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; 316 if (start < end) 317 if ((*callback)(start + voff, end + voff, arg) < 0) 318 return; 319 } 320 } 321 322 /* 323 * Walk the EFI memory map and call CALLBACK once for each EFI memory 324 * descriptor that has memory that is available for OS use. 325 */ 326 void 327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 328 { 329 walk(callback, arg, EFI_MEMORY_WB); 330 } 331 332 /* 333 * Walk the EFI memory map and call CALLBACK once for each EFI memory 334 * descriptor that has memory that is available for uncached allocator. 335 */ 336 void 337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) 338 { 339 walk(callback, arg, EFI_MEMORY_UC); 340 } 341 342 /* 343 * Look for the PAL_CODE region reported by EFI and map it using an 344 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 345 * Abstraction Layer chapter 11 in ADAG 346 */ 347 void * 348 efi_get_pal_addr (void) 349 { 350 void *efi_map_start, *efi_map_end, *p; 351 efi_memory_desc_t *md; 352 u64 efi_desc_size; 353 int pal_code_count = 0; 354 u64 vaddr, mask; 355 356 efi_map_start = __va(ia64_boot_param->efi_memmap); 357 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 358 efi_desc_size = ia64_boot_param->efi_memdesc_size; 359 360 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 361 md = p; 362 if (md->type != EFI_PAL_CODE) 363 continue; 364 365 if (++pal_code_count > 1) { 366 printk(KERN_ERR "Too many EFI Pal Code memory ranges, " 367 "dropped @ %llx\n", md->phys_addr); 368 continue; 369 } 370 /* 371 * The only ITLB entry in region 7 that is used is the one 372 * installed by __start(). That entry covers a 64MB range. 373 */ 374 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 375 vaddr = PAGE_OFFSET + md->phys_addr; 376 377 /* 378 * We must check that the PAL mapping won't overlap with the 379 * kernel mapping. 380 * 381 * PAL code is guaranteed to be aligned on a power of 2 between 382 * 4k and 256KB and that only one ITR is needed to map it. This 383 * implies that the PAL code is always aligned on its size, 384 * i.e., the closest matching page size supported by the TLB. 385 * Therefore PAL code is guaranteed never to cross a 64MB unless 386 * it is bigger than 64MB (very unlikely!). So for now the 387 * following test is enough to determine whether or not we need 388 * a dedicated ITR for the PAL code. 389 */ 390 if ((vaddr & mask) == (KERNEL_START & mask)) { 391 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 392 __func__); 393 continue; 394 } 395 396 if (efi_md_size(md) > IA64_GRANULE_SIZE) 397 panic("Whoa! PAL code size bigger than a granule!"); 398 399 #if EFI_DEBUG 400 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 401 402 printk(KERN_INFO "CPU %d: mapping PAL code " 403 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 404 smp_processor_id(), md->phys_addr, 405 md->phys_addr + efi_md_size(md), 406 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 407 #endif 408 return __va(md->phys_addr); 409 } 410 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", 411 __func__); 412 return NULL; 413 } 414 415 416 static u8 __init palo_checksum(u8 *buffer, u32 length) 417 { 418 u8 sum = 0; 419 u8 *end = buffer + length; 420 421 while (buffer < end) 422 sum = (u8) (sum + *(buffer++)); 423 424 return sum; 425 } 426 427 /* 428 * Parse and handle PALO table which is published at: 429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf 430 */ 431 static void __init handle_palo(unsigned long phys_addr) 432 { 433 struct palo_table *palo = __va(phys_addr); 434 u8 checksum; 435 436 if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { 437 printk(KERN_INFO "PALO signature incorrect.