xref: /openbmc/linux/arch/ia64/include/asm/uaccess.h (revision e3d786a3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_UACCESS_H
3 #define _ASM_IA64_UACCESS_H
4 
5 /*
6  * This file defines various macros to transfer memory areas across
7  * the user/kernel boundary.  This needs to be done carefully because
8  * this code is executed in kernel mode and uses user-specified
9  * addresses.  Thus, we need to be careful not to let the user to
10  * trick us into accessing kernel memory that would normally be
11  * inaccessible.  This code is also fairly performance sensitive,
12  * so we want to spend as little time doing safety checks as
13  * possible.
14  *
15  * To make matters a bit more interesting, these macros sometimes also
16  * called from within the kernel itself, in which case the address
17  * validity check must be skipped.  The get_fs() macro tells us what
18  * to do: if get_fs()==USER_DS, checking is performed, if
19  * get_fs()==KERNEL_DS, checking is bypassed.
20  *
21  * Note that even if the memory area specified by the user is in a
22  * valid address range, it is still possible that we'll get a page
23  * fault while accessing it.  This is handled by filling out an
24  * exception handler fixup entry for each instruction that has the
25  * potential to fault.  When such a fault occurs, the page fault
26  * handler checks to see whether the faulting instruction has a fixup
27  * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
28  * then resumes execution at the continuation point.
29  *
30  * Based on <asm-alpha/uaccess.h>.
31  *
32  * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
33  *	David Mosberger-Tang <davidm@hpl.hp.com>
34  */
35 
36 #include <linux/compiler.h>
37 #include <linux/page-flags.h>
38 #include <linux/mm.h>
39 
40 #include <asm/intrinsics.h>
41 #include <asm/pgtable.h>
42 #include <asm/io.h>
43 #include <asm/extable.h>
44 
45 /*
46  * For historical reasons, the following macros are grossly misnamed:
47  */
48 #define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
49 #define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */
50 
51 #define get_ds()  (KERNEL_DS)
52 #define get_fs()  (current_thread_info()->addr_limit)
53 #define set_fs(x) (current_thread_info()->addr_limit = (x))
54 
55 #define segment_eq(a, b)	((a).seg == (b).seg)
56 
57 /*
58  * When accessing user memory, we need to make sure the entire area really is in
59  * user-level space.  In order to do this efficiently, we make sure that the page at
60  * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
61  * point inside the virtually mapped linear page table.
62  */
63 static inline int __access_ok(const void __user *p, unsigned long size)
64 {
65 	unsigned long addr = (unsigned long)p;
66 	unsigned long seg = get_fs().seg;
67 	return likely(addr <= seg) &&
68 	 (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
69 }
70 #define access_ok(type, addr, size)	__access_ok((addr), (size))
71 
72 /*
73  * These are the main single-value transfer routines.  They automatically
74  * use the right size if we just have the right pointer type.
75  *
76  * Careful to not
77  * (a) re-use the arguments for side effects (sizeof/typeof is ok)
78  * (b) require any knowledge of processes at this stage
79  */
80 #define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
81 #define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)))
82 
83 /*
84  * The "__xxx" versions do not do address space checking, useful when
85  * doing multiple accesses to the same area (the programmer has to do the
86  * checks by hand with "access_ok()")
87  */
88 #define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
89 #define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
90 
91 #ifdef ASM_SUPPORTED
92   struct __large_struct { unsigned long buf[100]; };
93 # define __m(x) (*(struct __large_struct __user *)(x))
94 
95 /* We need to declare the __ex_table section before we can use it in .xdata.  */
96 asm (".section \"__ex_table\", \"a\"\n\t.previous");
97 
98 # define __get_user_size(val, addr, n, err)							\
99 do {												\
100 	register long __gu_r8 asm ("r8") = 0;							\
101 	register long __gu_r9 asm ("r9");							\
102 	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
103 	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
104 	     "[1:]"										\
105 	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
106 	(err) = __gu_r8;									\
107 	(val) = __gu_r9;									\
108 } while (0)
109 
110 /*
111  * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
112  * is because they do not write to any memory gcc knows about, so there are no aliasing
113  * issues.
114  */
115 # define __put_user_size(val, addr, n, err)							\
116 do {												\
117 	register long __pu_r8 asm ("r8") = 0;							\
118 	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
119 		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
120 		      "[1:]"									\
121 		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
122 	(err) = __pu_r8;									\
123 } while (0)
124 
125 #else /* !ASM_SUPPORTED */
126 # define RELOC_TYPE	2	/* ip-rel */
127 # define __get_user_size(val, addr, n, err)				\
128 do {									\
129 	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
130 	(err) = ia64_getreg(_IA64_REG_R8);				\
131 	(val) = ia64_getreg(_IA64_REG_R9);				\
132 } while (0)
133 # define __put_user_size(val, addr, n, err)				\
134 do {									\
135 	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
136 		  (__force unsigned long) (val));			\
137 	(err) = ia64_getreg(_IA64_REG_R8);				\
138 } while (0)
139 #endif /* !ASM_SUPPORTED */
140 
141 extern void __get_user_unknown (void);
142 
143 /*
144  * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
145  * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
146  * using r8/r9.
