xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision 22246614)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *	Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *	Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *	Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33 
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40 #include <asm/tlbflush.h>
41 
42 #define EFI_DEBUG	0
43 
44 extern efi_status_t efi_call_phys (void *, ...);
45 
46 struct efi efi;
47 EXPORT_SYMBOL(efi);
48 static efi_runtime_services_t *runtime;
49 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
50 
51 #define efi_call_virt(f, args...)	(*(f))(args)
52 
53 #define STUB_GET_TIME(prefix, adjust_arg)				       \
54 static efi_status_t							       \
55 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
56 {									       \
57 	struct ia64_fpreg fr[6];					       \
58 	efi_time_cap_t *atc = NULL;					       \
59 	efi_status_t ret;						       \
60 									       \
61 	if (tc)								       \
62 		atc = adjust_arg(tc);					       \
63 	ia64_save_scratch_fpregs(fr);					       \
64 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
65 				adjust_arg(tm), atc);			       \
66 	ia64_load_scratch_fpregs(fr);					       \
67 	return ret;							       \
68 }
69 
70 #define STUB_SET_TIME(prefix, adjust_arg)				       \
71 static efi_status_t							       \
72 prefix##_set_time (efi_time_t *tm)					       \
73 {									       \
74 	struct ia64_fpreg fr[6];					       \
75 	efi_status_t ret;						       \
76 									       \
77 	ia64_save_scratch_fpregs(fr);					       \
78 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
79 				adjust_arg(tm));			       \
80 	ia64_load_scratch_fpregs(fr);					       \
81 	return ret;							       \
82 }
83 
84 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
85 static efi_status_t							       \
86 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
87 			  efi_time_t *tm)				       \
88 {									       \
89 	struct ia64_fpreg fr[6];					       \
90 	efi_status_t ret;						       \
91 									       \
92 	ia64_save_scratch_fpregs(fr);					       \
93 	ret = efi_call_##prefix(					       \
94 		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
95 		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
96 	ia64_load_scratch_fpregs(fr);					       \
97 	return ret;							       \
98 }
99 
100 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
101 static efi_status_t							       \
102 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
103 {									       \
104 	struct ia64_fpreg fr[6];					       \
105 	efi_time_t *atm = NULL;						       \
106 	efi_status_t ret;						       \
107 									       \
108 	if (tm)								       \
109 		atm = adjust_arg(tm);					       \
110 	ia64_save_scratch_fpregs(fr);					       \
111 	ret = efi_call_##prefix(					       \
112 		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
113 		enabled, atm);						       \
114 	ia64_load_scratch_fpregs(fr);					       \
115 	return ret;							       \
116 }
117 
118 #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
119 static efi_status_t							       \
120 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
121 		       unsigned long *data_size, void *data)		       \
122 {									       \
123 	struct ia64_fpreg fr[6];					       \
124 	u32 *aattr = NULL;						       \
125 	efi_status_t ret;						       \
126 									       \
127 	if (attr)							       \
128 		aattr = adjust_arg(attr);				       \
129 	ia64_save_scratch_fpregs(fr);					       \
130 	ret = efi_call_##prefix(					       \
131 		(efi_get_variable_t *) __va(runtime->get_variable),	       \
132 		adjust_arg(name), adjust_arg(vendor), aattr,		       \
133 		adjust_arg(data_size), adjust_arg(data));		       \
134 	ia64_load_scratch_fpregs(fr);					       \
135 	return ret;							       \
136 }
137 
138 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
139 static efi_status_t							       \
140 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
141 			    efi_guid_t *vendor)				       \
142 {									       \
143 	struct ia64_fpreg fr[6];					       \
144 	efi_status_t ret;						       \
145 									       \
146 	ia64_save_scratch_fpregs(fr);					       \
147 	ret = efi_call_##prefix(					       \
148 		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
149 		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
150 	ia64_load_scratch_fpregs(fr);					       \
151 	return ret;							       \
152 }
153 
154 #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
155 static efi_status_t							       \
156 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
157 		       unsigned long attr, unsigned long data_size,	       \
158 		       void *data)					       \
159 {									       \
160 	struct ia64_fpreg fr[6];					       \
161 	efi_status_t ret;						       \
162 									       \
163 	ia64_save_scratch_fpregs(fr);					       \
164 	ret = efi_call_##prefix(					       \
165 		(efi_set_variable_t *) __va(runtime->set_variable),	       \
166 		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
167 		adjust_arg(data));					       \
168 	ia64_load_scratch_fpregs(fr);					       \
169 	return ret;							       \
170 }
171 
172 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
173 static efi_status_t							       \
174 prefix##_get_next_high_mono_count (u32 *count)				       \
175 {									       \
176 	struct ia64_fpreg fr[6];					       \
177 	efi_status_t ret;						       \
178 									       \
179 	ia64_save_scratch_fpregs(fr);					       \