\n"); 438 return; 439 } 440 441 checksum = palo_checksum((u8 *)palo, palo->length); 442 if (checksum) { 443 printk(KERN_INFO "PALO checksum incorrect.\n"); 444 return; 445 } 446 447 setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); 448 } 449 450 void 451 efi_map_pal_code (void) 452 { 453 void *pal_vaddr = efi_get_pal_addr (); 454 u64 psr; 455 456 if (!pal_vaddr) 457 return; 458 459 /* 460 * Cannot write to CRx with PSR.ic=1 461 */ 462 psr = ia64_clear_ic(); 463 ia64_itr(0x1, IA64_TR_PALCODE, 464 GRANULEROUNDDOWN((unsigned long) pal_vaddr), 465 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 466 IA64_GRANULE_SHIFT); 467 ia64_set_psr(psr); /* restore psr */ 468 } 469 470 void __init 471 efi_init (void) 472 { 473 void *efi_map_start, *efi_map_end; 474 efi_char16_t *c16; 475 u64 efi_desc_size; 476 char *cp, vendor[100] = "unknown"; 477 int i; 478 479 set_bit(EFI_BOOT, &efi.flags); 480 set_bit(EFI_64BIT, &efi.flags); 481 482 /* 483 * It's too early to be able to use the standard kernel command line 484 * support... 485 */ 486 for (cp = boot_command_line; *cp; ) { 487 if (memcmp(cp, "mem=", 4) == 0) { 488 mem_limit = memparse(cp + 4, &cp); 489 } else if (memcmp(cp, "max_addr=", 9) == 0) { 490 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 491 } else if (memcmp(cp, "min_addr=", 9) == 0) { 492 min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); 493 } else { 494 while (*cp != ' ' && *cp) 495 ++cp; 496 while (*cp == ' ') 497 ++cp; 498 } 499 } 500 if (min_addr != 0UL) 501 printk(KERN_INFO "Ignoring memory below %lluMB\n", 502 min_addr >> 20); 503 if (max_addr != ~0UL) 504 printk(KERN_INFO "Ignoring memory above %lluMB\n", 505 max_addr >> 20); 506 507 efi.systab = __va(ia64_boot_param->efi_systab); 508 509 /* 510 * Verify the EFI Table 511 */ 512 if (efi.systab == NULL) 513 panic("Whoa! Can't find EFI system table.\n"); 514 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 515 panic("Whoa! EFI system table signature incorrect\n"); 516 if ((efi.systab->hdr.revision >> 16) == 0) 517 printk(KERN_WARNING "Warning: EFI system table version " 518 "%d.%02d, expected 1.00 or greater\n", 519 efi.systab->hdr.revision >> 16, 520 efi.systab->hdr.revision & 0xffff); 521 522 /* Show what we know for posterity */ 523 c16 = __va(efi.systab->fw_vendor); 524 if (c16) { 525 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) 526 vendor[i] = *c16++; 527 vendor[i] = '\0'; 528 } 529 530 printk(KERN_INFO "EFI v%u.%.02u by %s:", 531 efi.systab->hdr.revision >> 16, 532 efi.systab->hdr.revision & 0xffff, vendor); 533 534 palo_phys = EFI_INVALID_TABLE_ADDR; 535 536 if (efi_config_init(arch_tables) != 0) 537 return; 538 539 if (palo_phys != EFI_INVALID_TABLE_ADDR) 540 handle_palo(palo_phys); 541 542 runtime = __va(efi.systab->runtime); 543 efi.get_time = phys_get_time; 544 efi.set_time = phys_set_time; 545 efi.get_wakeup_time = phys_get_wakeup_time; 546 efi.set_wakeup_time = phys_set_wakeup_time; 547 efi.get_variable = phys_get_variable; 548 efi.get_next_variable = phys_get_next_variable; 549 efi.set_variable = phys_set_variable; 550 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 551 efi.reset_system = phys_reset_system; 552 553 efi_map_start = __va(ia64_boot_param->efi_memmap); 554 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 555 efi_desc_size = ia64_boot_param->efi_memdesc_size; 556 557 #if EFI_DEBUG 558 /* print EFI memory map: */ 559 { 560 efi_memory_desc_t *md; 561 void *p; 562 