xref: /openbmc/linux/arch/ia64/include/asm/uv/uv_hub.h (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef __ASM_IA64_UV_HUB_H__
12 #define __ASM_IA64_UV_HUB_H__
13 
14 #include <linux/numa.h>
15 #include <linux/percpu.h>
16 #include <asm/types.h>
17 #include <asm/percpu.h>
18 
19 
20 /*
21  * Addressing Terminology
22  *
23  *	M       - The low M bits of a physical address represent the offset
24  *		  into the blade local memory. RAM memory on a blade is physically
25  *		  contiguous (although various IO spaces may punch holes in
26  *		  it)..
27  *
28  * 	N	- Number of bits in the node portion of a socket physical
29  * 		  address.
30  *
31  * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
32  * 	 	  routers always have low bit of 1, C/MBricks have low bit
33  * 		  equal to 0. Most addressing macros that target UV hub chips
34  * 		  right shift the NASID by 1 to exclude the always-zero bit.
35  * 		  NASIDs contain up to 15 bits.
36  *
37  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
38  *		  of nasids.
39  *
40  * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
41  * 		  of the nasid for socket usage.
42  *
43  *
44  *  NumaLink Global Physical Address Format:
45  *  +--------------------------------+---------------------+
46  *  |00..000|      GNODE             |      NodeOffset     |
47  *  +--------------------------------+---------------------+
48  *          |<-------53 - M bits --->|<--------M bits ----->
49  *
50  *	M - number of node offset bits (35 .. 40)
51  *
52  *
53  *  Memory/UV-HUB Processor Socket Address Format:
54  *  +----------------+---------------+---------------------+
55  *  |00..000000000000|   PNODE       |      NodeOffset     |
56  *  +----------------+---------------+---------------------+
57  *                   <--- N bits --->|<--------M bits ----->
58  *
59  *	M - number of node offset bits (35 .. 40)
60  *	N - number of PNODE bits (0 .. 10)
61  *
62  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
63  *		The actual values are configuration dependent and are set at
64  *		boot time. M & N values are set by the hardware/BIOS at boot.
65  */
66 
67 
68 /*
69  * Maximum number of bricks in all partitions and in all coherency domains.
70  * This is the total number of bricks accessible in the numalink fabric. It
71  * includes all C & M bricks. Routers are NOT included.
72  *
73  * This value is also the value of the maximum number of non-router NASIDs
74  * in the numalink fabric.
75  *
76  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
77  */
78 #define UV_MAX_NUMALINK_BLADES	16384
79 
80 /*
81  * Maximum number of C/Mbricks within a software SSI (hardware may support
82  * more).
83  */
84 #define UV_MAX_SSI_BLADES	1
85 
86 /*
87  * The largest possible NASID of a C or M brick (+ 2)
88  */
89 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
90 
91 /*
92  * The following defines attributes of the HUB chip. These attributes are
93  * frequently referenced and are kept in the per-cpu data areas of each cpu.
94  * They are kept together in a struct to minimize cache misses.
95  */
96 struct uv_hub_info_s {
97 	unsigned long	global_mmr_base;
98 	unsigned long	gpa_mask;
99 	unsigned long	gnode_upper;
100 	unsigned long	lowmem_remap_top;
101 	unsigned long	lowmem_remap_base;
102 	unsigned short	pnode;
103 	unsigned short	pnode_mask;
104 	unsigned short	coherency_domain_number;
105 	unsigned short	numa_blade_id;
106 	unsigned char	blade_processor_id;
107 	unsigned char	m_val;
108 	unsigned char	n_val;
109 };
110 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
111 #define uv_hub_info 		this_cpu_ptr(&__uv_hub_info)
112 #define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
113 
114 /*
115  * Local & Global MMR space macros.
116  * 	Note: macros are intended to be used ONLY by inline functions
117  * 	in this file - not by other kernel code.
118  * 		n -  NASID (full 15-bit global nasid)
119  * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
120  * 		p -  PNODE (local part of nsids, right shifted 1)
121  */
122 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
123 #define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
124 
125 #define UV_LOCAL_MMR_BASE		0xf4000000UL
126 #define UV_GLOBAL_MMR32_BASE		0xf8000000UL
127 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
128 
129 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
130 #define UV_GLOBAL_MMR64_PNODE_SHIFT	26
131 
132 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
133 
134 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
135 	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
136 
137 /*
138  * Macros for converting between kernel virtual addresses, socket local physical
139  * addresses, and UV global physical addresses.
140  * 	Note: use the standard __pa() & __va() macros for converting
141  * 	      between socket virtual and socket physical addresses.
