1 #ifndef _ASM_IA64_SN_SN_SAL_H 2 #define _ASM_IA64_SN_SN_SAL_H 3 4 /* 5 * System Abstraction Layer definitions for IA64 6 * 7 * This file is subject to the terms and conditions of the GNU General Public 8 * License. See the file "COPYING" in the main directory of this archive 9 * for more details. 10 * 11 * Copyright (c) 2000-2006 Silicon Graphics, Inc. All rights reserved. 12 */ 13 14 15 #include <asm/sal.h> 16 #include <asm/sn/sn_cpuid.h> 17 #include <asm/sn/arch.h> 18 #include <asm/sn/geo.h> 19 #include <asm/sn/nodepda.h> 20 #include <asm/sn/shub_mmr.h> 21 22 // SGI Specific Calls 23 #define SN_SAL_POD_MODE 0x02000001 24 #define SN_SAL_SYSTEM_RESET 0x02000002 25 #define SN_SAL_PROBE 0x02000003 26 #define SN_SAL_GET_MASTER_NASID 0x02000004 27 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005 28 #define SN_SAL_LOG_CE 0x02000006 29 #define SN_SAL_REGISTER_CE 0x02000007 30 #define SN_SAL_GET_PARTITION_ADDR 0x02000009 31 #define SN_SAL_XP_ADDR_REGION 0x0200000f 32 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010 33 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011 34 #define SN_SAL_PRINT_ERROR 0x02000012 35 #define SN_SAL_REGISTER_PMI_HANDLER 0x02000014 36 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant 37 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant 38 #define SN_SAL_GET_SAPIC_INFO 0x0200001d 39 #define SN_SAL_GET_SN_INFO 0x0200001e 40 #define SN_SAL_CONSOLE_PUTC 0x02000021 41 #define SN_SAL_CONSOLE_GETC 0x02000022 42 #define SN_SAL_CONSOLE_PUTS 0x02000023 43 #define SN_SAL_CONSOLE_GETS 0x02000024 44 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025 45 #define SN_SAL_CONSOLE_POLL 0x02000026 46 #define SN_SAL_CONSOLE_INTR 0x02000027 47 #define SN_SAL_CONSOLE_PUTB 0x02000028 48 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a 49 #define SN_SAL_CONSOLE_READC 0x0200002b 50 #define SN_SAL_SYSCTL_OP 0x02000030 51 #define SN_SAL_SYSCTL_MODID_GET 0x02000031 52 #define SN_SAL_SYSCTL_GET 0x02000032 53 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033 54 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035 55 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036 56 #define SN_SAL_BUS_CONFIG 0x02000037 57 #define SN_SAL_SYS_SERIAL_GET 0x02000038 58 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039 59 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a 60 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b 61 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c 62 #define SN_SAL_COHERENCE 0x0200003d 63 #define SN_SAL_MEMPROTECT 0x0200003e 64 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f 65 66 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant 67 #define SN_SAL_IROUTER_OP 0x02000043 68 #define SN_SAL_SYSCTL_EVENT 0x02000044 69 #define SN_SAL_IOIF_INTERRUPT 0x0200004a 70 #define SN_SAL_HWPERF_OP 0x02000050 // lock 71 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051 72 #define SN_SAL_IOIF_PCI_SAFE 0x02000052 73 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053 74 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054 75 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055 76 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056 77 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057 78 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated 79 #define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a 80 81 #define SN_SAL_IOIF_INIT 0x0200005f 82 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060 83 #define SN_SAL_BTE_RECOVER 0x02000061 84 #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062 85 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064 86 87 #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065 88 #define SN_SAL_SET_OS_FEATURE_SET 0x02000066 89 #define SN_SAL_INJECT_ERROR 0x02000067 90 #define SN_SAL_SET_CPU_NUMBER 0x02000068 91 92 #define SN_SAL_KERNEL_LAUNCH_EVENT 0x02000069 93 #define SN_SAL_WATCHLIST_ALLOC 0x02000070 94 #define SN_SAL_WATCHLIST_FREE 0x02000071 95 96 /* 97 * Service-specific constants 98 */ 99 100 /* Console interrupt manipulation */ 101 /* action codes */ 102 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */ 103 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */ 104 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */ 105 /* interrupt specification & status return codes */ 106 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */ 107 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */ 108 109 /* interrupt handling */ 110 #define SAL_INTR_ALLOC 1 111 #define SAL_INTR_FREE 2 112 #define SAL_INTR_REDIRECT 3 