563 for (i = 0, p = efi_map_start; p < efi_map_end; 564 ++i, p += efi_desc_size) 565 { 566 const char *unit; 567 unsigned long size; 568 char buf[64]; 569 570 md = p; 571 size = md->num_pages << EFI_PAGE_SHIFT; 572 573 if ((size >> 40) > 0) { 574 size >>= 40; 575 unit = "TB"; 576 } else if ((size >> 30) > 0) { 577 size >>= 30; 578 unit = "GB"; 579 } else if ((size >> 20) > 0) { 580 size >>= 20; 581 unit = "MB"; 582 } else { 583 size >>= 10; 584 unit = "KB"; 585 } 586 587 printk("mem%02d: %s " 588 "range=[0x%016lx-0x%016lx) (%4lu%s)\n", 589 i, efi_md_typeattr_format(buf, sizeof(buf), md), 590 md->phys_addr, 591 md->phys_addr + efi_md_size(md), size, unit); 592 } 593 } 594 #endif 595 596 efi_map_pal_code(); 597 efi_enter_virtual_mode(); 598 } 599 600 void 601 efi_enter_virtual_mode (void) 602 { 603 void *efi_map_start, *efi_map_end, *p; 604 efi_memory_desc_t *md; 605 efi_status_t status; 606 u64 efi_desc_size; 607 608 efi_map_start = __va(ia64_boot_param->efi_memmap); 609 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 610 efi_desc_size = ia64_boot_param->efi_memdesc_size; 611 612 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 613 md = p; 614 if (md->attribute & EFI_MEMORY_RUNTIME) { 615 /* 616 * Some descriptors have multiple bits set, so the 617 * order of the tests is relevant. 618 */ 619 if (md->attribute & EFI_MEMORY_WB) { 620 md->virt_addr = (u64) __va(md->phys_addr); 621 } else if (md->attribute & EFI_MEMORY_UC) { 622 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 623 } else if (md->attribute & EFI_MEMORY_WC) { 624 #if 0 625 md->virt_addr = ia64_remap(md->phys_addr, 626 (_PAGE_A | 627 _PAGE_P | 628 _PAGE_D | 629 _PAGE_MA_WC | 630 _PAGE_PL_0 | 631 _PAGE_AR_RW)); 632 #else 633 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 634 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 635 #endif 636 } else if (md->attribute & EFI_MEMORY_WT) { 637 #if 0 638 md->virt_addr = ia64_remap(md->phys_addr, 639 (_PAGE_A | 640 _PAGE_P | 641 _PAGE_D | 642 _PAGE_MA_WT | 643 _PAGE_PL_0 | 644 _PAGE_AR_RW)); 645 #else 646 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 647 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 648 #endif 649 } 650 } 651 } 652 653 status = efi_call_phys(__va(runtime->set_virtual_address_map), 654 ia64_boot_param->efi_memmap_size, 655 efi_desc_size, 656 ia64_boot_param->efi_memdesc_version, 657 ia64_boot_param->efi_memmap); 658 if (status != EFI_SUCCESS) { 659 printk(KERN_WARNING "warning: unable to switch EFI into " 660 "virtual mode (status=%lu)\n", status); 661 return; 662 } 663 664 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 665 666 /* 667 * Now that EFI is in virtual mode, we call the EFI functions more 668 * efficiently: 669 */ 670 efi.get_time = virt_get_time; 671 efi.set_time = virt_set_time; 672 efi.get_wakeup_time = virt_get_wakeup_time; 673 efi.set_wakeup_time = virt_set_wakeup_time; 674 efi.get_variable = virt_get_variable; 675 efi.get_next_variable = virt_get_next_variable; 676 efi.set_variable = virt_set_variable; 677 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 678 efi.reset_system = virt_reset_system; 679 } 680 681 /* 682 * Walk the EFI memory map looking for the I/O port range. There can only be 683 * one entry of this type, other I/O port ranges should be described via ACPI. 684 */ 685 u64 686 efi_get_iobase (void) 687 { 688 void *efi_map_start, *efi_map_end, *p; 689 efi_memory_desc_t *md; 690 u64 efi_desc_size; 691 692 efi_map_start = __va(ia64_boot_param->efi_memmap); 693 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 