xref: /openbmc/linux/arch/ia64/include/asm/sn/sn_sal.h (revision 384740dc)
1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
3 
4 /*
5  * System Abstraction Layer definitions for IA64
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  *
11  * Copyright (c) 2000-2006 Silicon Graphics, Inc.  All rights reserved.
12  */
13 
14 
15 #include <asm/sal.h>
16 #include <asm/sn/sn_cpuid.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/geo.h>
19 #include <asm/sn/nodepda.h>
20 #include <asm/sn/shub_mmr.h>
21 
22 // SGI Specific Calls
23 #define  SN_SAL_POD_MODE                           0x02000001
24 #define  SN_SAL_SYSTEM_RESET                       0x02000002
25 #define  SN_SAL_PROBE                              0x02000003
26 #define  SN_SAL_GET_MASTER_NASID                   0x02000004
27 #define	 SN_SAL_GET_KLCONFIG_ADDR		   0x02000005
28 #define  SN_SAL_LOG_CE				   0x02000006
29 #define  SN_SAL_REGISTER_CE			   0x02000007
30 #define  SN_SAL_GET_PARTITION_ADDR		   0x02000009
31 #define  SN_SAL_XP_ADDR_REGION			   0x0200000f
32 #define  SN_SAL_NO_FAULT_ZONE_VIRTUAL		   0x02000010
33 #define  SN_SAL_NO_FAULT_ZONE_PHYSICAL		   0x02000011
34 #define  SN_SAL_PRINT_ERROR			   0x02000012
35 #define  SN_SAL_REGISTER_PMI_HANDLER		   0x02000014
36 #define  SN_SAL_SET_ERROR_HANDLING_FEATURES	   0x0200001a	// reentrant
37 #define  SN_SAL_GET_FIT_COMPT			   0x0200001b	// reentrant
38 #define  SN_SAL_GET_SAPIC_INFO                     0x0200001d
39 #define  SN_SAL_GET_SN_INFO                        0x0200001e
40 #define  SN_SAL_CONSOLE_PUTC                       0x02000021
41 #define  SN_SAL_CONSOLE_GETC                       0x02000022
42 #define  SN_SAL_CONSOLE_PUTS                       0x02000023
43 #define  SN_SAL_CONSOLE_GETS                       0x02000024
44 #define  SN_SAL_CONSOLE_GETS_TIMEOUT               0x02000025
45 #define  SN_SAL_CONSOLE_POLL                       0x02000026
46 #define  SN_SAL_CONSOLE_INTR                       0x02000027
47 #define  SN_SAL_CONSOLE_PUTB			   0x02000028
48 #define  SN_SAL_CONSOLE_XMIT_CHARS		   0x0200002a
49 #define  SN_SAL_CONSOLE_READC			   0x0200002b
50 #define  SN_SAL_SYSCTL_OP			   0x02000030
51 #define  SN_SAL_SYSCTL_MODID_GET	           0x02000031
52 #define  SN_SAL_SYSCTL_GET                         0x02000032
53 #define  SN_SAL_SYSCTL_IOBRICK_MODULE_GET          0x02000033
54 #define  SN_SAL_SYSCTL_IO_PORTSPEED_GET            0x02000035
55 #define  SN_SAL_SYSCTL_SLAB_GET                    0x02000036
56 #define  SN_SAL_BUS_CONFIG		   	   0x02000037
57 #define  SN_SAL_SYS_SERIAL_GET			   0x02000038
58 #define  SN_SAL_PARTITION_SERIAL_GET		   0x02000039
59 #define  SN_SAL_SYSCTL_PARTITION_GET               0x0200003a
60 #define  SN_SAL_SYSTEM_POWER_DOWN		   0x0200003b
61 #define  SN_SAL_GET_MASTER_BASEIO_NASID		   0x0200003c
62 #define  SN_SAL_COHERENCE                          0x0200003d
63 #define  SN_SAL_MEMPROTECT                         0x0200003e
64 #define  SN_SAL_SYSCTL_FRU_CAPTURE		   0x0200003f
65 
66 #define  SN_SAL_SYSCTL_IOBRICK_PCI_OP		   0x02000042	// reentrant
67 #define	 SN_SAL_IROUTER_OP			   0x02000043
68 #define  SN_SAL_SYSCTL_EVENT                       0x02000044
69 #define  SN_SAL_IOIF_INTERRUPT			   0x0200004a
70 #define  SN_SAL_HWPERF_OP			   0x02000050   // lock
71 #define  SN_SAL_IOIF_ERROR_INTERRUPT		   0x02000051
72 #define  SN_SAL_IOIF_PCI_SAFE			   0x02000052
73 #define  SN_SAL_IOIF_SLOT_ENABLE		   0x02000053
74 #define  SN_SAL_IOIF_SLOT_DISABLE		   0x02000054
75 #define  SN_SAL_IOIF_GET_HUBDEV_INFO		   0x02000055
76 #define  SN_SAL_IOIF_GET_PCIBUS_INFO		   0x02000056
77 #define  SN_SAL_IOIF_GET_PCIDEV_INFO		   0x02000057
78 #define  SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST	   0x02000058	// deprecated
79 #define  SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST	   0x0200005a
80 