113 114 /* 115 * operations available on the generic SN_SAL_SYSCTL_OP 116 * runtime service 117 */ 118 #define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */ 119 #define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */ 120 121 /* 122 * IRouter (i.e. generalized system controller) operations 123 */ 124 #define SAL_IROUTER_OPEN 0 /* open a subchannel */ 125 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */ 126 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */ 127 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */ 128 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for 129 * an open subchannel 130 */ 131 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */ 132 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */ 133 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */ 134 135 /* IRouter interrupt mask bits */ 136 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT 137 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV 138 139 /* 140 * Error Handling Features 141 */ 142 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete 143 #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete 144 #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4 145 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000 146 147 /* 148 * SAL Error Codes 149 */ 150 #define SALRET_MORE_PASSES 1 151 #define SALRET_OK 0 152 #define SALRET_NOT_IMPLEMENTED (-1) 153 #define SALRET_INVALID_ARG (-2) 154 #define SALRET_ERROR (-3) 155 156 #define SN_SAL_FAKE_PROM 0x02009999 157 158 /** 159 * sn_sal_revision - get the SGI SAL revision number 160 * 161 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor). 162 * This routine simply extracts the major and minor values and 163 * presents them in a u32 format. 164 * 165 * For example, version 4.05 would be represented at 0x0405. 166 */ 167 static inline u32 168 sn_sal_rev(void) 169 { 170 struct ia64_sal_systab *systab = __va(efi.sal_systab); 171 172 return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor); 173 } 174 175 /* 176 * Returns the master console nasid, if the call fails, return an illegal 177 * value. 178 */ 179 static inline u64 180 ia64_sn_get_console_nasid(void) 181 { 182 struct ia64_sal_retval ret_stuff; 183 184 ret_stuff.status = 0; 185 ret_stuff.v0 = 0; 186 ret_stuff.v1 = 0; 187 ret_stuff.v2 = 0; 188 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0); 189 190 if (ret_stuff.status < 0) 191 return ret_stuff.status; 192 193 /* Master console nasid is in 'v0' */ 194 return ret_stuff.v0; 195 } 196 197 /* 198 * Returns the master baseio nasid, if the call fails, return an illegal 199 * value. 200 */ 201 static inline u64 202 ia64_sn_get_master_baseio_nasid(void) 203 { 204 struct ia64_sal_retval ret_stuff; 205 206 ret_stuff.status = 0; 207 ret_stuff.v0 = 0; 208 ret_stuff.v1 = 0; 209 ret_stuff.v2 = 0; 210 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0); 211 212 if (ret_stuff.status < 0) 213 return ret_stuff.status; 214 215 /* Master baseio nasid is in 'v0' */ 216 return ret_stuff.v0; 217 } 218 219 static inline void * 220 ia64_sn_get_klconfig_addr(nasid_t nasid) 221 { 222 struct ia64_sal_retval ret_stuff; 223 224 ret_stuff.status = 0; 225 ret_stuff.v0 = 0; 226 ret_stuff.v1 = 0; 227 ret_stuff.v2 = 0; 228 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0); 229 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL; 230 } 231 232 /* 233 * Returns the next console character. 234 */ 235 static inline u64 236 ia64_sn_console_getc(int *ch) 237 { 238 struct ia64_sal_retval ret_stuff; 239 240 ret_stuff.status = 0; 241 ret_stuff.v0 = 0; 242 ret_stuff.v1 = 0; 243 ret_stuff.v2 = 0; 244 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0); 245 246 /* character is in 'v0' */ 247 *ch = (int)ret_stuff.v0; 248 249 return ret_stuff.status; 250 } 251 252 /* 253 * Read a character from the SAL console device, after a previous interrupt 254 * or poll operation has given us to know that a character is available 255 * to be read. 256 */ 257 static inline u64 258 ia64_sn_console_readc(void) 259 { 260 struct ia64_sal_retval ret_stuff; 261 262 ret_stuff.status = 0; 263 ret_stuff.v0 = 0; 264 ret_stuff.v1 = 0; 265 ret_stuff.v2 = 0; 266 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0); 267 268 /* character is in 'v0' */ 269 return ret_stuff.v0; 270 } 271 272 /* 273 * Sends the given character to the console. 274 */ 275 static inline u64 276 ia64_sn_console_putc(char ch) 277 { 278 struct ia64_sal_retval ret_stuff; 279 280 ret_stuff.status = 0; 281 ret_stuff.v0 = 0; 282 ret_stuff.v1 = 0; 283 ret_stuff.v2 = 0; 284 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0); 285 286 return ret_stuff.status; 287 } 288 289 /* 290 * Sends the given buffer to the console. 