180 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
181 				__va(runtime->get_next_high_mono_count),       \
182 				adjust_arg(count));			       \
183 	ia64_load_scratch_fpregs(fr);					       \
184 	return ret;							       \
185 }
186 
187 #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
188 static void								       \
189 prefix##_reset_system (int reset_type, efi_status_t status,		       \
190 		       unsigned long data_size, efi_char16_t *data)	       \
191 {									       \
192 	struct ia64_fpreg fr[6];					       \
193 	efi_char16_t *adata = NULL;					       \
194 									       \
195 	if (data)							       \
196 		adata = adjust_arg(data);				       \
197 									       \
198 	ia64_save_scratch_fpregs(fr);					       \
199 	efi_call_##prefix(						       \
200 		(efi_reset_system_t *) __va(runtime->reset_system),	       \
201 		reset_type, status, data_size, adata);			       \
202 	/* should not return, but just in case... */			       \
203 	ia64_load_scratch_fpregs(fr);					       \
204 }
205 
206 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
207 
208 STUB_GET_TIME(phys, phys_ptr)
209 STUB_SET_TIME(phys, phys_ptr)
210 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
212 STUB_GET_VARIABLE(phys, phys_ptr)
213 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
214 STUB_SET_VARIABLE(phys, phys_ptr)
215 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
216 STUB_RESET_SYSTEM(phys, phys_ptr)
217 
218 #define id(arg)	arg
219 
220 STUB_GET_TIME(virt, id)
221 STUB_SET_TIME(virt, id)
222 STUB_GET_WAKEUP_TIME(virt, id)
223 STUB_SET_WAKEUP_TIME(virt, id)
224 STUB_GET_VARIABLE(virt, id)
225 STUB_GET_NEXT_VARIABLE(virt, id)
226 STUB_SET_VARIABLE(virt, id)
227 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
228 STUB_RESET_SYSTEM(virt, id)
229 
230 void
231 efi_gettimeofday (struct timespec *ts)
232 {
233 	efi_time_t tm;
234 
235 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
236 		memset(ts, 0, sizeof(*ts));
237 		return;
238 	}
239 
240 	ts->tv_sec = mktime(tm.year, tm.month, tm.day,
241 			    tm.hour, tm.minute, tm.second);
242 	ts->tv_nsec = tm.nanosecond;
243 }
244 
245 static int
246 is_memory_available (efi_memory_desc_t *md)
247 {
248 	if (!(md->attribute & EFI_MEMORY_WB))
249 		return 0;
250 
251 	switch (md->type) {
252 	      case EFI_LOADER_CODE:
253 	      case EFI_LOADER_DATA:
254 	      case EFI_BOOT_SERVICES_CODE:
255 	      case EFI_BOOT_SERVICES_DATA:
256 	      case EFI_CONVENTIONAL_MEMORY:
257 		return 1;
258 	}
259 	return 0;
260 }
261 
262 typedef struct kern_memdesc {
263 	u64 attribute;
264 	u64 start;
265 	u64 num_pages;
266 } kern_memdesc_t;
267 
268 static kern_memdesc_t *kern_memmap;
269 
270 #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
271 
272 static inline u64
273 kmd_end(kern_memdesc_t *kmd)
274 {
275 	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
276 }
277 
278 static inline u64
279 efi_md_end(efi_memory_desc_t *md)
280 {
281 	return (md->phys_addr + efi_md_size(md));
282 }
283 
284 static inline int
285 efi_wb(efi_memory_desc_t *md)
286 {
287 	return (md->attribute & EFI_MEMORY_WB);
288 }
289 
290 static inline int
291 efi_uc(efi_memory_desc_t *md)
292 {
293 	return (md->attribute & EFI_MEMORY_UC);
294 }
295 
296 static void
297 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
298 {
299 	kern_memdesc_t *k;
300 	u64 start, end, voff;
301 
302 	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
303 	for (k = kern_memmap; k->start != ~0UL; k++) {
304 		if (k->attribute != attr)
305 			continue;
306 		start = PAGE_ALIGN(k->start);
307 		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
308 		if (start < end)
309 			if ((*callback)(start + voff, end + voff, arg) < 0)
310 				return;
311 	}
312 }
313 
314 /*
315  * Walk the EFI memory map and call CALLBACK once for each EFI memory
316  * descriptor that has memory that is available for OS use.
317  */
318 void
319 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
320 {
321 	walk(callback, arg, EFI_MEMORY_WB);
322 }
323 
324 /*
325  * Walk the EFI memory map and call CALLBACK once for each EFI memory
326  * descriptor that has memory that is available for uncached allocator.
327  */
328 void
329 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
330 {
331 	walk(callback, arg, EFI_MEMORY_UC);
332 }
333 
334 /*
335  * Look for the PAL_CODE region reported by EFI and map it using an
336  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
337  * Abstraction Layer chapter 11 in ADAG
338  */
339 void *
340 efi_get_pal_addr (void)
341 {
342 	void *efi_map_start, *efi_map_end, *p;
343 	efi_memory_desc_t *md;
344 	u64 efi_desc_size;
345 	int pal_code_count = 0;
346 	u64 vaddr, mask;
347 
348 	efi_map_start = __va(ia64_boot_param->efi_memmap);
349 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
350 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
351 
352 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
353 		md = p;
354 		if (md->type != EFI_PAL_CODE)
355 			continue;
356 
357 		if (++pal_code_count > 1) {
358 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
359 			       "dropped @ %lx\n", md->phys_addr);
360 			continue;
361 		}
362 		/*
363 		 * The only ITLB entry in region 7 that is used is the one
364 		 * installed by __start().  That entry covers a 64MB range.
365 		 */
366 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
367 		vaddr = PAGE_OFFSET + md->phys_addr;
368 
369 		/*
370 		 * We must check that the PAL mapping won't overlap with the
371 		 * kernel mapping.