81 #define SN_SAL_IOIF_INIT			   0x0200005f
82 #define SN_SAL_HUB_ERROR_INTERRUPT		   0x02000060
83 #define SN_SAL_BTE_RECOVER			   0x02000061
84 #define SN_SAL_RESERVED_DO_NOT_USE		   0x02000062
85 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY		   0x02000064
86 
87 #define  SN_SAL_GET_PROM_FEATURE_SET		   0x02000065
88 #define  SN_SAL_SET_OS_FEATURE_SET		   0x02000066
89 #define  SN_SAL_INJECT_ERROR			   0x02000067
90 #define  SN_SAL_SET_CPU_NUMBER			   0x02000068
91 
92 #define  SN_SAL_KERNEL_LAUNCH_EVENT		   0x02000069
93 
94 /*
95  * Service-specific constants
96  */
97 
98 /* Console interrupt manipulation */
99 	/* action codes */
100 #define SAL_CONSOLE_INTR_OFF    0       /* turn the interrupt off */
101 #define SAL_CONSOLE_INTR_ON     1       /* turn the interrupt on */
102 #define SAL_CONSOLE_INTR_STATUS 2	/* retrieve the interrupt status */
103 	/* interrupt specification & status return codes */
104 #define SAL_CONSOLE_INTR_XMIT	1	/* output interrupt */
105 #define SAL_CONSOLE_INTR_RECV	2	/* input interrupt */
106 
107 /* interrupt handling */
108 #define SAL_INTR_ALLOC		1
109 #define SAL_INTR_FREE		2
110 #define SAL_INTR_REDIRECT	3
111 
112 /*
113  * operations available on the generic SN_SAL_SYSCTL_OP
114  * runtime service
115  */
116 #define SAL_SYSCTL_OP_IOBOARD		0x0001  /*  retrieve board type */
117 #define SAL_SYSCTL_OP_TIO_JLCK_RST      0x0002  /* issue TIO clock reset */
118 
119 /*
120  * IRouter (i.e. generalized system controller) operations
121  */
122 #define SAL_IROUTER_OPEN	0	/* open a subchannel */
123 #define SAL_IROUTER_CLOSE	1	/* close a subchannel */
124 #define SAL_IROUTER_SEND	2	/* send part of an IRouter packet */
125 #define SAL_IROUTER_RECV	3	/* receive part of an IRouter packet */
126 #define SAL_IROUTER_INTR_STATUS	4	/* check the interrupt status for
127 					 * an open subchannel
128 					 */
129 #define SAL_IROUTER_INTR_ON	5	/* enable an interrupt */
130 #define SAL_IROUTER_INTR_OFF	6	/* disable an interrupt */
131 #define SAL_IROUTER_INIT	7	/* initialize IRouter driver */
132 
133 /* IRouter interrupt mask bits */
134 #define SAL_IROUTER_INTR_XMIT	SAL_CONSOLE_INTR_XMIT
135 #define SAL_IROUTER_INTR_RECV	SAL_CONSOLE_INTR_RECV
136 
137 /*
138  * Error Handling Features
139  */
140 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV	0x1	// obsolete
141 #define SAL_ERR_FEAT_LOG_SBES			0x2	// obsolete
142 #define SAL_ERR_FEAT_MFR_OVERRIDE		0x4
143 #define SAL_ERR_FEAT_SBE_THRESHOLD		0xffff0000
144 
145 /*
146  * SAL Error Codes
147  */
148 #define SALRET_MORE_PASSES	1
149 #define SALRET_OK		0
150 #define SALRET_NOT_IMPLEMENTED	(-1)
151 #define SALRET_INVALID_ARG	(-2)
152 #define SALRET_ERROR		(-3)
153 
154 #define SN_SAL_FAKE_PROM			   0x02009999
155 
156 /**
157   * sn_sal_revision - get the SGI SAL revision number
158   *
159   * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
160   * This routine simply extracts the major and minor values and
161   * presents them in a u32 format.
162   *
163   * For example, version 4.05 would be represented at 0x0405.
164   */
165 static inline u32
166 sn_sal_rev(void)
167 {
168 	struct ia64_sal_systab *systab = __va(efi.sal_systab);
169 
170 	return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
171 }
172 
173 /*
174  * Returns the master console nasid, if the call fails, return an illegal
175  * value.
176  */
177 static inline u64
178 ia64_sn_get_console_nasid(void)
179 {
180 	struct ia64_sal_retval ret_stuff;
181 
182 	ret_stuff.status = 0;
183 	ret_stuff.v0 = 0;
184 	ret_stuff.v1 = 0;
185 	ret_stuff.v2 = 0;
186 	SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
187 
188 	if (ret_stuff.status < 0)
189 		return ret_stuff.status;
190 
191 	/* Master console nasid is in 'v0' */
192 	return ret_stuff.v0;
193 }
194 
195 /*
196  * Returns the master baseio nasid, if the call fails, return an illegal
197  * value.