291 */ 292 static inline u64 293 ia64_sn_console_putb(const char *buf, int len) 294 { 295 struct ia64_sal_retval ret_stuff; 296 297 ret_stuff.status = 0; 298 ret_stuff.v0 = 0; 299 ret_stuff.v1 = 0; 300 ret_stuff.v2 = 0; 301 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0); 302 303 if ( ret_stuff.status == 0 ) { 304 return ret_stuff.v0; 305 } 306 return (u64)0; 307 } 308 309 /* 310 * Print a platform error record 311 */ 312 static inline u64 313 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec) 314 { 315 struct ia64_sal_retval ret_stuff; 316 317 ret_stuff.status = 0; 318 ret_stuff.v0 = 0; 319 ret_stuff.v1 = 0; 320 ret_stuff.v2 = 0; 321 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0); 322 323 return ret_stuff.status; 324 } 325 326 /* 327 * Check for Platform errors 328 */ 329 static inline u64 330 ia64_sn_plat_cpei_handler(void) 331 { 332 struct ia64_sal_retval ret_stuff; 333 334 ret_stuff.status = 0; 335 ret_stuff.v0 = 0; 336 ret_stuff.v1 = 0; 337 ret_stuff.v2 = 0; 338 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0); 339 340 return ret_stuff.status; 341 } 342 343 /* 344 * Set Error Handling Features (Obsolete) 345 */ 346 static inline u64 347 ia64_sn_plat_set_error_handling_features(void) 348 { 349 struct ia64_sal_retval ret_stuff; 350 351 ret_stuff.status = 0; 352 ret_stuff.v0 = 0; 353 ret_stuff.v1 = 0; 354 ret_stuff.v2 = 0; 355 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES, 356 SAL_ERR_FEAT_LOG_SBES, 357 0, 0, 0, 0, 0, 0); 358 359 return ret_stuff.status; 360 } 361 362 /* 363 * Checks for console input. 364 */ 365 static inline u64 366 ia64_sn_console_check(int *result) 367 { 368 struct ia64_sal_retval ret_stuff; 369 370 ret_stuff.status = 0; 371 ret_stuff.v0 = 0; 372 ret_stuff.v1 = 0; 373 ret_stuff.v2 = 0; 374 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0); 375 376 /* result is in 'v0' */ 377 *result = (int)ret_stuff.v0; 378 379 return ret_stuff.status; 380 } 381 382 /* 383 * Checks console interrupt status 384 */ 385 static inline u64 386 ia64_sn_console_intr_status(void) 387 { 388 struct ia64_sal_retval ret_stuff; 389 390 ret_stuff.status = 0; 391 ret_stuff.v0 = 0; 392 ret_stuff.v1 = 0; 393 ret_stuff.v2 = 0; 394 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 395 0, SAL_CONSOLE_INTR_STATUS, 396 0, 0, 0, 0, 0); 397 398 if (ret_stuff.status == 0) { 399 return ret_stuff.v0; 400 } 401 402 return 0; 403 } 404 405 /* 406 * Enable an interrupt on the SAL console device. 407 */ 408 static inline void 409 ia64_sn_console_intr_enable(u64 intr) 410 { 411 struct ia64_sal_retval ret_stuff; 412 413 ret_stuff.status = 0; 414 ret_stuff.v0 = 0; 415 ret_stuff.v1 = 0; 416 ret_stuff.v2 = 0; 417 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 418 intr, SAL_CONSOLE_INTR_ON, 419 0, 0, 0, 0, 0); 420 } 421 422 /* 423 * Disable an interrupt on the SAL console device. 424 */ 425 static inline void 426 ia64_sn_console_intr_disable(u64 intr) 427 { 428 struct ia64_sal_retval ret_stuff; 429 430 ret_stuff.status = 0; 431 ret_stuff.v0 = 0; 432 ret_stuff.v1 = 0; 433 ret_stuff.v2 = 0; 434 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR, 435 intr, SAL_CONSOLE_INTR_OFF, 436 0, 0, 0, 0, 0); 437 } 438 439 /* 440 * Sends a character buffer to the console asynchronously. 441 */ 442 static inline u64 443 ia64_sn_console_xmit_chars(char *buf, int len) 444 { 445 struct ia64_sal_retval ret_stuff; 446 447 ret_stuff.status = 0; 448 ret_stuff.v0 = 0; 449 ret_stuff.v1 = 0; 450 ret_stuff.v2 = 0; 451 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS, 452 (u64)buf, (u64)len, 453 0, 0, 0, 0, 0); 454 455 if (ret_stuff.status == 0) { 456 return ret_stuff.v0; 457 } 458 459 return 0; 460 } 461 462 /* 463 * Returns the iobrick module Id 464 */ 465 static inline u64 466 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result) 467 { 468 struct ia64_sal_retval ret_stuff; 469 470 ret_stuff.status = 0; 471 ret_stuff.v0 = 0; 472 ret_stuff.v1 = 0; 473 ret_stuff.v2 = 0; 474 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0); 475 476 /* result is in 'v0' */ 477 *result = (int)ret_stuff.v0; 478 479 return ret_stuff.status; 480 } 481 482 /** 483 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function 484 * 485 * SN_SAL_POD_MODE actually takes an argument, but it's always 486 * 0 when we call it from the kernel, so we don't have to expose 487 * it to the caller. 