372 		 *
373 		 * PAL code is guaranteed to be aligned on a power of 2 between
374 		 * 4k and 256KB and that only one ITR is needed to map it. This
375 		 * implies that the PAL code is always aligned on its size,
376 		 * i.e., the closest matching page size supported by the TLB.
377 		 * Therefore PAL code is guaranteed never to cross a 64MB unless
378 		 * it is bigger than 64MB (very unlikely!).  So for now the
379 		 * following test is enough to determine whether or not we need
380 		 * a dedicated ITR for the PAL code.
381 		 */
382 		if ((vaddr & mask) == (KERNEL_START & mask)) {
383 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
384 			       __func__);
385 			continue;
386 		}
387 
388 		if (efi_md_size(md) > IA64_GRANULE_SIZE)
389 			panic("Whoa!  PAL code size bigger than a granule!");
390 
391 #if EFI_DEBUG
392 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
393 
394 		printk(KERN_INFO "CPU %d: mapping PAL code "
395                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
396                        smp_processor_id(), md->phys_addr,
397                        md->phys_addr + efi_md_size(md),
398                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
399 #endif
400 		return __va(md->phys_addr);
401 	}
402 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
403 	       __func__);
404 	return NULL;
405 }
406 
407 
408 static u8 __init palo_checksum(u8 *buffer, u32 length)
409 {
410 	u8 sum = 0;
411 	u8 *end = buffer + length;
412 
413 	while (buffer < end)
414 		sum = (u8) (sum + *(buffer++));
415 
416 	return sum;
417 }
418 
419 /*
420  * Parse and handle PALO table which is published at:
421  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
422  */
423 static void __init handle_palo(unsigned long palo_phys)
424 {
425 	struct palo_table *palo = __va(palo_phys);
426 	u8  checksum;
427 
428 	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
429 		printk(KERN_INFO "PALO signature incorrect.\n");
430 		return;
431 	}
432 
433 	checksum = palo_checksum((u8 *)palo, palo->length);
434 	if (checksum) {
435 		printk(KERN_INFO "PALO checksum incorrect.\n");
436 		return;
437 	}
438 
439 	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
440 }
441 
442 void
443 efi_map_pal_code (void)
444 {
445 	void *pal_vaddr = efi_get_pal_addr ();
446 	u64 psr;
447 
448 	if (!pal_vaddr)
449 		return;
450 
451 	/*
452 	 * Cannot write to CRx with PSR.ic=1
453 	 */
454 	psr = ia64_clear_ic();
455 	ia64_itr(0x1, IA64_TR_PALCODE,
456 		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
457 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
458 		 IA64_GRANULE_SHIFT);
459 	ia64_set_psr(psr);		/* restore psr */
460 }
461 
462 void __init
463 efi_init (void)
464 {
465 	void *efi_map_start, *efi_map_end;
466 	efi_config_table_t *config_tables;
467 	efi_char16_t *c16;
468 	u64 efi_desc_size;
469 	char *cp, vendor[100] = "unknown";
470 	int i;
471 	unsigned long palo_phys;
472 
473 	/*
474 	 * It's too early to be able to use the standard kernel command line
475 	 * support...
476 	 */
477 	for (cp = boot_command_line; *cp; ) {
478 		if (memcmp(cp, "mem=", 4) == 0) {
479 			mem_limit = memparse(cp + 4, &cp);
480 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
481 			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
482 		} else if (memcmp(cp, "min_addr=", 9) == 0) {
483 			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
484 		} else {
485 			while (*cp != ' ' && *cp)
486 				++cp;
487 			while (*cp == ' ')
488 				++cp;
489 		}
490 	}
491 	if (min_addr != 0UL)
492 		printk(KERN_INFO "Ignoring memory below %luMB\n",
493 		       min_addr >> 20);
494 	if (max_addr != ~0UL)
495 		printk(KERN_INFO "Ignoring memory above %luMB\n",
496 		       max_addr >> 20);
497 
498 	efi.systab = __va(ia64_boot_param->efi_systab);
499 
500 	/*
501 	 * Verify the EFI Table
502 	 */
503 	if (efi.systab == NULL)
504 		panic("Whoa! Can't find EFI system table.\n");
505 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
506 		panic("Whoa! EFI system table signature incorrect\n");
507 	if ((efi.systab->hdr.revision >> 16) == 0)
508 		printk(KERN_WARNING "Warning: EFI system table version "
509 		       "%d.%02d, expected 1.00 or greater\n",
510 		       efi.systab->hdr.revision >> 16,
511 		       efi.systab->hdr.revision & 0xffff);
512 
513 	config_tables = __va(efi.systab->tables);
514 
515 	/* Show what we know for posterity */
516 	c16 = __va(efi.systab->fw_vendor);
517 	if (c16) {
518 		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
519 			vendor[i] = *c16++;
520 		vendor[i] = '\0';
521 	}
522 
523 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
524 	       efi.systab->hdr.revision >> 16,
525 	       efi.systab->hdr.revision & 0xffff, vendor);
526 
527 	efi.mps        = EFI_INVALID_TABLE_ADDR;
528 	efi.acpi       = EFI_INVALID_TABLE_ADDR;
529 	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
530 	efi.smbios     = EFI_INVALID_TABLE_ADDR;
531 	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
532 	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
533 	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
534 	efi.uga        = EFI_INVALID_TABLE_ADDR;
535 
536 	palo_phys      = EFI_INVALID_TABLE_ADDR;
537 
538 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
539 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
540 			efi.mps = config_tables[i].table;
541 			printk(" MPS=0x%lx", config_tables[i].table);