694 efi_desc_size = ia64_boot_param->efi_memdesc_size; 695 696 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 697 md = p; 698 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 699 if (md->attribute & EFI_MEMORY_UC) 700 return md->phys_addr; 701 } 702 } 703 return 0; 704 } 705 706 static struct kern_memdesc * 707 kern_memory_descriptor (unsigned long phys_addr) 708 { 709 struct kern_memdesc *md; 710 711 for (md = kern_memmap; md->start != ~0UL; md++) { 712 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) 713 return md; 714 } 715 return NULL; 716 } 717 718 static efi_memory_desc_t * 719 efi_memory_descriptor (unsigned long phys_addr) 720 { 721 void *efi_map_start, *efi_map_end, *p; 722 efi_memory_desc_t *md; 723 u64 efi_desc_size; 724 725 efi_map_start = __va(ia64_boot_param->efi_memmap); 726 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 727 efi_desc_size = ia64_boot_param->efi_memdesc_size; 728 729 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 730 md = p; 731 732 if (phys_addr - md->phys_addr < efi_md_size(md)) 733 return md; 734 } 735 return NULL; 736 } 737 738 static int 739 efi_memmap_intersects (unsigned long phys_addr, unsigned long size) 740 { 741 void *efi_map_start, *efi_map_end, *p; 742 efi_memory_desc_t *md; 743 u64 efi_desc_size; 744 unsigned long end; 745 746 efi_map_start = __va(ia64_boot_param->efi_memmap); 747 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 748 efi_desc_size = ia64_boot_param->efi_memdesc_size; 749 750 end = phys_addr + size; 751 752 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 753 md = p; 754 if (md->phys_addr < end && efi_md_end(md) > phys_addr) 755 return 1; 756 } 757 return 0; 758 } 759 760 int 761 efi_mem_type (unsigned long phys_addr) 762 { 763 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 764 765 if (md) 766 return md->type; 767 return -EINVAL; 768 } 769 770 u64 771 efi_mem_attributes (unsigned long phys_addr) 772 { 773 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 774 775 if (md) 776 return md->attribute; 777 return 0; 778 } 779 EXPORT_SYMBOL(efi_mem_attributes); 780 781 u64 782 efi_mem_attribute (unsigned long phys_addr, unsigned long size) 783 { 784 unsigned long end = phys_addr + size; 785 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); 786 u64 attr; 787 788 if (!md) 789 return 0; 790 791 /* 792 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells 793 * the kernel that firmware needs this region mapped. 794 */ 795 attr = md->attribute & ~EFI_MEMORY_RUNTIME; 796 do { 797 unsigned long md_end = efi_md_end(md); 798 799 if (end <= md_end) 800 return attr; 801 802 md = efi_memory_descriptor(md_end); 803 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) 804 return 0; 805 } while (md); 806 return 0; /* never reached */ 807 } 808 809 u64 810 kern_mem_attribute (unsigned long phys_addr, unsigned long size) 811 { 812 unsigned long end = phys_addr + size; 813 struct kern_memdesc *md; 814 u64 attr; 815 816 /* 817 * This is a hack for ioremap calls before we set up kern_memmap. 818 * Maybe we should do efi_memmap_init() earlier instead. 