488 */ 489 static inline u64 490 ia64_sn_pod_mode(void) 491 { 492 struct ia64_sal_retval isrv; 493 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0); 494 if (isrv.status) 495 return 0; 496 return isrv.v0; 497 } 498 499 /** 500 * ia64_sn_probe_mem - read from memory safely 501 * @addr: address to probe 502 * @size: number bytes to read (1,2,4,8) 503 * @data_ptr: address to store value read by probe (-1 returned if probe fails) 504 * 505 * Call into the SAL to do a memory read. If the read generates a machine 506 * check, this routine will recover gracefully and return -1 to the caller. 507 * @addr is usually a kernel virtual address in uncached space (i.e. the 508 * address starts with 0xc), but if called in physical mode, @addr should 509 * be a physical address. 510 * 511 * Return values: 512 * 0 - probe successful 513 * 1 - probe failed (generated MCA) 514 * 2 - Bad arg 515 * <0 - PAL error 516 */ 517 static inline u64 518 ia64_sn_probe_mem(long addr, long size, void *data_ptr) 519 { 520 struct ia64_sal_retval isrv; 521 522 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0); 523 524 if (data_ptr) { 525 switch (size) { 526 case 1: 527 *((u8*)data_ptr) = (u8)isrv.v0; 528 break; 529 case 2: 530 *((u16*)data_ptr) = (u16)isrv.v0; 531 break; 532 case 4: 533 *((u32*)data_ptr) = (u32)isrv.v0; 534 break; 535 case 8: 536 *((u64*)data_ptr) = (u64)isrv.v0; 537 break; 538 default: 539 isrv.status = 2; 540 } 541 } 542 return isrv.status; 543 } 544 545 /* 546 * Retrieve the system serial number as an ASCII string. 547 */ 548 static inline u64 549 ia64_sn_sys_serial_get(char *buf) 550 { 551 struct ia64_sal_retval ret_stuff; 552 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0); 553 return ret_stuff.status; 554 } 555 556 extern char sn_system_serial_number_string[]; 557 extern u64 sn_partition_serial_number; 558 559 static inline char * 560 sn_system_serial_number(void) { 561 if (sn_system_serial_number_string[0]) { 562 return(sn_system_serial_number_string); 563 } else { 564 ia64_sn_sys_serial_get(sn_system_serial_number_string); 565 return(sn_system_serial_number_string); 566 } 567 } 568 569 570 /* 571 * Returns a unique id number for this system and partition (suitable for 572 * use with license managers), based in part on the system serial number. 573 */ 574 static inline u64 575 ia64_sn_partition_serial_get(void) 576 { 577 struct ia64_sal_retval ret_stuff; 578 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, 579 0, 0, 0, 0, 0, 0); 580 if (ret_stuff.status != 0) 581 return 0; 582 return ret_stuff.v0; 583 } 584 585 static inline u64 586 sn_partition_serial_number_val(void) { 587 if (unlikely(sn_partition_serial_number == 0)) { 588 sn_partition_serial_number = ia64_sn_partition_serial_get(); 589 } 590 return sn_partition_serial_number; 591 } 592 593 /* 594 * Returns the partition id of the nasid passed in as an argument, 595 * or INVALID_PARTID if the partition id cannot be retrieved. 596 */ 597 static inline partid_t 598 ia64_sn_sysctl_partition_get(nasid_t nasid) 599 { 600 struct ia64_sal_retval ret_stuff; 601 SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid, 602 0, 0, 0, 0, 0, 0); 603 if (ret_stuff.status != 0) 604 return -1; 605 return ((partid_t)ret_stuff.v0); 606 } 607 608 /* 609 * Returns the physical address of the partition's reserved page through 610 * an iterative number of calls. 611 * 612 * On first call, 'cookie' and 'len' should be set to 0, and 'addr' 613 * set to the nasid of the partition whose reserved page's address is 614 * being sought. 615 * On subsequent calls, pass the values, that were passed back on the 616 * previous call. 617 * 618 * While the return status equals SALRET_MORE_PASSES, keep calling 619 * this function after first copying 'len' bytes starting at 'addr' 620 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will 621 * be the physical address of the partition's reserved page. If the 622 * return status equals neither of these, an error as occurred. 623 */ 624 static inline s64 625 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len) 626 { 627 struct ia64_sal_retval rv; 628 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie, 629 *addr, buf, *len, 0, 0, 0); 630 *cookie = rv.v0; 631 *addr = rv.v1; 632 *len = rv.v2; 633 return rv.status; 634 } 635 636 /* 637 * Register or unregister a physical address range being referenced across 638 * a partition boundary for which certain SAL errors should be scanned for, 639 * cleaned up and ignored. This is of value for kernel partitioning code only. 640 * Values for the operation argument: 641 * 1 = register this address range with SAL 642 * 0 = unregister this address range with SAL 643 * 644 * SAL maintains a reference count on an address range in case it is registered 645 * multiple times. 