542 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
543 			efi.acpi20 = config_tables[i].table;
544 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
545 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
546 			efi.acpi = config_tables[i].table;
547 			printk(" ACPI=0x%lx", config_tables[i].table);
548 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
549 			efi.smbios = config_tables[i].table;
550 			printk(" SMBIOS=0x%lx", config_tables[i].table);
551 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
552 			efi.sal_systab = config_tables[i].table;
553 			printk(" SALsystab=0x%lx", config_tables[i].table);
554 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
555 			efi.hcdp = config_tables[i].table;
556 			printk(" HCDP=0x%lx", config_tables[i].table);
557 		} else if (efi_guidcmp(config_tables[i].guid,
558 			 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
559 			palo_phys = config_tables[i].table;
560 			printk(" PALO=0x%lx", config_tables[i].table);
561 		}
562 	}
563 	printk("\n");
564 
565 	if (palo_phys != EFI_INVALID_TABLE_ADDR)
566 		handle_palo(palo_phys);
567 
568 	runtime = __va(efi.systab->runtime);
569 	efi.get_time = phys_get_time;
570 	efi.set_time = phys_set_time;
571 	efi.get_wakeup_time = phys_get_wakeup_time;
572 	efi.set_wakeup_time = phys_set_wakeup_time;
573 	efi.get_variable = phys_get_variable;
574 	efi.get_next_variable = phys_get_next_variable;
575 	efi.set_variable = phys_set_variable;
576 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
577 	efi.reset_system = phys_reset_system;
578 
579 	efi_map_start = __va(ia64_boot_param->efi_memmap);
580 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
581 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
582 
583 #if EFI_DEBUG
584 	/* print EFI memory map: */
585 	{
586 		efi_memory_desc_t *md;
587 		void *p;
588 
589 		for (i = 0, p = efi_map_start; p < efi_map_end;
590 		     ++i, p += efi_desc_size)
591 		{
592 			const char *unit;
593 			unsigned long size;
594 
595 			md = p;
596 			size = md->num_pages << EFI_PAGE_SHIFT;
597 
598 			if ((size >> 40) > 0) {
599 				size >>= 40;
600 				unit = "TB";
601 			} else if ((size >> 30) > 0) {
602 				size >>= 30;
603 				unit = "GB";
604 			} else if ((size >> 20) > 0) {
605 				size >>= 20;
606 				unit = "MB";
607 			} else {
608 				size >>= 10;
609 				unit = "KB";
610 			}
611 
612 			printk("mem%02d: type=%2u, attr=0x%016lx, "
613 			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
614 			       i, md->type, md->attribute, md->phys_addr,
615 			       md->phys_addr + efi_md_size(md), size, unit);
616 		}
617 	}
618 #endif
619 
620 	efi_map_pal_code();
621 	efi_enter_virtual_mode();
622 }
623 
624 void
625 efi_enter_virtual_mode (void)
626 {
627 	void *efi_map_start, *efi_map_end, *p;
628 	efi_memory_desc_t *md;
629 	efi_status_t status;
630 	u64 efi_desc_size;
631 
632 	efi_map_start = __va(ia64_boot_param->efi_memmap);
633 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
634 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
635 
636 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
637 		md = p;
638 		if (md->attribute & EFI_MEMORY_RUNTIME) {
639 			/*
640 			 * Some descriptors have multiple bits set, so the
641 			 * order of the tests is relevant.
642 			 */
643 			if (md->attribute & EFI_MEMORY_WB) {
644 				md->virt_addr = (u64) __va(md->phys_addr);
645 			} else if (md->attribute & EFI_MEMORY_UC) {
646 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
647 			} else if (md->attribute & EFI_MEMORY_WC) {
648 #if 0
649 				md->virt_addr = ia64_remap(md->phys_addr,
650 							   (_PAGE_A |
651 							    _PAGE_P |
652 							    _PAGE_D |
653 							    _PAGE_MA_WC |
654 							    _PAGE_PL_0 |
655 							    _PAGE_AR_RW));
656 #else
657 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
658 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
659 #endif
660 			} else if (md->attribute & EFI_MEMORY_WT) {
661 #if 0
662 				md->virt_addr = ia64_remap(md->phys_addr,
663 							   (_PAGE_A |
664 							    _PAGE_P |
665 							    _PAGE_D |
666 							    _PAGE_MA_WT |
667 							    _PAGE_PL_0 |
668 							    _PAGE_AR_RW));
669 #else
670 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
671 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
672 #endif
673 			}
674 		}
675 	}
676 
677 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
678 			       ia64_boot_param->efi_memmap_size,
679 			       efi_desc_size,
680 			       ia64_boot_param->efi_memdesc_version,
681 			       ia64_boot_param->efi_memmap);
682 	if (status != EFI_SUCCESS) {
683 		printk(KERN_WARNING "warning: unable to switch EFI into "
684 		       "virtual mode (status=%lu)\n", status);
685 		return;
686 	}
687 
688 	/*
689 	 * Now that EFI is in virtual mode, we call the EFI functions more
690 	 * efficiently:
691 	 */
692 	efi.get_time = virt_get_time;
693 	efi.set_time = virt_set_time;
694 	efi.get_wakeup_time = virt_get_wakeup_time;
695 	efi.set_wakeup_time = virt_set_wakeup_time;
696 	efi.get_variable = virt_get_variable;
697 	efi.get_next_variable = virt_get_next_variable;
698 	efi.set_variable = virt_set_variable;
699 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
700 	efi.reset_system = virt_reset_system;
701 }
702 
703 /*
704  * Walk the EFI memory map looking for the I/O port range.  There can only be
705  * one entry of this type, other I/O port ranges should be described via ACPI.