198  */
199 static inline u64
200 ia64_sn_get_master_baseio_nasid(void)
201 {
202 	struct ia64_sal_retval ret_stuff;
203 
204 	ret_stuff.status = 0;
205 	ret_stuff.v0 = 0;
206 	ret_stuff.v1 = 0;
207 	ret_stuff.v2 = 0;
208 	SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
209 
210 	if (ret_stuff.status < 0)
211 		return ret_stuff.status;
212 
213 	/* Master baseio nasid is in 'v0' */
214 	return ret_stuff.v0;
215 }
216 
217 static inline void *
218 ia64_sn_get_klconfig_addr(nasid_t nasid)
219 {
220 	struct ia64_sal_retval ret_stuff;
221 
222 	ret_stuff.status = 0;
223 	ret_stuff.v0 = 0;
224 	ret_stuff.v1 = 0;
225 	ret_stuff.v2 = 0;
226 	SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
227 	return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
228 }
229 
230 /*
231  * Returns the next console character.
232  */
233 static inline u64
234 ia64_sn_console_getc(int *ch)
235 {
236 	struct ia64_sal_retval ret_stuff;
237 
238 	ret_stuff.status = 0;
239 	ret_stuff.v0 = 0;
240 	ret_stuff.v1 = 0;
241 	ret_stuff.v2 = 0;
242 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
243 
244 	/* character is in 'v0' */
245 	*ch = (int)ret_stuff.v0;
246 
247 	return ret_stuff.status;
248 }
249 
250 /*
251  * Read a character from the SAL console device, after a previous interrupt
252  * or poll operation has given us to know that a character is available
253  * to be read.
254  */
255 static inline u64
256 ia64_sn_console_readc(void)
257 {
258 	struct ia64_sal_retval ret_stuff;
259 
260 	ret_stuff.status = 0;
261 	ret_stuff.v0 = 0;
262 	ret_stuff.v1 = 0;
263 	ret_stuff.v2 = 0;
264 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
265 
266 	/* character is in 'v0' */
267 	return ret_stuff.v0;
268 }
269 
270 /*
271  * Sends the given character to the console.
272  */
273 static inline u64
274 ia64_sn_console_putc(char ch)
275 {
276 	struct ia64_sal_retval ret_stuff;
277 
278 	ret_stuff.status = 0;
279 	ret_stuff.v0 = 0;
280 	ret_stuff.v1 = 0;
281 	ret_stuff.v2 = 0;
282 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
283 
284 	return ret_stuff.status;
285 }
286 
287 /*
288  * Sends the given buffer to the console.
289  */
290 static inline u64
291 ia64_sn_console_putb(const char *buf, int len)
292 {
293 	struct ia64_sal_retval ret_stuff;
294 
295 	ret_stuff.status = 0;
296 	ret_stuff.v0 = 0;
297 	ret_stuff.v1 = 0;
298 	ret_stuff.v2 = 0;
299 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
300 
301 	if ( ret_stuff.status == 0 ) {
302 		return ret_stuff.v0;
303 	}
304 	return (u64)0;
305 }
306 
307 /*
308  * Print a platform error record
309  */
310 static inline u64
311 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
312 {
313 	struct ia64_sal_retval ret_stuff;
314 
315 	ret_stuff.status = 0;
316 	ret_stuff.v0 = 0;
317 	ret_stuff.v1 = 0;
318 	ret_stuff.v2 = 0;
319 	SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
320 
321 	return ret_stuff.status;
322 }
323 
324 /*
325  * Check for Platform errors
326  */
327 static inline u64
328 ia64_sn_plat_cpei_handler(void)
329 {
330 	struct ia64_sal_retval ret_stuff;
331 
332 	ret_stuff.status = 0;
333 	ret_stuff.v0 = 0;
334 	ret_stuff.v1 = 0;
335 	ret_stuff.v2 = 0;
336 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
337 
338 	return ret_stuff.status;
339 }
340 
341 /*
342  * Set Error Handling Features	(Obsolete)
343  */
344 static inline u64
345 ia64_sn_plat_set_error_handling_features(void)
346 {
347 	struct ia64_sal_retval ret_stuff;
348 
349 	ret_stuff.status = 0;
350 	ret_stuff.v0 = 0;
351 	ret_stuff.v1 = 0;
352 	ret_stuff.v2 = 0;
353 	SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
354 		SAL_ERR_FEAT_LOG_SBES,
355 		0, 0, 0, 0, 0, 0);
356 
357 	return ret_stuff.status;
358 }
359 
360 /*
361  * Checks for console input.