646 * 647 * On success, returns the reference count of the address range after the SAL 648 * call has performed the current registration/unregistration. Returns a 649 * negative value if an error occurred. 650 */ 651 static inline int 652 sn_register_xp_addr_region(u64 paddr, u64 len, int operation) 653 { 654 struct ia64_sal_retval ret_stuff; 655 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, 656 (u64)operation, 0, 0, 0, 0); 657 return ret_stuff.status; 658 } 659 660 /* 661 * Register or unregister an instruction range for which SAL errors should 662 * be ignored. If an error occurs while in the registered range, SAL jumps 663 * to return_addr after ignoring the error. Values for the operation argument: 664 * 1 = register this instruction range with SAL 665 * 0 = unregister this instruction range with SAL 666 * 667 * Returns 0 on success, or a negative value if an error occurred. 668 */ 669 static inline int 670 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr, 671 int virtual, int operation) 672 { 673 struct ia64_sal_retval ret_stuff; 674 u64 call; 675 if (virtual) { 676 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL; 677 } else { 678 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL; 679 } 680 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr, 681 (u64)1, 0, 0, 0); 682 return ret_stuff.status; 683 } 684 685 /* 686 * Register or unregister a function to handle a PMI received by a CPU. 687 * Before calling the registered handler, SAL sets r1 to the value that 688 * was passed in as the global_pointer. 689 * 690 * If the handler pointer is NULL, then the currently registered handler 691 * will be unregistered. 692 * 693 * Returns 0 on success, or a negative value if an error occurred. 694 */ 695 static inline int 696 sn_register_pmi_handler(u64 handler, u64 global_pointer) 697 { 698 struct ia64_sal_retval ret_stuff; 699 ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler, 700 global_pointer, 0, 0, 0, 0, 0); 701 return ret_stuff.status; 702 } 703 704 /* 705 * Change or query the coherence domain for this partition. Each cpu-based 706 * nasid is represented by a bit in an array of 64-bit words: 707 * 0 = not in this partition's coherency domain 708 * 1 = in this partition's coherency domain 709 * 710 * It is not possible for the local system's nasids to be removed from 711 * the coherency domain. Purpose of the domain arguments: 712 * new_domain = set the coherence domain to the given nasids 713 * old_domain = return the current coherence domain 714 * 715 * Returns 0 on success, or a negative value if an error occurred. 716 */ 717 static inline int 718 sn_change_coherence(u64 *new_domain, u64 *old_domain) 719 { 720 struct ia64_sal_retval ret_stuff; 721 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain, 722 (u64)old_domain, 0, 0, 0, 0, 0); 723 return ret_stuff.status; 724 } 725 726 /* 727 * Change memory access protections for a physical address range. 728 * nasid_array is not used on Altix, but may be in future architectures. 729 * Available memory protection access classes are defined after the function. 730 */ 731 static inline int 732 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array) 733 { 734 struct ia64_sal_retval ret_stuff; 735 736 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len, 737 (u64)nasid_array, perms, 0, 0, 0); 738 return ret_stuff.status; 739 } 740 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080 741 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2 742 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca 743 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290 744 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080 745 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080 746 747 /* 748 * Turns off system power. 749 */ 750 static inline void 751 ia64_sn_power_down(void) 752 { 753 struct ia64_sal_retval ret_stuff; 754 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0); 755 while(1) 756 cpu_relax(); 757 /* never returns */ 758 } 759 760 /** 761 * ia64_sn_fru_capture - tell the system controller to capture hw state 762 * 763 * This routine will call the SAL which will tell the system controller(s) 764 * to capture hw mmr information from each SHub in the system. 765 */ 766 static inline u64 767 ia64_sn_fru_capture(void) 768 { 769 struct ia64_sal_retval isrv; 770 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0); 771 if (isrv.status) 772 return 0; 773 return isrv.v0; 774 } 775 776 /* 777 * Performs an operation on a PCI bus or slot -- power up, power down 778 * or reset. 