706  */
707 u64
708 efi_get_iobase (void)
709 {
710 	void *efi_map_start, *efi_map_end, *p;
711 	efi_memory_desc_t *md;
712 	u64 efi_desc_size;
713 
714 	efi_map_start = __va(ia64_boot_param->efi_memmap);
715 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
716 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
717 
718 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
719 		md = p;
720 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
721 			if (md->attribute & EFI_MEMORY_UC)
722 				return md->phys_addr;
723 		}
724 	}
725 	return 0;
726 }
727 
728 static struct kern_memdesc *
729 kern_memory_descriptor (unsigned long phys_addr)
730 {
731 	struct kern_memdesc *md;
732 
733 	for (md = kern_memmap; md->start != ~0UL; md++) {
734 		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
735 			 return md;
736 	}
737 	return NULL;
738 }
739 
740 static efi_memory_desc_t *
741 efi_memory_descriptor (unsigned long phys_addr)
742 {
743 	void *efi_map_start, *efi_map_end, *p;
744 	efi_memory_desc_t *md;
745 	u64 efi_desc_size;
746 
747 	efi_map_start = __va(ia64_boot_param->efi_memmap);
748 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
749 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
750 
751 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
752 		md = p;
753 
754 		if (phys_addr - md->phys_addr < efi_md_size(md))
755 			 return md;
756 	}
757 	return NULL;
758 }
759 
760 static int
761 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
762 {
763 	void *efi_map_start, *efi_map_end, *p;
764 	efi_memory_desc_t *md;
765 	u64 efi_desc_size;
766 	unsigned long end;
767 
768 	efi_map_start = __va(ia64_boot_param->efi_memmap);
769 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
770 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
771 
772 	end = phys_addr + size;
773 
774 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
775 		md = p;
776 		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
777 			return 1;
778 	}
779 	return 0;
780 }
781 
782 u32
783 efi_mem_type (unsigned long phys_addr)
784 {
785 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
786 
787 	if (md)
788 		return md->type;
789 	return 0;
790 }
791 
792 u64
793 efi_mem_attributes (unsigned long phys_addr)
794 {
795 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
796 
797 	if (md)
798 		return md->attribute;
799 	return 0;
800 }
801 EXPORT_SYMBOL(efi_mem_attributes);
802 
803 u64
804 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
805 {
806 	unsigned long end = phys_addr + size;
807 	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
808 	u64 attr;
809 
810 	if (!md)
811 		return 0;
812 
813 	/*
814 	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
815 	 * the kernel that firmware needs this region mapped.
816 	 */
817 	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
818 	do {
819 		unsigned long md_end = efi_md_end(md);
820 
821 		if (end <= md_end)
822 			return attr;
823 
824 		md = efi_memory_descriptor(md_end);
825 		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
826 			return 0;
827 	} while (md);
828 	return 0;	/* never reached */
829 }
830 
831 u64
832 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
833 {
834 	unsigned long end = phys_addr + size;
835 	struct kern_memdesc *md;
836 	u64 attr;
837 
838 	/*
839 	 * This is a hack for ioremap calls before we set up kern_memmap.
840 	 * Maybe we should do efi_memmap_init() earlier instead.
841 	 */
842 	if (!kern_memmap) {
843 		attr = efi_mem_attribute(phys_addr, size);
844 		if (attr & EFI_MEMORY_WB)
845 			return EFI_MEMORY_WB;
846 		return 0;
847 	}
848 
849 	md = kern_memory_descriptor(phys_addr);
850 	if (!md)
851 		return 0;
852 
853 	attr = md->attribute;
854 	do {
855 		unsigned long md_end = kmd_end(md);
856 
857 		if (end <= md_end)
858 			return attr;
859 
860 		md = kern_memory_descriptor(md_end);
861 		if (!md || md->attribute != attr)
862 			return 0;
863 	} while (md);
864 	return 0;	/* never reached */
865 }
866 EXPORT_SYMBOL(kern_mem_attribute);
867 
868 int
869 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
870 {
871 	u64 attr;
872 
873 	/*
874 	 * /dev/mem reads and writes use copy_to_user(), which implicitly
875 	 * uses a granule-sized kernel identity mapping.  It's really
876 	 * only safe to do this for regions in kern_memmap.  For more
877 	 * details, see Documentation/ia64/aliasing.txt.
878 	 */
879 	attr = kern_mem_attribute(phys_addr, size);
880 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
881 		return 1;
882 	return 0;
883 }
884 
885 int
886 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
887 {
888 	unsigned long phys_addr = pfn << PAGE_SHIFT;
889 	u64 attr;
890 
891 	attr = efi_mem_attribute(phys_addr, size);
892 
893 	/*
894 	 * /dev/mem mmap uses normal user pages, so we don't need the entire
895 	 * granule, but the entire region we're mapping must support the same
896 	 * attribute.