362  */
363 static inline u64
364 ia64_sn_console_check(int *result)
365 {
366 	struct ia64_sal_retval ret_stuff;
367 
368 	ret_stuff.status = 0;
369 	ret_stuff.v0 = 0;
370 	ret_stuff.v1 = 0;
371 	ret_stuff.v2 = 0;
372 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
373 
374 	/* result is in 'v0' */
375 	*result = (int)ret_stuff.v0;
376 
377 	return ret_stuff.status;
378 }
379 
380 /*
381  * Checks console interrupt status
382  */
383 static inline u64
384 ia64_sn_console_intr_status(void)
385 {
386 	struct ia64_sal_retval ret_stuff;
387 
388 	ret_stuff.status = 0;
389 	ret_stuff.v0 = 0;
390 	ret_stuff.v1 = 0;
391 	ret_stuff.v2 = 0;
392 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
393 		 0, SAL_CONSOLE_INTR_STATUS,
394 		 0, 0, 0, 0, 0);
395 
396 	if (ret_stuff.status == 0) {
397 	    return ret_stuff.v0;
398 	}
399 
400 	return 0;
401 }
402 
403 /*
404  * Enable an interrupt on the SAL console device.
405  */
406 static inline void
407 ia64_sn_console_intr_enable(u64 intr)
408 {
409 	struct ia64_sal_retval ret_stuff;
410 
411 	ret_stuff.status = 0;
412 	ret_stuff.v0 = 0;
413 	ret_stuff.v1 = 0;
414 	ret_stuff.v2 = 0;
415 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
416 		 intr, SAL_CONSOLE_INTR_ON,
417 		 0, 0, 0, 0, 0);
418 }
419 
420 /*
421  * Disable an interrupt on the SAL console device.
422  */
423 static inline void
424 ia64_sn_console_intr_disable(u64 intr)
425 {
426 	struct ia64_sal_retval ret_stuff;
427 
428 	ret_stuff.status = 0;
429 	ret_stuff.v0 = 0;
430 	ret_stuff.v1 = 0;
431 	ret_stuff.v2 = 0;
432 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
433 		 intr, SAL_CONSOLE_INTR_OFF,
434 		 0, 0, 0, 0, 0);
435 }
436 
437 /*
438  * Sends a character buffer to the console asynchronously.
439  */
440 static inline u64
441 ia64_sn_console_xmit_chars(char *buf, int len)
442 {
443 	struct ia64_sal_retval ret_stuff;
444 
445 	ret_stuff.status = 0;
446 	ret_stuff.v0 = 0;
447 	ret_stuff.v1 = 0;
448 	ret_stuff.v2 = 0;
449 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
450 		 (u64)buf, (u64)len,
451 		 0, 0, 0, 0, 0);
452 
453 	if (ret_stuff.status == 0) {
454 	    return ret_stuff.v0;
455 	}
456 
457 	return 0;
458 }
459 
460 /*
461  * Returns the iobrick module Id
462  */
463 static inline u64
464 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
465 {
466 	struct ia64_sal_retval ret_stuff;
467 
468 	ret_stuff.status = 0;
469 	ret_stuff.v0 = 0;
470 	ret_stuff.v1 = 0;
471 	ret_stuff.v2 = 0;
472 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
473 
474 	/* result is in 'v0' */
475 	*result = (int)ret_stuff.v0;
476 
477 	return ret_stuff.status;
478 }
479 
480 /**
481  * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
482  *
483  * SN_SAL_POD_MODE actually takes an argument, but it's always
484  * 0 when we call it from the kernel, so we don't have to expose
485  * it to the caller.
486  */
487 static inline u64
488 ia64_sn_pod_mode(void)
489 {
490 	struct ia64_sal_retval isrv;
491 	SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
492 	if (isrv.status)
493 		return 0;
494 	return isrv.v0;
495 }
496 
497 /**
498  * ia64_sn_probe_mem - read from memory safely
499  * @addr: address to probe
500  * @size: number bytes to read (1,2,4,8)
501  * @data_ptr: address to store value read by probe (-1 returned if probe fails)
502  *
503  * Call into the SAL to do a memory read.  If the read generates a machine
504  * check, this routine will recover gracefully and return -1 to the caller.
505  * @addr is usually a kernel virtual address in uncached space (i.e. the
506  * address starts with 0xc), but if called in physical mode, @addr should
507  * be a physical address.
508  *
509  * Return values:
510  *  0 - probe successful
511  *  1 - probe failed (generated MCA)
512  *  2 - Bad arg
513  * <0 - PAL error
514  */
515 static inline u64
516 ia64_sn_probe_mem(long addr, long size, void *data_ptr)
517 {
518 	struct ia64_sal_retval isrv;
519 
520 	SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
521 
522 	if (data_ptr) {
523 		switch (size) {
524 		case 1:
525 			*((u8*)data_ptr) = (u8)isrv.v0;
526 			break;
527 		case 2:
528 			*((u16*)data_ptr) = (u16)isrv.v0;
529 			break;
530 		case 4:
531 			*((u32*)data_ptr) = (u32)isrv.v0;
532 			break;
533 		case 8:
534 			*((u64*)data_ptr) = (u64)isrv.v0;
535 			break;
536 		default:
537 			isrv.status = 2;
538 		}
539 	}
540 	return isrv.status;
541 }
542 
543 /*
544  * Retrieve the system serial number as an ASCII string.