819 */ 820 if (!kern_memmap) { 821 attr = efi_mem_attribute(phys_addr, size); 822 if (attr & EFI_MEMORY_WB) 823 return EFI_MEMORY_WB; 824 return 0; 825 } 826 827 md = kern_memory_descriptor(phys_addr); 828 if (!md) 829 return 0; 830 831 attr = md->attribute; 832 do { 833 unsigned long md_end = kmd_end(md); 834 835 if (end <= md_end) 836 return attr; 837 838 md = kern_memory_descriptor(md_end); 839 if (!md || md->attribute != attr) 840 return 0; 841 } while (md); 842 return 0; /* never reached */ 843 } 844 EXPORT_SYMBOL(kern_mem_attribute); 845 846 int 847 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size) 848 { 849 u64 attr; 850 851 /* 852 * /dev/mem reads and writes use copy_to_user(), which implicitly 853 * uses a granule-sized kernel identity mapping. It's really 854 * only safe to do this for regions in kern_memmap. For more 855 * details, see Documentation/ia64/aliasing.txt. 856 */ 857 attr = kern_mem_attribute(phys_addr, size); 858 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 859 return 1; 860 return 0; 861 } 862 863 int 864 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) 865 { 866 unsigned long phys_addr = pfn << PAGE_SHIFT; 867 u64 attr; 868 869 attr = efi_mem_attribute(phys_addr, size); 870 871 /* 872 * /dev/mem mmap uses normal user pages, so we don't need the entire 873 * granule, but the entire region we're mapping must support the same 874 * attribute. 875 */ 876 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) 877 return 1; 878 879 /* 880 * Intel firmware doesn't tell us about all the MMIO regions, so 881 * in general we have to allow mmap requests. But if EFI *does* 882 * tell us about anything inside this region, we should deny it. 883 * The user can always map a smaller region to avoid the overlap. 884 */ 885 if (efi_memmap_intersects(phys_addr, size)) 886 return 0; 887 888 return 1; 889 } 890 891 pgprot_t 892 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, 893 pgprot_t vma_prot) 894 { 895 unsigned long phys_addr = pfn << PAGE_SHIFT; 896 u64 attr; 897 898 /* 899 * For /dev/mem mmap, we use user mappings, but if the region is 900 * in kern_memmap (and hence may be covered by a kernel mapping), 901 * we must use the same attribute as the kernel mapping. 902 */ 903 attr = kern_mem_attribute(phys_addr, size); 904 if (attr & EFI_MEMORY_WB) 905 return pgprot_cacheable(vma_prot); 906 else if (attr & EFI_MEMORY_UC) 907 return pgprot_noncached(vma_prot); 908 909 /* 910 * Some chipsets don't support UC access to memory. If 911 * WB is supported, we prefer that. 912 */ 913 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) 914 return pgprot_cacheable(vma_prot); 915 916 return pgprot_noncached(vma_prot); 917 } 918 919 int __init 920 efi_uart_console_only(void) 921 { 922 efi_status_t status; 923 char *s, name[] = "ConOut"; 924 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 925 efi_char16_t *utf16, name_utf16[32]; 926 unsigned char data[1024]; 927 unsigned long size = sizeof(data); 928 struct efi_generic_dev_path *hdr, *end_addr; 929 int uart = 0; 930 931 /* Convert to UTF-16 */ 932 utf16 = name_utf16; 933 s = name; 934 while (*s) 935 *utf16++ = *s++ & 0x7f; 936 *utf16 = 0; 937 938 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 939 if (status != EFI_SUCCESS) { 940 printk(KERN_ERR "No EFI %s variable?\n", name); 941 return 0; 942 } 943 944 hdr = (struct efi_generic_dev_path *) data; 945 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 946 while (hdr < end_addr) { 947 if (hdr->type == EFI_DEV_MSG && 948 hdr->sub_type == EFI_DEV_MSG_UART) 949 uart = 1; 950 else if (hdr->type == EFI_DEV_END_PATH || 951 hdr->type == EFI_DEV_END_PATH2) { 952 if (!uart) 953 return 0; 954 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 955 return 1; 956 uart = 0; 957 } 958 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); 959 } 960 printk(KERN_ERR "Malformed %s value\n", name); 961 return 0; 962 } 963 964 /* 965 * Look for the first granule aligned memory descriptor memory 966 * that is big enough to hold EFI memory map. Make