779 */ 780 static inline u64 781 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type, 782 u64 bus, char slot, 783 u64 action) 784 { 785 struct ia64_sal_retval rv = {0, 0, 0, 0}; 786 787 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action, 788 bus, (u64) slot, 0, 0); 789 if (rv.status) 790 return rv.v0; 791 return 0; 792 } 793 794 795 /* 796 * Open a subchannel for sending arbitrary data to the system 797 * controller network via the system controller device associated with 798 * 'nasid'. Return the subchannel number or a negative error code. 799 */ 800 static inline int 801 ia64_sn_irtr_open(nasid_t nasid) 802 { 803 struct ia64_sal_retval rv; 804 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid, 805 0, 0, 0, 0, 0); 806 return (int) rv.v0; 807 } 808 809 /* 810 * Close system controller subchannel 'subch' previously opened on 'nasid'. 811 */ 812 static inline int 813 ia64_sn_irtr_close(nasid_t nasid, int subch) 814 { 815 struct ia64_sal_retval rv; 816 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE, 817 (u64) nasid, (u64) subch, 0, 0, 0, 0); 818 return (int) rv.status; 819 } 820 821 /* 822 * Read data from system controller associated with 'nasid' on 823 * subchannel 'subch'. The buffer to be filled is pointed to by 824 * 'buf', and its capacity is in the integer pointed to by 'len'. The 825 * referent of 'len' is set to the number of bytes read by the SAL 826 * call. The return value is either SALRET_OK (for bytes read) or 827 * SALRET_ERROR (for error or "no data available"). 828 */ 829 static inline int 830 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len) 831 { 832 struct ia64_sal_retval rv; 833 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV, 834 (u64) nasid, (u64) subch, (u64) buf, (u64) len, 835 0, 0); 836 return (int) rv.status; 837 } 838 839 /* 840 * Write data to the system controller network via the system 841 * controller associated with 'nasid' on suchannel 'subch'. The 842 * buffer to be written out is pointed to by 'buf', and 'len' is the 843 * number of bytes to be written. The return value is either the 844 * number of bytes written (which could be zero) or a negative error 845 * code. 846 */ 847 static inline int 848 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len) 849 { 850 struct ia64_sal_retval rv; 851 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND, 852 (u64) nasid, (u64) subch, (u64) buf, (u64) len, 853 0, 0); 854 return (int) rv.v0; 855 } 856 857 /* 858 * Check whether any interrupts are pending for the system controller 859 * associated with 'nasid' and its subchannel 'subch'. The return 860 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or 861 * SAL_IROUTER_INTR_RECV). 862 */ 863 static inline int 864 ia64_sn_irtr_intr(nasid_t nasid, int subch) 865 { 866 struct ia64_sal_retval rv; 867 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS, 868 (u64) nasid, (u64) subch, 0, 0, 0, 0); 869 return (int) rv.v0; 870 } 871 872 /* 873 * Enable the interrupt indicated by the intr parameter (either 874 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). 875 */ 876 static inline int 877 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr) 878 { 879 struct ia64_sal_retval rv; 880 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON, 881 (u64) nasid, (u64) subch, intr, 0, 0, 0); 882 return (int) rv.v0; 883 } 884 885 /* 886 * Disable the interrupt indicated by the intr parameter (either 887 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV). 888 */ 889 static inline int 890 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr) 891 { 892 struct ia64_sal_retval rv; 893 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF, 894 (u64) nasid, (u64) subch, intr, 0, 0, 0); 895 return (int) rv.v0; 896 } 897 898 /* 899 * Set up a node as the point of contact for system controller 900 * environmental event delivery. 901 */ 902 static inline int 903 ia64_sn_sysctl_event_init(nasid_t nasid) 904 { 905 struct ia64_sal_retval rv; 906 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid, 907 0, 0, 0, 0, 0, 0); 908 return (int) rv.v0; 909 } 910 911 /* 912 * Ask the system controller on the specified nasid to reset 913 * the CX corelet clock. Only valid on TIO nodes. 914 */ 915 static inline int 916 ia64_sn_sysctl_tio_clock_reset(nasid_t nasid) 917 { 918 struct ia64_sal_retval rv; 919 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST, 920 nasid, 0, 0, 0, 0, 0); 921 if (rv.status != 0) 922 return (int)rv.status; 923 if (rv.v0 != 0) 924 return (int)rv.v0; 925 926 return 0; 927 } 928 929 /* 930 * Get the associated ioboard type for a given nasid. 