545  */
546 static inline u64
547 ia64_sn_sys_serial_get(char *buf)
548 {
549 	struct ia64_sal_retval ret_stuff;
550 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
551 	return ret_stuff.status;
552 }
553 
554 extern char sn_system_serial_number_string[];
555 extern u64 sn_partition_serial_number;
556 
557 static inline char *
558 sn_system_serial_number(void) {
559 	if (sn_system_serial_number_string[0]) {
560 		return(sn_system_serial_number_string);
561 	} else {
562 		ia64_sn_sys_serial_get(sn_system_serial_number_string);
563 		return(sn_system_serial_number_string);
564 	}
565 }
566 
567 
568 /*
569  * Returns a unique id number for this system and partition (suitable for
570  * use with license managers), based in part on the system serial number.
571  */
572 static inline u64
573 ia64_sn_partition_serial_get(void)
574 {
575 	struct ia64_sal_retval ret_stuff;
576 	ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
577 				   0, 0, 0, 0, 0, 0);
578 	if (ret_stuff.status != 0)
579 	    return 0;
580 	return ret_stuff.v0;
581 }
582 
583 static inline u64
584 sn_partition_serial_number_val(void) {
585 	if (unlikely(sn_partition_serial_number == 0)) {
586 		sn_partition_serial_number = ia64_sn_partition_serial_get();
587 	}
588 	return sn_partition_serial_number;
589 }
590 
591 /*
592  * Returns the partition id of the nasid passed in as an argument,
593  * or INVALID_PARTID if the partition id cannot be retrieved.
594  */
595 static inline partid_t
596 ia64_sn_sysctl_partition_get(nasid_t nasid)
597 {
598 	struct ia64_sal_retval ret_stuff;
599 	SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
600 		0, 0, 0, 0, 0, 0);
601 	if (ret_stuff.status != 0)
602 	    return -1;
603 	return ((partid_t)ret_stuff.v0);
604 }
605 
606 /*
607  * Returns the physical address of the partition's reserved page through
608  * an iterative number of calls.
609  *
610  * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
611  * set to the nasid of the partition whose reserved page's address is
612  * being sought.
613  * On subsequent calls, pass the values, that were passed back on the
614  * previous call.
615  *
616  * While the return status equals SALRET_MORE_PASSES, keep calling
617  * this function after first copying 'len' bytes starting at 'addr'
618  * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
619  * be the physical address of the partition's reserved page. If the
620  * return status equals neither of these, an error as occurred.
621  */
622 static inline s64
623 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
624 {
625 	struct ia64_sal_retval rv;
626 	ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
627 				   *addr, buf, *len, 0, 0, 0);
628 	*cookie = rv.v0;
629 	*addr = rv.v1;
630 	*len = rv.v2;
631 	return rv.status;
632 }
633 
634 /*
635  * Register or unregister a physical address range being referenced across
636  * a partition boundary for which certain SAL errors should be scanned for,
637  * cleaned up and ignored.  This is of value for kernel partitioning code only.
638  * Values for the operation argument:
639  *	1 = register this address range with SAL
640  *	0 = unregister this address range with SAL
641  *
642  * SAL maintains a reference count on an address range in case it is registered
643  * multiple times.
644  *
645  * On success, returns the reference count of the address range after the SAL
646  * call has performed the current registration/unregistration.  Returns a
647  * negative value if an error occurred.
648  */
649 static inline int
650 sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
651 {
652 	struct ia64_sal_retval ret_stuff;
653 	ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
654 			 (u64)operation, 0, 0, 0, 0);
655 	return ret_stuff.status;
656 }
657 
658 /*
659  * Register or unregister an instruction range for which SAL errors should
660  * be ignored.  If an error occurs while in the registered range, SAL jumps
661  * to return_addr after ignoring the error.  Values for the operation argument:
662  *	1 = register this instruction range with SAL
663  *	0 = unregister this instruction range with SAL
664  *
665  * Returns 0 on success, or a negative value if an error occurred.
666  */
667 static inline int
668 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
669 			 int virtual, int operation)
670 {
671 	struct ia64_sal_retval ret_stuff;
672 	u64 call;
673 	if (virtual) {
674 		call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
675 	} else {
676 		call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
677 	}
678 	ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
679 			 (u64)1, 0, 0, 0);
680 	return ret_stuff.status;
681 }
682 
683 /*
684  * Register or unregister a function to handle a PMI received by a CPU.
685  * Before calling the registered handler, SAL sets r1 to the value that
686  * was passed in as the global_pointer.
687  *
688  * If the handler pointer is NULL, then the currently registered handler
689  * will be unregistered.
690  *
691  * Returns 0 on success, or a negative value if an error occurred.