sure this 967 * descriptor is at least granule sized so it does not get trimmed 968 */ 969 struct kern_memdesc * 970 find_memmap_space (void) 971 { 972 u64 contig_low=0, contig_high=0; 973 u64 as = 0, ae; 974 void *efi_map_start, *efi_map_end, *p, *q; 975 efi_memory_desc_t *md, *pmd = NULL, *check_md; 976 u64 space_needed, efi_desc_size; 977 unsigned long total_mem = 0; 978 979 efi_map_start = __va(ia64_boot_param->efi_memmap); 980 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 981 efi_desc_size = ia64_boot_param->efi_memdesc_size; 982 983 /* 984 * Worst case: we need 3 kernel descriptors for each efi descriptor 985 * (if every entry has a WB part in the middle, and UC head and tail), 986 * plus one for the end marker. 987 */ 988 space_needed = sizeof(kern_memdesc_t) * 989 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); 990 991 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 992 md = p; 993 if (!efi_wb(md)) { 994 continue; 995 } 996 if (pmd == NULL || !efi_wb(pmd) || 997 efi_md_end(pmd) != md->phys_addr) { 998 contig_low = GRANULEROUNDUP(md->phys_addr); 999 contig_high = efi_md_end(md); 1000 for (q = p + efi_desc_size; q < efi_map_end; 1001 q += efi_desc_size) { 1002 check_md = q; 1003 if (!efi_wb(check_md)) 1004 break; 1005 if (contig_high != check_md->phys_addr) 1006 break; 1007 contig_high = efi_md_end(check_md); 1008 } 1009 contig_high = GRANULEROUNDDOWN(contig_high); 1010 } 1011 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) 1012 continue; 1013 1014 /* Round ends inward to granule boundaries */ 1015 as = max(contig_low, md->phys_addr); 1016 ae = min(contig_high, efi_md_end(md)); 1017 1018 /* keep within max_addr= and min_addr= command line arg */ 1019 as = max(as, min_addr); 1020 ae = min(ae, max_addr); 1021 if (ae <= as) 1022 continue; 1023 1024 /* avoid going over mem= command line arg */ 1025 if (total_mem + (ae - as) > mem_limit) 1026 ae -= total_mem + (ae - as) - mem_limit; 1027 1028 if (ae <= as) 1029 continue; 1030 1031 if (ae - as > space_needed) 1032 break; 1033 } 1034 if (p >= efi_map_end) 1035 panic("Can't allocate space for kernel memory descriptors"); 1036 1037 return __va(as); 1038 } 1039 1040 /* 1041 * Walk the EFI memory map and gather all memory available for kernel 1042 * to use. We can allocate partial granules only if the unavailable 1043 * parts exist, and are WB. 1044 */ 1045 unsigned long 1046 efi_memmap_init(u64 *s, u64 *e) 1047 { 1048 struct kern_memdesc *k, *prev = NULL; 1049 u64 contig_low=0, contig_high=0; 1050 u64 as, ae, lim; 1051 void *efi_map_start, *efi_map_end, *p, *q; 1052 efi_memory_desc_t *md, *pmd = NULL, *check_md; 1053 u64 efi_desc_size; 1054 unsigned long total_mem = 0; 1055 1056 k = kern_memmap = find_memmap_space(); 1057 1058 efi_map_start = __va(ia64_boot_param->efi_memmap); 1059 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1060 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1061 1062 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 1063 md = p; 1064 if (!efi_wb(md)) { 1065 if (efi_uc(md) && 1066 (md->type == EFI_CONVENTIONAL_MEMORY || 1067 md->type == EFI_BOOT_SERVICES_DATA)) { 1068 k->attribute = EFI_MEMORY_UC; 1069 k->start = md->phys_addr; 1070 k->num_pages = md->num_pages; 1071 k++; 1072 } 1073 continue; 1074 } 1075 if (pmd == NULL || !efi_wb(pmd) || 1076 efi_md_end(pmd) != md->phys_addr) { 1077 contig_low = GRANULEROUNDUP(md->phys_addr); 1078 contig_high = efi_md_end(md); 1079 for (q = p + efi_desc_size; q < efi_map_end; 1080 q += efi_desc_size) { 1081 check_md = q; 1082 if (!efi_wb(check_md)) 1083 break; 