931 */ 932 static inline long 933 ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard) 934 { 935 struct ia64_sal_retval isrv; 936 SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD, 937 nasid, 0, 0, 0, 0, 0); 938 if (isrv.v0 != 0) { 939 *ioboard = isrv.v0; 940 return isrv.status; 941 } 942 if (isrv.v1 != 0) { 943 *ioboard = isrv.v1; 944 return isrv.status; 945 } 946 947 return isrv.status; 948 } 949 950 /** 951 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header 952 * @nasid: NASID of node to read 953 * @index: FIT entry index to be retrieved (0..n) 954 * @fitentry: 16 byte buffer where FIT entry will be stored. 955 * @banbuf: optional buffer for retrieving banner 956 * @banlen: length of banner buffer 957 * 958 * Access to the physical PROM chips needs to be serialized since reads and 959 * writes can't occur at the same time, so we need to call into the SAL when 960 * we want to look at the FIT entries on the chips. 961 * 962 * Returns: 963 * %SALRET_OK if ok 964 * %SALRET_INVALID_ARG if index too big 965 * %SALRET_NOT_IMPLEMENTED if running on older PROM 966 * ??? if nasid invalid OR banner buffer not large enough 967 */ 968 static inline int 969 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf, 970 u64 banlen) 971 { 972 struct ia64_sal_retval rv; 973 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry, 974 banbuf, banlen, 0, 0); 975 return (int) rv.status; 976 } 977 978 /* 979 * Initialize the SAL components of the system controller 980 * communication driver; specifically pass in a sizable buffer that 981 * can be used for allocation of subchannel queues as new subchannels 982 * are opened. "buf" points to the buffer, and "len" specifies its 983 * length. 984 */ 985 static inline int 986 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len) 987 { 988 struct ia64_sal_retval rv; 989 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT, 990 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0); 991 return (int) rv.status; 992 } 993 994 /* 995 * Returns the nasid, subnode & slice corresponding to a SAPIC ID 996 * 997 * In: 998 * arg0 - SN_SAL_GET_SAPIC_INFO 999 * arg1 - sapicid (lid >> 16) 1000 * Out: 1001 * v0 - nasid 1002 * v1 - subnode 1003 * v2 - slice 1004 */ 1005 static inline u64 1006 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice) 1007 { 1008 struct ia64_sal_retval ret_stuff; 1009 1010 ret_stuff.status = 0; 1011 ret_stuff.v0 = 0; 1012 ret_stuff.v1 = 0; 1013 ret_stuff.v2 = 0; 1014 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0); 1015 1016 /***** BEGIN HACK - temp til old proms no longer supported ********/ 1017 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { 1018 if (nasid) *nasid = sapicid & 0xfff; 1019 if (subnode) *subnode = (sapicid >> 13) & 1; 1020 if (slice) *slice = (sapicid >> 12) & 3; 1021 return 0; 1022 } 1023 /***** END HACK *******/ 1024 1025 if (ret_stuff.status < 0) 1026 return ret_stuff.status; 1027 1028 if (nasid) *nasid = (int) ret_stuff.v0; 1029 if (subnode) *subnode = (int) ret_stuff.v1; 1030 if (slice) *slice = (int) ret_stuff.v2; 1031 return 0; 1032 } 1033 1034 /* 1035 * Returns information about the HUB/SHUB. 1036 * In: 1037 * arg0 - SN_SAL_GET_SN_INFO 1038 * arg1 - 0 (other values reserved for future use) 1039 * Out: 1040 * v0 1041 * [7:0] - shub type (0=shub1, 1=shub2) 1042 * [15:8] - Log2 max number of nodes in entire system (includes 1043 * C-bricks, I-bricks, etc) 1044 * [23:16] - Log2 of nodes per sharing domain 1045 * [31:24] - partition ID 1046 * [39:32] - coherency_id 1047 * [47:40] - regionsize 1048 * v1 1049 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid) 1050 * [23:15] - bit position of low nasid bit 1051 */ 1052 static inline u64 1053 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift, 1054 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg) 1055 { 1056 struct ia64_sal_retval ret_stuff; 1057 1058 ret_stuff.status = 0; 1059 ret_stuff.v0 = 0; 1060 ret_stuff.v1 = 0; 1061 ret_stuff.v2 = 0; 1062 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0); 1063 1064 /***** BEGIN HACK - temp til old proms no longer supported ********/ 1065 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) { 1066 int nasid = get_sapicid() & 0xfff; 1067 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL 1068 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48 1069 if (shubtype) *shubtype = 0; 1070 