692  */
693 static inline int
694 sn_register_pmi_handler(u64 handler, u64 global_pointer)
695 {
696 	struct ia64_sal_retval ret_stuff;
697 	ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler,
698 			 global_pointer, 0, 0, 0, 0, 0);
699 	return ret_stuff.status;
700 }
701 
702 /*
703  * Change or query the coherence domain for this partition. Each cpu-based
704  * nasid is represented by a bit in an array of 64-bit words:
705  *      0 = not in this partition's coherency domain
706  *      1 = in this partition's coherency domain
707  *
708  * It is not possible for the local system's nasids to be removed from
709  * the coherency domain.  Purpose of the domain arguments:
710  *      new_domain = set the coherence domain to the given nasids
711  *      old_domain = return the current coherence domain
712  *
713  * Returns 0 on success, or a negative value if an error occurred.
714  */
715 static inline int
716 sn_change_coherence(u64 *new_domain, u64 *old_domain)
717 {
718 	struct ia64_sal_retval ret_stuff;
719 	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
720 				(u64)old_domain, 0, 0, 0, 0, 0);
721 	return ret_stuff.status;
722 }
723 
724 /*
725  * Change memory access protections for a physical address range.
726  * nasid_array is not used on Altix, but may be in future architectures.
727  * Available memory protection access classes are defined after the function.
728  */
729 static inline int
730 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
731 {
732 	struct ia64_sal_retval ret_stuff;
733 
734 	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
735 				(u64)nasid_array, perms, 0, 0, 0);
736 	return ret_stuff.status;
737 }
738 #define SN_MEMPROT_ACCESS_CLASS_0		0x14a080
739 #define SN_MEMPROT_ACCESS_CLASS_1		0x2520c2
740 #define SN_MEMPROT_ACCESS_CLASS_2		0x14a1ca
741 #define SN_MEMPROT_ACCESS_CLASS_3		0x14a290
742 #define SN_MEMPROT_ACCESS_CLASS_6		0x084080
743 #define SN_MEMPROT_ACCESS_CLASS_7		0x021080
744 
745 /*
746  * Turns off system power.
747  */
748 static inline void
749 ia64_sn_power_down(void)
750 {
751 	struct ia64_sal_retval ret_stuff;
752 	SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
753 	while(1)
754 		cpu_relax();
755 	/* never returns */
756 }
757 
758 /**
759  * ia64_sn_fru_capture - tell the system controller to capture hw state
760  *
761  * This routine will call the SAL which will tell the system controller(s)
762  * to capture hw mmr information from each SHub in the system.
763  */
764 static inline u64
765 ia64_sn_fru_capture(void)
766 {
767         struct ia64_sal_retval isrv;
768         SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
769         if (isrv.status)
770                 return 0;
771         return isrv.v0;
772 }
773 
774 /*
775  * Performs an operation on a PCI bus or slot -- power up, power down
776  * or reset.
777  */
778 static inline u64
779 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
780 			      u64 bus, char slot,
781 			      u64 action)
782 {
783 	struct ia64_sal_retval rv = {0, 0, 0, 0};
784 
785 	SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
786 		 bus, (u64) slot, 0, 0);
787 	if (rv.status)
788 	    	return rv.v0;
789 	return 0;
790 }
791 
792 
793 /*
794  * Open a subchannel for sending arbitrary data to the system
795  * controller network via the system controller device associated with
796  * 'nasid'.  Return the subchannel number or a negative error code.
797  */
798 static inline int
799 ia64_sn_irtr_open(nasid_t nasid)
800 {
801 	struct ia64_sal_retval rv;
802 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
803 			   0, 0, 0, 0, 0);
804 	return (int) rv.v0;
805 }
806 
807 /*
808  * Close system controller subchannel 'subch' previously opened on 'nasid'.
809  */
810 static inline int
811 ia64_sn_irtr_close(nasid_t nasid, int subch)
812 {
813 	struct ia64_sal_retval rv;
814 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
815 			   (u64) nasid, (u64) subch, 0, 0, 0, 0);
816 	return (int) rv.status;
817 }
818 
819 /*
820  * Read data from system controller associated with 'nasid' on
821  * subchannel 'subch'.  The buffer to be filled is pointed to by
822  * 'buf', and its capacity is in the integer pointed to by 'len'.  The
823  * referent of 'len' is set to the number of bytes read by the SAL
824  * call.  The return value is either SALRET_OK (for bytes read) or
825  * SALRET_ERROR (for error or "no data available").
826  */
827 static inline int
828 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
829 {
830 	struct ia64_sal_retval rv;
831 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
832 			   (u64) nasid, (u64) subch, (u64) buf, (u64) len,
833 			   0, 0);
834 	return (int) rv.status;
835 }
836 
837 /*
838  * Write data to the system controller network via the system
839  * controller associated with 'nasid' on suchannel 'subch'.  The
840  * buffer to be written out is pointed to by 'buf', and 'len' is the
841  * number of bytes to be written.  The return value is either the
842  * number of bytes written (which could be zero) or a negative error
843  * code.
844  */
845 static inline int
846 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
847 {
848 	struct ia64_sal_retval rv;
849 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
850 			   (u64) nasid, (u64) subch, (u64) buf, (u64) len,
851 			   0, 0);
852 	return (int) rv.v0;
853 }
854 
855 /*
856  * Check whether any interrupts are pending for the system controller
857  * associated with 'nasid' and its subchannel 'subch'.  The return
858  * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
859  * SAL_IROUTER_INTR_RECV).