897 	 */
898 	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
899 		return 1;
900 
901 	/*
902 	 * Intel firmware doesn't tell us about all the MMIO regions, so
903 	 * in general we have to allow mmap requests.  But if EFI *does*
904 	 * tell us about anything inside this region, we should deny it.
905 	 * The user can always map a smaller region to avoid the overlap.
906 	 */
907 	if (efi_memmap_intersects(phys_addr, size))
908 		return 0;
909 
910 	return 1;
911 }
912 
913 pgprot_t
914 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
915 		     pgprot_t vma_prot)
916 {
917 	unsigned long phys_addr = pfn << PAGE_SHIFT;
918 	u64 attr;
919 
920 	/*
921 	 * For /dev/mem mmap, we use user mappings, but if the region is
922 	 * in kern_memmap (and hence may be covered by a kernel mapping),
923 	 * we must use the same attribute as the kernel mapping.
924 	 */
925 	attr = kern_mem_attribute(phys_addr, size);
926 	if (attr & EFI_MEMORY_WB)
927 		return pgprot_cacheable(vma_prot);
928 	else if (attr & EFI_MEMORY_UC)
929 		return pgprot_noncached(vma_prot);
930 
931 	/*
932 	 * Some chipsets don't support UC access to memory.  If
933 	 * WB is supported, we prefer that.
934 	 */
935 	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
936 		return pgprot_cacheable(vma_prot);
937 
938 	return pgprot_noncached(vma_prot);
939 }
940 
941 int __init
942 efi_uart_console_only(void)
943 {
944 	efi_status_t status;
945 	char *s, name[] = "ConOut";
946 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
947 	efi_char16_t *utf16, name_utf16[32];
948 	unsigned char data[1024];
949 	unsigned long size = sizeof(data);
950 	struct efi_generic_dev_path *hdr, *end_addr;
951 	int uart = 0;
952 
953 	/* Convert to UTF-16 */
954 	utf16 = name_utf16;
955 	s = name;
956 	while (*s)
957 		*utf16++ = *s++ & 0x7f;
958 	*utf16 = 0;
959 
960 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
961 	if (status != EFI_SUCCESS) {
962 		printk(KERN_ERR "No EFI %s variable?\n", name);
963 		return 0;
964 	}
965 
966 	hdr = (struct efi_generic_dev_path *) data;
967 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
968 	while (hdr < end_addr) {
969 		if (hdr->type == EFI_DEV_MSG &&
970 		    hdr->sub_type == EFI_DEV_MSG_UART)
971 			uart = 1;
972 		else if (hdr->type == EFI_DEV_END_PATH ||
973 			  hdr->type == EFI_DEV_END_PATH2) {
974 			if (!uart)
975 				return 0;
976 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
977 				return 1;
978 			uart = 0;
979 		}
980 		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
981 	}
982 	printk(KERN_ERR "Malformed %s value\n", name);
983 	return 0;
984 }
985 
986 /*
987  * Look for the first granule aligned memory descriptor memory
988  * that is big enough to hold EFI memory map. Make sure this
989  * descriptor is atleast granule sized so it does not get trimmed
990  */
991 struct kern_memdesc *
992 find_memmap_space (void)
993 {
994 	u64	contig_low=0, contig_high=0;
995 	u64	as = 0, ae;
996 	void *efi_map_start, *efi_map_end, *p, *q;
997 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
998 	u64	space_needed, efi_desc_size;
999 	unsigned long total_mem = 0;
1000 
1001 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1002 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1003 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1004 
1005 	/*
1006 	 * Worst case: we need 3 kernel descriptors for each efi descriptor
1007 	 * (if every entry has a WB part in the middle, and UC head and tail),
1008 	 * plus one for the end marker.
1009 	 */
1010 	space_needed = sizeof(kern_memdesc_t) *
1011 		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1012 
1013 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1014 		md = p;
1015 		if (!efi_wb(md)) {
1016 			continue;
1017 		}
1018 		if (pmd == NULL || !efi_wb(pmd) ||
1019 		    efi_md_end(pmd) != md->phys_addr) {
1020 			contig_low = GRANULEROUNDUP(md->phys_addr);
1021 			contig_high = efi_md_end(md);
1022 			for (q = p + efi_desc_size; q < efi_map_end;
1023 			     q += efi_desc_size) {
1024 				check_md = q;
1025 				if (!efi_wb(check_md))
1026 					break;
1027 				if (contig_high != check_md->phys_addr)
1028 					break;
1029 				contig_high = efi_md_end(check_md);
1030 			}
1031 			contig_high = GRANULEROUNDDOWN(contig_high);
1032 		}
1033 		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1034 			continue;
1035 
1036 		/* Round ends inward to granule boundaries */
1037 		as = max(contig_low, md->phys_addr);
1038 		ae = min(contig_high, efi_md_end(md));
1039 
1040 		/* keep within max_addr= and min_addr= command line arg */
1041 		as = max(as, min_addr);
1042 		ae = min(ae, max_addr);
1043 		if (ae <= as)
1044 			continue;
1045 
1046 		/* avoid going over mem= command line arg */
1047 		if (total_mem + (ae - as) > mem_limit)
1048 			ae -= total_mem + (ae - as) - mem_limit;
1049 
1050 		if (ae <= as)
1051 			continue;
1052 
1053 		if (ae - as > space_needed)
1054 			break;
1055 	}
1056 	if (p >= efi_map_end)
1057 		panic("Can't allocate space for kernel memory descriptors");
1058 
1059 	return __va(as);
1060 }
1061 
1062 /*
1063  * Walk the EFI memory map and gather all memory available for kernel
1064  * to use.  We can allocate partial granules only if the unavailable
1065  * parts exist, and are WB.