1084 if (contig_high != check_md->phys_addr) 1085 break; 1086 contig_high = efi_md_end(check_md); 1087 } 1088 contig_high = GRANULEROUNDDOWN(contig_high); 1089 } 1090 if (!is_memory_available(md)) 1091 continue; 1092 1093 /* 1094 * Round ends inward to granule boundaries 1095 * Give trimmings to uncached allocator 1096 */ 1097 if (md->phys_addr < contig_low) { 1098 lim = min(efi_md_end(md), contig_low); 1099 if (efi_uc(md)) { 1100 if (k > kern_memmap && 1101 (k-1)->attribute == EFI_MEMORY_UC && 1102 kmd_end(k-1) == md->phys_addr) { 1103 (k-1)->num_pages += 1104 (lim - md->phys_addr) 1105 >> EFI_PAGE_SHIFT; 1106 } else { 1107 k->attribute = EFI_MEMORY_UC; 1108 k->start = md->phys_addr; 1109 k->num_pages = (lim - md->phys_addr) 1110 >> EFI_PAGE_SHIFT; 1111 k++; 1112 } 1113 } 1114 as = contig_low; 1115 } else 1116 as = md->phys_addr; 1117 1118 if (efi_md_end(md) > contig_high) { 1119 lim = max(md->phys_addr, contig_high); 1120 if (efi_uc(md)) { 1121 if (lim == md->phys_addr && k > kern_memmap && 1122 (k-1)->attribute == EFI_MEMORY_UC && 1123 kmd_end(k-1) == md->phys_addr) { 1124 (k-1)->num_pages += md->num_pages; 1125 } else { 1126 k->attribute = EFI_MEMORY_UC; 1127 k->start = lim; 1128 k->num_pages = (efi_md_end(md) - lim) 1129 >> EFI_PAGE_SHIFT; 1130 k++; 1131 } 1132 } 1133 ae = contig_high; 1134 } else 1135 ae = efi_md_end(md); 1136 1137 /* keep within max_addr= and min_addr= command line arg */ 1138 as = max(as, min_addr); 1139 ae = min(ae, max_addr); 1140 if (ae <= as) 1141 continue; 1142 1143 /* avoid going over mem= command line arg */ 1144 if (total_mem + (ae - as) > mem_limit) 1145 ae -= total_mem + (ae - as) - mem_limit; 1146 1147 if (ae <= as) 1148 continue; 1149 if (prev && kmd_end(prev) == md->phys_addr) { 1150 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; 1151 total_mem += ae - as; 1152 continue; 1153 } 1154 k->attribute = EFI_MEMORY_WB; 1155 k->start = as; 1156 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; 1157 total_mem += ae - as; 1158 prev = k++; 1159 } 1160 k->start = ~0L; /* end-marker */ 1161 1162 /* reserve the memory we are using for kern_memmap */ 1163 *s = (u64)kern_memmap; 1164 *e = (u64)++k; 1165 1166 return total_mem; 1167 } 1168 1169 void 1170 efi_initialize_iomem_resources(struct resource *code_resource, 1171 struct resource *data_resource, 1172 struct resource *bss_resource) 1173 { 1174 struct resource *res; 1175 void *efi_map_start, *efi_map_end, *p; 1176 efi_memory_desc_t *md; 1177 u64 efi_desc_size; 1178 char *name; 1179 unsigned long flags, desc; 1180 1181 efi_map_start = __va(ia64_boot_param->efi_memmap); 1182 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1183 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1184 1185 res = NULL; 1186 1187 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1188 md = p; 1189 1190 if (md->num_pages == 0) /* should not happen */ 1191 continue; 1192 1193 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 1194 desc = IORES_DESC_NONE; 1195 1196 switch (md->type) { 1197 1198 case EFI_MEMORY_MAPPED_IO: 1199 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 1200 continue; 1201 1202 case EFI_LOADER_CODE: 1203 case EFI_LOADER_DATA: 1204 case EFI_BOOT_SERVICES_DATA: 1205 case EFI_BOOT_SERVICES_CODE: 1206 case EFI_CONVENTIONAL_MEMORY: 1207 if (md->attribute & EFI_MEMORY_WP) { 1208 name = "System ROM"; 1209 flags |= IORESOURCE_READONLY; 1210 } else if (md->attribute == EFI_MEMORY_UC) { 1211 name = "Uncached RAM"; 1212 } else { 1213 name = "System RAM"; 1214 flags |= IORESOURCE_SYSRAM; 1215 } 1216 break; 1217 1218 case