147  */
148 #define __do_get_user(check, x, ptr, size)						\
149 ({											\
150 	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
151 	__typeof__ (size) __gu_size = (size);						\
152 	long __gu_err = -EFAULT;							\
153 	unsigned long __gu_val = 0;							\
154 	if (!check || __access_ok(__gu_ptr, size))					\
155 		switch (__gu_size) {							\
156 		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
157 		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
158 		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
159 		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
160 		      default: __get_user_unknown(); break;				\
161 		}									\
162 	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
163 	__gu_err;									\
164 })
165 
166 #define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size)
167 #define __get_user_check(x, ptr, size)	__do_get_user(1, x, ptr, size)
168 
169 extern void __put_user_unknown (void);
170 
171 /*
172  * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
173  * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
174  */
175 #define __do_put_user(check, x, ptr, size)						\
176 ({											\
177 	__typeof__ (x) __pu_x = (x);							\
178 	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
179 	__typeof__ (size) __pu_size = (size);						\
180 	long __pu_err = -EFAULT;							\
181 											\
182 	if (!check || __access_ok(__pu_ptr, __pu_size))					\
183 		switch (__pu_size) {							\
184 		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
185 		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
186 		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
187 		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
188 		      default: __put_user_unknown(); break;				\
189 		}									\
190 	__pu_err;									\
191 })
192 
193 #define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size)
194 #define __put_user_check(x, ptr, size)	__do_put_user(1, x, ptr, size)
195 
196 /*
197  * Complex access routines
198  */
199 extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
200 					       unsigned long count);
201 
202 static inline unsigned long
203 raw_copy_to_user(void __user *to, const void *from, unsigned long count)
204 {
205 	return __copy_user(to, (__force void __user *) from, count);
206 }
207 
208 static inline unsigned long
209 raw_copy_from_user(void *to, const void __user *from, unsigned long count)
210 {
211 	return __copy_user((__force void __user *) to, from, count);
212 }
213 
214 #define INLINE_COPY_FROM_USER
215 #define INLINE_COPY_TO_USER
216 
217 extern unsigned long __do_clear_user (void __user *, unsigned long);
218 
219 #define __clear_user(to, n)		__do_clear_user(to, n)
220 
221 #define clear_user(to, n)					\
222 ({								\
223 	unsigned long __cu_len = (n);				\
224 	if (__access_ok(to, __cu_len))				\
225 		__cu_len = __do_clear_user(to, __cu_len);	\
226 	__cu_len;						\
227 })
228 
229 
230 /*
231  * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
232  * strlen.
233  */
234 extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
235 
236 #define strncpy_from_user(to, from, n)					\
237 ({									\
238 	const char __user * __sfu_from = (from);			\
239 	long __sfu_ret = -EFAULT;					\
240 	if (__access_ok(__sfu_from, 0))					\
241 		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
242 	__sfu_ret;							\
243 })
244 
245 /*
246  * Returns: 0 if exception before NUL or reaching the supplied limit
247  * (N), a value greater than N if the limit would be exceeded, else
248  * strlen.
249  */
250 extern unsigned long __strnlen_user (const char __user *, long);
251 
252 #define strnlen_user(str, len)					\
253 ({								\
254 	const char __user *__su_str = (str);			\
255 	unsigned long __su_ret = 0;				\
256 	if (__access_ok(__su_str, 0))				\
257 		__su_ret = __strnlen_user(__su_str, len);	\
258 	__su_ret;						\
259 })
260 
261 #define ARCH_HAS_TRANSLATE_MEM_PTR	1
262 static __inline__ void *
263 xlate_dev_mem_ptr(phys_addr_t p)
264 {
265 	struct page *page;
266 	void *ptr;
267 
268 	page = pfn_to_page(p >> PAGE_SHIFT);
269 	if (PageUncached(page))
270 		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
271 	else
272 		ptr = __va(p);
273 
274 	return ptr;
275 }
276 
277 /*
278  * Convert a virtual cached kernel memory pointer to an uncached pointer
279  */
280 static __inline__ void *
281 xlate_dev_kmem_ptr(void *p)
282 {
283 	struct page *page;
284 	void *ptr;
285 
286 	page = virt_to_page((unsigned long)p);
287 	if (PageUncached(page))
288 		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
289 	else
290 		ptr = p;
291 
292 	return ptr;
293 }
294 
295 #endif /* _ASM_IA64_UACCESS_H */
296