860  */
861 static inline int
862 ia64_sn_irtr_intr(nasid_t nasid, int subch)
863 {
864 	struct ia64_sal_retval rv;
865 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
866 			   (u64) nasid, (u64) subch, 0, 0, 0, 0);
867 	return (int) rv.v0;
868 }
869 
870 /*
871  * Enable the interrupt indicated by the intr parameter (either
872  * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
873  */
874 static inline int
875 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
876 {
877 	struct ia64_sal_retval rv;
878 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
879 			   (u64) nasid, (u64) subch, intr, 0, 0, 0);
880 	return (int) rv.v0;
881 }
882 
883 /*
884  * Disable the interrupt indicated by the intr parameter (either
885  * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
886  */
887 static inline int
888 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
889 {
890 	struct ia64_sal_retval rv;
891 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
892 			   (u64) nasid, (u64) subch, intr, 0, 0, 0);
893 	return (int) rv.v0;
894 }
895 
896 /*
897  * Set up a node as the point of contact for system controller
898  * environmental event delivery.
899  */
900 static inline int
901 ia64_sn_sysctl_event_init(nasid_t nasid)
902 {
903         struct ia64_sal_retval rv;
904         SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
905 			   0, 0, 0, 0, 0, 0);
906         return (int) rv.v0;
907 }
908 
909 /*
910  * Ask the system controller on the specified nasid to reset
911  * the CX corelet clock.  Only valid on TIO nodes.
912  */
913 static inline int
914 ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
915 {
916 	struct ia64_sal_retval rv;
917 	SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
918 			nasid, 0, 0, 0, 0, 0);
919 	if (rv.status != 0)
920 		return (int)rv.status;
921 	if (rv.v0 != 0)
922 		return (int)rv.v0;
923 
924 	return 0;
925 }
926 
927 /*
928  * Get the associated ioboard type for a given nasid.
929  */
930 static inline s64
931 ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
932 {
933 	struct ia64_sal_retval isrv;
934 	SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
935 			   nasid, 0, 0, 0, 0, 0);
936 	if (isrv.v0 != 0) {
937 		*ioboard = isrv.v0;
938 		return isrv.status;
939 	}
940 	if (isrv.v1 != 0) {
941 		*ioboard = isrv.v1;
942 		return isrv.status;
943 	}
944 
945 	return isrv.status;
946 }
947 
948 /**
949  * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
950  * @nasid: NASID of node to read
951  * @index: FIT entry index to be retrieved (0..n)
952  * @fitentry: 16 byte buffer where FIT entry will be stored.
953  * @banbuf: optional buffer for retrieving banner
954  * @banlen: length of banner buffer
955  *
956  * Access to the physical PROM chips needs to be serialized since reads and
957  * writes can't occur at the same time, so we need to call into the SAL when
958  * we want to look at the FIT entries on the chips.
959  *
960  * Returns:
961  *	%SALRET_OK if ok
962  *	%SALRET_INVALID_ARG if index too big
963  *	%SALRET_NOT_IMPLEMENTED if running on older PROM
964  *	??? if nasid invalid OR banner buffer not large enough
965  */
966 static inline int
967 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
968 		      u64 banlen)
969 {
970 	struct ia64_sal_retval rv;
971 	SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
972 			banbuf, banlen, 0, 0);
973 	return (int) rv.status;
974 }
975 
976 /*
977  * Initialize the SAL components of the system controller
978  * communication driver; specifically pass in a sizable buffer that
979  * can be used for allocation of subchannel queues as new subchannels
980  * are opened.  "buf" points to the buffer, and "len" specifies its
981  * length.
982  */
983 static inline int
984 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
985 {
986 	struct ia64_sal_retval rv;
987 	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
988 			   (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
989 	return (int) rv.status;
990 }
991 
992 /*
993  * Returns the nasid, subnode & slice corresponding to a SAPIC ID
994  *
995  *  In:
996  *	arg0 - SN_SAL_GET_SAPIC_INFO
997  *	arg1 - sapicid (lid >> 16)
998  *  Out:
999  *	v0 - nasid
1000  *	v1 - subnode
1001  *	v2 - slice
1002  */
1003 static inline u64
1004 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
1005 {
1006 	struct ia64_sal_retval ret_stuff;
1007 
1008 	ret_stuff.status = 0;
1009 	ret_stuff.v0 = 0;
1010 	ret_stuff.v1 = 0;
1011 	ret_stuff.v2 = 0;
1012 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
1013 
1014 /***** BEGIN HACK - temp til old proms no longer supported ********/
1015 	if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1016 		if (nasid) *nasid = sapicid & 0xfff;
1017 		if (subnode) *subnode = (sapicid >> 13) & 1;
1018 		if (slice) *slice = (sapicid >> 12) & 3;
1019 		return 0;
1020 	}
1021 /***** END HACK *******/
1022 
1023 	if (ret_stuff.status < 0)
1024 		return ret_stuff.status;
1025 
1026 	if (nasid) *nasid = (int) ret_stuff.v0;
1027 	if (subnode) *subnode = (int) ret_stuff.v1;
1028 	if (slice) *slice = (int) ret_stuff.v2;
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Returns information about the HUB/SHUB.