1066  */
1067 unsigned long
1068 efi_memmap_init(unsigned long *s, unsigned long *e)
1069 {
1070 	struct kern_memdesc *k, *prev = NULL;
1071 	u64	contig_low=0, contig_high=0;
1072 	u64	as, ae, lim;
1073 	void *efi_map_start, *efi_map_end, *p, *q;
1074 	efi_memory_desc_t *md, *pmd = NULL, *check_md;
1075 	u64	efi_desc_size;
1076 	unsigned long total_mem = 0;
1077 
1078 	k = kern_memmap = find_memmap_space();
1079 
1080 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1081 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1082 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1083 
1084 	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1085 		md = p;
1086 		if (!efi_wb(md)) {
1087 			if (efi_uc(md) &&
1088 			    (md->type == EFI_CONVENTIONAL_MEMORY ||
1089 			     md->type == EFI_BOOT_SERVICES_DATA)) {
1090 				k->attribute = EFI_MEMORY_UC;
1091 				k->start = md->phys_addr;
1092 				k->num_pages = md->num_pages;
1093 				k++;
1094 			}
1095 			continue;
1096 		}
1097 		if (pmd == NULL || !efi_wb(pmd) ||
1098 		    efi_md_end(pmd) != md->phys_addr) {
1099 			contig_low = GRANULEROUNDUP(md->phys_addr);
1100 			contig_high = efi_md_end(md);
1101 			for (q = p + efi_desc_size; q < efi_map_end;
1102 			     q += efi_desc_size) {
1103 				check_md = q;
1104 				if (!efi_wb(check_md))
1105 					break;
1106 				if (contig_high != check_md->phys_addr)
1107 					break;
1108 				contig_high = efi_md_end(check_md);
1109 			}
1110 			contig_high = GRANULEROUNDDOWN(contig_high);
1111 		}
1112 		if (!is_memory_available(md))
1113 			continue;
1114 
1115 #ifdef CONFIG_CRASH_DUMP
1116 		/* saved_max_pfn should ignore max_addr= command line arg */
1117 		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1118 			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1119 #endif
1120 		/*
1121 		 * Round ends inward to granule boundaries
1122 		 * Give trimmings to uncached allocator
1123 		 */
1124 		if (md->phys_addr < contig_low) {
1125 			lim = min(efi_md_end(md), contig_low);
1126 			if (efi_uc(md)) {
1127 				if (k > kern_memmap &&
1128 				    (k-1)->attribute == EFI_MEMORY_UC &&
1129 				    kmd_end(k-1) == md->phys_addr) {
1130 					(k-1)->num_pages +=
1131 						(lim - md->phys_addr)
1132 						>> EFI_PAGE_SHIFT;
1133 				} else {
1134 					k->attribute = EFI_MEMORY_UC;
1135 					k->start = md->phys_addr;
1136 					k->num_pages = (lim - md->phys_addr)
1137 						>> EFI_PAGE_SHIFT;
1138 					k++;
1139 				}
1140 			}
1141 			as = contig_low;
1142 		} else
1143 			as = md->phys_addr;
1144 
1145 		if (efi_md_end(md) > contig_high) {
1146 			lim = max(md->phys_addr, contig_high);
1147 			if (efi_uc(md)) {
1148 				if (lim == md->phys_addr && k > kern_memmap &&
1149 				    (k-1)->attribute == EFI_MEMORY_UC &&
1150 				    kmd_end(k-1) == md->phys_addr) {
1151 					(k-1)->num_pages += md->num_pages;
1152 				} else {
1153 					k->attribute = EFI_MEMORY_UC;
1154 					k->start = lim;
1155 					k->num_pages = (efi_md_end(md) - lim)
1156 						>> EFI_PAGE_SHIFT;
1157 					k++;
1158 				}
1159 			}
1160 			ae = contig_high;
1161 		} else
1162 			ae = efi_md_end(md);
1163 
1164 		/* keep within max_addr= and min_addr= command line arg */
1165 		as = max(as, min_addr);
1166 		ae = min(ae, max_addr);
1167 		if (ae <= as)
1168 			continue;
1169 
1170 		/* avoid going over mem= command line arg */
1171 		if (total_mem + (ae - as) > mem_limit)
1172 			ae -= total_mem + (ae - as) - mem_limit;
1173 
1174 		if (ae <= as)
1175 			continue;
1176 		if (prev && kmd_end(prev) == md->phys_addr) {
1177 			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1178 			total_mem += ae - as;
1179 			continue;
1180 		}
1181 		k->attribute = EFI_MEMORY_WB;
1182 		k->start = as;
1183 		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1184 		total_mem += ae - as;
1185 		prev = k++;
1186 	}
1187 	k->start = ~0L; /* end-marker */
1188 
1189 	/* reserve the memory we are using for kern_memmap */
1190 	*s = (u64)kern_memmap;
1191 	*e = (u64)++k;
1192 
1193 	return total_mem;
1194 }
1195 
1196 void
1197 efi_initialize_iomem_resources(struct resource *code_resource,
1198 			       struct resource *data_resource,
1199 			       struct resource *bss_resource)
1200 {
1201 	struct resource *res;
1202 	void *efi_map_start, *efi_map_end, *p;
1203 	efi_memory_desc_t *md;
1204 	u64 efi_desc_size;
1205 	char *name;
1206 	unsigned long flags;
1207 
1208 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1209 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1210 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1211 