EFI_ACPI_MEMORY_NVS: 1219 name = "ACPI Non-volatile Storage"; 1220 desc = IORES_DESC_ACPI_NV_STORAGE; 1221 break; 1222 1223 case EFI_UNUSABLE_MEMORY: 1224 name = "reserved"; 1225 flags |= IORESOURCE_DISABLED; 1226 break; 1227 1228 case EFI_PERSISTENT_MEMORY: 1229 name = "Persistent Memory"; 1230 desc = IORES_DESC_PERSISTENT_MEMORY; 1231 break; 1232 1233 case EFI_RESERVED_TYPE: 1234 case EFI_RUNTIME_SERVICES_CODE: 1235 case EFI_RUNTIME_SERVICES_DATA: 1236 case EFI_ACPI_RECLAIM_MEMORY: 1237 default: 1238 name = "reserved"; 1239 break; 1240 } 1241 1242 if ((res = kzalloc(sizeof(struct resource), 1243 GFP_KERNEL)) == NULL) { 1244 printk(KERN_ERR 1245 "failed to allocate resource for iomem\n"); 1246 return; 1247 } 1248 1249 res->name = name; 1250 res->start = md->phys_addr; 1251 res->end = md->phys_addr + efi_md_size(md) - 1; 1252 res->flags = flags; 1253 res->desc = desc; 1254 1255 if (insert_resource(&iomem_resource, res) < 0) 1256 kfree(res); 1257 else { 1258 /* 1259 * We don't know which region contains 1260 * kernel data so we try it repeatedly and 1261 * let the resource manager test it. 1262 */ 1263 insert_resource(res, code_resource); 1264 insert_resource(res, data_resource); 1265 insert_resource(res, bss_resource); 1266 #ifdef CONFIG_KEXEC 1267 insert_resource(res, &efi_memmap_res); 1268 insert_resource(res, &boot_param_res); 1269 if (crashk_res.end > crashk_res.start) 1270 insert_resource(res, &crashk_res); 1271 #endif 1272 } 1273 } 1274 } 1275 1276 #ifdef CONFIG_KEXEC 1277 /* find a block of memory aligned to 64M exclude reserved regions 1278 rsvd_regions are sorted 1279 */ 1280 unsigned long __init 1281 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) 1282 { 1283 int i; 1284 u64 start, end; 1285 u64 alignment = 1UL << _PAGE_SIZE_64M; 1286 void *efi_map_start, *efi_map_end, *p; 1287 efi_memory_desc_t *md; 1288 u64 efi_desc_size; 1289 1290 efi_map_start = __va(ia64_boot_param->efi_memmap); 1291 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1292 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1293 1294 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1295 md = p; 1296 if (!efi_wb(md)) 1297 continue; 1298 start = ALIGN(md->phys_addr, alignment); 1299 end = efi_md_end(md); 1300 for (i = 0; i < n; i++) { 1301 if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { 1302 if (__pa(r[i].start) > start + size) 1303 return start; 1304 start = ALIGN(__pa(r[i].end), alignment); 1305 if (i < n-1 && 1306 __pa(r[i+1].start) < start + size) 1307 continue; 1308 else 1309 break; 1310 } 1311 } 1312 if (end > start + size) 1313 return start; 1314 } 1315 1316 printk(KERN_WARNING 1317 "Cannot reserve 0x%lx byte of memory for crashdump\n", size); 1318 return ~0UL; 1319 } 1320 #endif 1321 1322 #ifdef CONFIG_CRASH_DUMP 1323 /* locate the size find a the descriptor at a certain address */ 1324 unsigned long __init 1325 vmcore_find_descriptor_size (unsigned long address) 1326 { 1327 void *efi_map_start, *efi_map_end, *p; 1328 efi_memory_desc_t *md; 1329 u64 efi_desc_size; 1330 unsigned long ret = 0; 1331 1332 efi_map_start = __va(ia64_boot_param->efi_memmap); 1333 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 1334 efi_desc_size = ia64_boot_param->efi_memdesc_size; 1335 1336 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 1337 md = p; 1338 if (efi_wb(md) && md->type == EFI_LOADER_DATA 1339 && md->phys_addr == address) { 1340 ret = efi_md_size(md); 1341 break; 1342 } 1343 } 1344 1345 if (ret == 0) 1346 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); 1347 1348 return ret; 1349 } 1350 #endif 1351