142  */
143 
144 /* socket phys RAM --> UV global physical address */
145 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
146 {
147 	if (paddr < uv_hub_info->lowmem_remap_top)
148 		paddr += uv_hub_info->lowmem_remap_base;
149 	return paddr | uv_hub_info->gnode_upper;
150 }
151 
152 
153 /* socket virtual --> UV global physical address */
154 static inline unsigned long uv_gpa(void *v)
155 {
156 	return __pa(v) | uv_hub_info->gnode_upper;
157 }
158 
159 /* socket virtual --> UV global physical address */
160 static inline void *uv_vgpa(void *v)
161 {
162 	return (void *)uv_gpa(v);
163 }
164 
165 /* UV global physical address --> socket virtual */
166 static inline void *uv_va(unsigned long gpa)
167 {
168 	return __va(gpa & uv_hub_info->gpa_mask);
169 }
170 
171 /* pnode, offset --> socket virtual */
172 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
173 {
174 	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
175 }
176 
177 
178 /*
179  * Access global MMRs using the low memory MMR32 space. This region supports
180  * faster MMR access but not all MMRs are accessible in this space.
181  */
182 static inline unsigned long *uv_global_mmr32_address(int pnode,
183 				unsigned long offset)
184 {
185 	return __va(UV_GLOBAL_MMR32_BASE |
186 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
187 }
188 
189 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
190 				 unsigned long val)
191 {
192 	*uv_global_mmr32_address(pnode, offset) = val;
193 }
194 
195 static inline unsigned long uv_read_global_mmr32(int pnode,
196 						 unsigned long offset)
197 {
198 	return *uv_global_mmr32_address(pnode, offset);
199 }
200 
201 /*
202  * Access Global MMR space using the MMR space located at the top of physical
203  * memory.
204  */
205 static inline unsigned long *uv_global_mmr64_address(int pnode,
206 				unsigned long offset)
207 {
208 	return __va(UV_GLOBAL_MMR64_BASE |
209 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
210 }
211 
212 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
213 				unsigned long val)
214 {
215 	*uv_global_mmr64_address(pnode, offset) = val;
216 }
217 
218 static inline unsigned long uv_read_global_mmr64(int pnode,
219 						 unsigned long offset)
220 {
221 	return *uv_global_mmr64_address(pnode, offset);
222 }
223 
224 /*
225  * Access hub local MMRs. Faster than using global space but only local MMRs
226  * are accessible.
227  */
228 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
229 {
230 	return __va(UV_LOCAL_MMR_BASE | offset);
231 }
232 
233 static inline unsigned long uv_read_local_mmr(unsigned long offset)
234 {
235 	return *uv_local_mmr_address(offset);
236 }
237 
238 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
239 {
240 	*uv_local_mmr_address(offset) = val;
241 }
242 
243 /*
244  * Structures and definitions for converting between cpu, node, pnode, and blade
245  * numbers.
246  */
247 
248 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
249 static inline int uv_blade_processor_id(void)
250 {
251 	return smp_processor_id();
252 }
253 
254 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
255 static inline int uv_numa_blade_id(void)
256 {
257 	return 0;
258 }
259 
260 /* Convert a cpu number to the UV blade number */
261 static inline int uv_cpu_to_blade_id(int cpu)
262 {
263 	return 0;
264 }
265 
266 /* Convert linux node number to the UV blade number */
267 static inline int uv_node_to_blade_id(int nid)
268 {
269 	return 0;
270 }
271 
272 /* Convert a blade id to the PNODE of the blade */
273 static inline int uv_blade_to_pnode(int bid)
274 {
275 	return 0;
276 }
277 
278 /* Determine the number of possible cpus on a blade */
279 static inline int uv_blade_nr_possible_cpus(int bid)
280 {
281 	return num_possible_cpus();
282 }
283 
284 /* Determine the number of online cpus on a blade */
285 static inline int uv_blade_nr_online_cpus(int bid)
286 {
287 	return num_online_cpus();
288 }
289 
290 /* Convert a cpu id to the PNODE of the blade containing the cpu */
291 static inline int uv_cpu_to_pnode(int cpu)
292 {
293 	return 0;
294 }
295 
296 /* Convert a linux node number to the PNODE of the blade */
297 static inline int uv_node_to_pnode(int nid)
298 {
299 	return 0;
300 }
301 
302 /* Maximum possible number of blades */
303 static inline int uv_num_possible_blades(void)
304 {
305 	return 1;
306 }
307 
308 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
309 {
310 	/* not currently needed on ia64 */
311 }
312 
313 
314 #endif /* __ASM_IA64_UV_HUB__ */
315 
316