1034  *  In:
1035  *	arg0 - SN_SAL_GET_SN_INFO
1036  * 	arg1 - 0 (other values reserved for future use)
1037  *  Out:
1038  *	v0
1039  *		[7:0]   - shub type (0=shub1, 1=shub2)
1040  *		[15:8]  - Log2 max number of nodes in entire system (includes
1041  *			  C-bricks, I-bricks, etc)
1042  *		[23:16] - Log2 of nodes per sharing domain
1043  * 		[31:24] - partition ID
1044  * 		[39:32] - coherency_id
1045  * 		[47:40] - regionsize
1046  *	v1
1047  *		[15:0]  - nasid mask (ex., 0x7ff for 11 bit nasid)
1048  *	 	[23:15] - bit position of low nasid bit
1049  */
1050 static inline u64
1051 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1052 		u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1053 {
1054 	struct ia64_sal_retval ret_stuff;
1055 
1056 	ret_stuff.status = 0;
1057 	ret_stuff.v0 = 0;
1058 	ret_stuff.v1 = 0;
1059 	ret_stuff.v2 = 0;
1060 	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1061 
1062 /***** BEGIN HACK - temp til old proms no longer supported ********/
1063 	if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1064 		int nasid = get_sapicid() & 0xfff;
1065 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1066 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1067 		if (shubtype) *shubtype = 0;
1068 		if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1069 		if (nasid_shift) *nasid_shift = 38;
1070 		if (systemsize) *systemsize = 10;
1071 		if (sharing_domain_size) *sharing_domain_size = 8;
1072 		if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1073 		if (coher) *coher = nasid >> 9;
1074 		if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1075 			SH_SHUB_ID_NODES_PER_BIT_SHFT;
1076 		return 0;
1077 	}
1078 /***** END HACK *******/
1079 
1080 	if (ret_stuff.status < 0)
1081 		return ret_stuff.status;
1082 
1083 	if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1084 	if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1085 	if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1086 	if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1087 	if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1088 	if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1089 	if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1090 	if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1091 	return 0;
1092 }
1093 
1094 /*
1095  * This is the access point to the Altix PROM hardware performance
1096  * and status monitoring interface. For info on using this, see
1097  * arch/ia64/include/asm/sn/sn2/sn_hwperf.h
1098  */
1099 static inline int
1100 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1101                   u64 a3, u64 a4, int *v0)
1102 {
1103 	struct ia64_sal_retval rv;
1104 	SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1105 		opcode, a0, a1, a2, a3, a4);
1106 	if (v0)
1107 		*v0 = (int) rv.v0;
1108 	return (int) rv.status;
1109 }
1110 
1111 static inline int
1112 ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1113 {
1114 	struct ia64_sal_retval rv;
1115 	SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1116 	return (int) rv.status;
1117 }
1118 
1119 /*
1120  * BTE error recovery is implemented in SAL
1121  */
1122 static inline int
1123 ia64_sn_bte_recovery(nasid_t nasid)
1124 {
1125 	struct ia64_sal_retval rv;
1126 
1127 	rv.status = 0;
1128 	SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
1129 	if (rv.status == SALRET_NOT_IMPLEMENTED)
1130 		return 0;
1131 	return (int) rv.status;
1132 }
1133 
1134 static inline int
1135 ia64_sn_is_fake_prom(void)
1136 {
1137 	struct ia64_sal_retval rv;
1138 	SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1139 	return (rv.status == 0);
1140 }
1141 
1142 static inline int
1143 ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1144 {
1145 	struct ia64_sal_retval rv;
1146 
1147 	SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1148 	if (rv.status != 0)
1149 		return rv.status;
1150 	*feature_set = rv.v0;
1151 	return 0;
1152 }
1153 
1154 static inline int
1155 ia64_sn_set_os_feature(int feature)
1156 {
1157 	struct ia64_sal_retval rv;
1158 
1159 	SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1160 	return rv.status;
1161 }
1162 
1163 static inline int
1164 sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
1165 {
1166 	struct ia64_sal_retval ret_stuff;
1167 
1168 	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
1169 				(u64)ecc, 0, 0, 0, 0);
1170 	return ret_stuff.status;
1171 }
1172 
1173 static inline int
1174 ia64_sn_set_cpu_number(int cpu)
1175 {
1176 	struct ia64_sal_retval rv;
1177 
1178 	SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0);
1179 	return rv.status;
1180 }
1181 static inline int
1182 ia64_sn_kernel_launch_event(void)
1183 {
1184  	struct ia64_sal_retval rv;
1185 	SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0);
1186 	return rv.status;
1187 }
1188 #endif /* _ASM_IA64_SN_SN_SAL_H */
1189