1212 	res = NULL;
1213 
1214 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1215 		md = p;
1216 
1217 		if (md->num_pages == 0) /* should not happen */
1218 			continue;
1219 
1220 		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1221 		switch (md->type) {
1222 
1223 			case EFI_MEMORY_MAPPED_IO:
1224 			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1225 				continue;
1226 
1227 			case EFI_LOADER_CODE:
1228 			case EFI_LOADER_DATA:
1229 			case EFI_BOOT_SERVICES_DATA:
1230 			case EFI_BOOT_SERVICES_CODE:
1231 			case EFI_CONVENTIONAL_MEMORY:
1232 				if (md->attribute & EFI_MEMORY_WP) {
1233 					name = "System ROM";
1234 					flags |= IORESOURCE_READONLY;
1235 				} else {
1236 					name = "System RAM";
1237 				}
1238 				break;
1239 
1240 			case EFI_ACPI_MEMORY_NVS:
1241 				name = "ACPI Non-volatile Storage";
1242 				break;
1243 
1244 			case EFI_UNUSABLE_MEMORY:
1245 				name = "reserved";
1246 				flags |= IORESOURCE_DISABLED;
1247 				break;
1248 
1249 			case EFI_RESERVED_TYPE:
1250 			case EFI_RUNTIME_SERVICES_CODE:
1251 			case EFI_RUNTIME_SERVICES_DATA:
1252 			case EFI_ACPI_RECLAIM_MEMORY:
1253 			default:
1254 				name = "reserved";
1255 				break;
1256 		}
1257 
1258 		if ((res = kzalloc(sizeof(struct resource),
1259 				   GFP_KERNEL)) == NULL) {
1260 			printk(KERN_ERR
1261 			       "failed to allocate resource for iomem\n");
1262 			return;
1263 		}
1264 
1265 		res->name = name;
1266 		res->start = md->phys_addr;
1267 		res->end = md->phys_addr + efi_md_size(md) - 1;
1268 		res->flags = flags;
1269 
1270 		if (insert_resource(&iomem_resource, res) < 0)
1271 			kfree(res);
1272 		else {
1273 			/*
1274 			 * We don't know which region contains
1275 			 * kernel data so we try it repeatedly and
1276 			 * let the resource manager test it.
1277 			 */
1278 			insert_resource(res, code_resource);
1279 			insert_resource(res, data_resource);
1280 			insert_resource(res, bss_resource);
1281 #ifdef CONFIG_KEXEC
1282                         insert_resource(res, &efi_memmap_res);
1283                         insert_resource(res, &boot_param_res);
1284 			if (crashk_res.end > crashk_res.start)
1285 				insert_resource(res, &crashk_res);
1286 #endif
1287 		}
1288 	}
1289 }
1290 
1291 #ifdef CONFIG_KEXEC
1292 /* find a block of memory aligned to 64M exclude reserved regions
1293    rsvd_regions are sorted
1294  */
1295 unsigned long __init
1296 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1297 {
1298 	int i;
1299 	u64 start, end;
1300 	u64 alignment = 1UL << _PAGE_SIZE_64M;
1301 	void *efi_map_start, *efi_map_end, *p;
1302 	efi_memory_desc_t *md;
1303 	u64 efi_desc_size;
1304 
1305 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1306 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1307 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1308 
1309 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1310 		md = p;
1311 		if (!efi_wb(md))
1312 			continue;
1313 		start = ALIGN(md->phys_addr, alignment);
1314 		end = efi_md_end(md);
1315 		for (i = 0; i < n; i++) {
1316 			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1317 				if (__pa(r[i].start) > start + size)
1318 					return start;
1319 				start = ALIGN(__pa(r[i].end), alignment);
1320 				if (i < n-1 &&
1321 				    __pa(r[i+1].start) < start + size)
1322 					continue;
1323 				else
1324 					break;
1325 			}
1326 		}
1327 		if (end > start + size)
1328 			return start;
1329 	}
1330 
1331 	printk(KERN_WARNING
1332 	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1333 	return ~0UL;
1334 }
1335 #endif
1336 
1337 #ifdef CONFIG_PROC_VMCORE
1338 /* locate the size find a the descriptor at a certain address */
1339 unsigned long __init
1340 vmcore_find_descriptor_size (unsigned long address)
1341 {
1342 	void *efi_map_start, *efi_map_end, *p;
1343 	efi_memory_desc_t *md;
1344 	u64 efi_desc_size;
1345 	unsigned long ret = 0;
1346 
1347 	efi_map_start = __va(ia64_boot_param->efi_memmap);
1348 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1349 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1350 
1351 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1352 		md = p;
1353 		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1354 		    && md->phys_addr == address) {
1355 			ret = efi_md_size(md);
1356 			break;
1357 		}
1358 	}
1359 
1360 	if (ret == 0)
1361 		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1362 
1363 	return ret;
1364 }
1365 #endif
1366