if (nasid_bitmask) *nasid_bitmask = 0x7ff; 1071 if (nasid_shift) *nasid_shift = 38; 1072 if (systemsize) *systemsize = 10; 1073 if (sharing_domain_size) *sharing_domain_size = 8; 1074 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid); 1075 if (coher) *coher = nasid >> 9; 1076 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >> 1077 SH_SHUB_ID_NODES_PER_BIT_SHFT; 1078 return 0; 1079 } 1080 /***** END HACK *******/ 1081 1082 if (ret_stuff.status < 0) 1083 return ret_stuff.status; 1084 1085 if (shubtype) *shubtype = ret_stuff.v0 & 0xff; 1086 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff; 1087 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff; 1088 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff; 1089 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff; 1090 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff; 1091 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff); 1092 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff; 1093 return 0; 1094 } 1095 1096 /* 1097 * This is the access point to the Altix PROM hardware performance 1098 * and status monitoring interface. For info on using this, see 1099 * arch/ia64/include/asm/sn/sn2/sn_hwperf.h 1100 */ 1101 static inline int 1102 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2, 1103 u64 a3, u64 a4, int *v0) 1104 { 1105 struct ia64_sal_retval rv; 1106 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid, 1107 opcode, a0, a1, a2, a3, a4); 1108 if (v0) 1109 *v0 = (int) rv.v0; 1110 return (int) rv.status; 1111 } 1112 1113 static inline int 1114 ia64_sn_ioif_get_pci_topology(u64 buf, u64 len) 1115 { 1116 struct ia64_sal_retval rv; 1117 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0); 1118 return (int) rv.status; 1119 } 1120 1121 /* 1122 * BTE error recovery is implemented in SAL 1123 */ 1124 static inline int 1125 ia64_sn_bte_recovery(nasid_t nasid) 1126 { 1127 struct ia64_sal_retval rv; 1128 1129 rv.status = 0; 1130 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0); 1131 if (rv.status == SALRET_NOT_IMPLEMENTED) 1132 return 0; 1133 return (int) rv.status; 1134 } 1135 1136 static inline int 1137 ia64_sn_is_fake_prom(void) 1138 { 1139 struct ia64_sal_retval rv; 1140 SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0); 1141 return (rv.status == 0); 1142 } 1143 1144 static inline int 1145 ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set) 1146 { 1147 struct ia64_sal_retval rv; 1148 1149 SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0); 1150 if (rv.status != 0) 1151 return rv.status; 1152 *feature_set = rv.v0; 1153 return 0; 1154 } 1155 1156 static inline int 1157 ia64_sn_set_os_feature(int feature) 1158 { 1159 struct ia64_sal_retval rv; 1160 1161 SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0); 1162 return rv.status; 1163 } 1164 1165 static inline int 1166 sn_inject_error(u64 paddr, u64 *data, u64 *ecc) 1167 { 1168 struct ia64_sal_retval ret_stuff; 1169 1170 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data, 1171 (u64)ecc, 0, 0, 0, 0); 1172 return ret_stuff.status; 1173 } 1174 1175 static inline int 1176 ia64_sn_set_cpu_number(int cpu) 1177 { 1178 struct ia64_sal_retval rv; 1179 1180 SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0); 1181 return rv.status; 1182 } 1183 static inline int 1184 ia64_sn_kernel_launch_event(void) 1185 { 1186 struct ia64_sal_retval rv; 1187 SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0); 1188 return rv.status; 1189 } 1190 1191 union sn_watchlist_u { 1192 u64 val; 1193 struct { 1194 u64 blade : 16, 1195 size : 32, 1196 filler : 16; 1197 }; 1198 }; 1199 1200 static inline int 1201 sn_mq_watchlist_alloc(int blade, void *mq, unsigned int mq_size, 1202 unsigned long *intr_mmr_offset) 1203 { 1204 struct ia64_sal_retval rv; 1205 unsigned long addr; 1206 union sn_watchlist_u size_blade; 1207 int watchlist; 1208 1209 addr = (unsigned long)mq; 1210 size_blade.size = mq_size; 1211 size_blade.blade = blade; 1212 1213 /* 1214 * bios returns watchlist number or negative error number. 1215 */ 1216 ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_ALLOC, addr, 1217 size_blade.val, (u64)intr_mmr_offset, 1218 (u64)&watchlist, 0, 0, 0); 1219 if (rv.status < 0) 1220 return rv.status; 1221 1222 return watchlist; 1223 } 1224 1225 static inline int 1226 sn_mq_watchlist_free(int blade, int watchlist_num) 1227 { 1228 struct ia64_sal_retval rv; 1229 ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_FREE, blade, 1230 watchlist_num, 0, 0, 0, 0, 0); 1231 return rv.status; 1232 } 1233 #endif /* _ASM_IA64_SN_SN_SAL_H */ 1234