1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_IA64_PROCESSOR_H 3 #define _ASM_IA64_PROCESSOR_H 4 5 /* 6 * Copyright (C) 1998-2004 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Stephane Eranian <eranian@hpl.hp.com> 9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 11 * 12 * 11/24/98 S.Eranian added ia64_set_iva() 13 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API 14 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support 15 */ 16 17 18 #include <asm/intrinsics.h> 19 #include <asm/kregs.h> 20 #include <asm/ptrace.h> 21 #include <asm/ustack.h> 22 23 #define IA64_NUM_PHYS_STACK_REG 96 24 #define IA64_NUM_DBG_REGS 8 25 26 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) 27 #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) 28 29 /* 30 * TASK_SIZE really is a mis-named. It really is the maximum user 31 * space address (plus one). On IA-64, there are five regions of 2TB 32 * each (assuming 8KB page size), for a total of 8TB of user virtual 33 * address space. 34 */ 35 #define TASK_SIZE DEFAULT_TASK_SIZE 36 37 /* 38 * This decides where the kernel will search for a free chunk of vm 39 * space during mmap's. 40 */ 41 #define TASK_UNMAPPED_BASE (current->thread.map_base) 42 43 #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ 44 #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ 45 #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ 46 #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ 47 #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ 48 #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration 49 sync at ctx sw */ 50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ 51 #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ 52 53 #define IA64_THREAD_UAC_SHIFT 3 54 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) 55 #define IA64_THREAD_FPEMU_SHIFT 6 56 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) 57 58 59 /* 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number). 63 */ 64 #define IA64_NSEC_PER_CYC_SHIFT 30 65 66 #ifndef __ASSEMBLY__ 67 68 #include <linux/cache.h> 69 #include <linux/compiler.h> 70 #include <linux/threads.h> 71 #include <linux/types.h> 72 #include <linux/bitops.h> 73 74 #include <asm/fpu.h> 75 #include <asm/page.h> 76 #include <asm/percpu.h> 77 #include <asm/rse.h> 78 #include <asm/unwind.h> 79 #include <linux/atomic.h> 80 #ifdef CONFIG_NUMA 81 #include <asm/nodedata.h> 82 #endif 83 84 /* like above but expressed as bitfields for more efficient access: */ 85 struct ia64_psr { 86 __u64 reserved0 : 1; 87 __u64 be : 1; 88 __u64 up : 1; 89 __u64 ac : 1; 90 __u64 mfl : 1; 91 __u64 mfh : 1; 92 __u64 reserved1 : 7; 93 __u64 ic : 1; 94 __u64 i : 1; 95 __u64 pk : 1; 96 __u64 reserved2 : 1; 97 __u64 dt : 1; 98 __u64 dfl : 1; 99 __u64 dfh : 1; 100 __u64 sp : 1; 101 __u64 pp : 1; 102 __u64 di : 1; 103 __u64 si : 1; 104 __u64 db : 1; 105 __u64 lp : 1; 106 __u64 tb : 1; 107 __u64 rt : 1; 108 __u64 reserved3 : 4; 109 __u64 cpl : 2; 110 __u64 is : 1; 111 __u64 mc : 1; 112 __u64 it : 1; 113 __u64 id : 1; 114 __u64 da : 1; 115 __u64 dd : 1; 116 __u64 ss : 1; 117 __u64 ri : 2; 118 __u64 ed : 1; 119 __u64 bn : 1; 120 __u64 reserved4 : 19; 121 }; 122 123 union ia64_isr { 124 __u64 val; 125 struct { 126 __u64 code : 16; 127 __u64 vector : 8; 128 __u64 reserved1 : 8; 129 __u64 x : 1; 130 __u64 w : 1; 131 __u64 r : 1; 132 __u64 na : 1; 133 __u64 sp : 1; 134 __u64 rs : 1; 135 __u64 ir : 1; 136 __u64 ni : 1; 137 __u64 so : 1; 138 __u64 ei : 2; 139 __u64 ed : 1; 140 __u64 reserved2 : 20; 141 }; 142 }; 143 144 union ia64_lid { 145 __u64 val; 146 struct { 147 __u64 rv : 16; 148 __u64 eid : 8; 149 __u64 id : 8; 150 __u64 ig : 32; 151 }; 152 }; 153 154 union ia64_tpr { 155 __u64 val; 156 struct { 157 __u64 ig0 : 4; 158 __u64 mic : 4; 159 __u64 rsv : 8; 160 __u64 mmi : 1; 161 __u64 ig1 : 47; 162 }; 163 }; 164 165 union ia64_itir { 166 __u64 val; 167 struct { 168 __u64 rv3 : 2; /* 0-1 */ 169 __u64 ps : 6; /* 2-7 */ 170 __u64 key : 24; /* 8-31 */ 171 __u64 rv4 : 32; /* 32-63 */ 172 }; 173 }; 174 175 union ia64_rr { 176 __u64 val; 177 struct { 178 __u64 ve : 1; /* enable hw walker */ 179 __u64 reserved0: 1; /* reserved */ 180 __u64 ps : 6; /* log page size */ 181 __u64 rid : 24; /* region id */ 182 __u64 reserved1: 32; /* reserved */ 183 }; 184 }; 185 186 /* 187 * CPU type, hardware bug flags, and per-CPU state. Frequently used 188 * state comes earlier: 189 */ 190 struct cpuinfo_ia64 { 191 unsigned int softirq_pending; 192 unsigned long itm_delta; /* # of clock cycles between clock ticks */ 193 unsigned long itm_next; /* interval timer mask value to use for next clock tick */ 194 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ 195 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ 196 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ 197 unsigned long itc_freq; /* frequency of ITC counter */ 198 unsigned long proc_freq; /* frequency of processor */ 199 unsigned long cyc_per_usec; /* itc_freq/1000000 */ 200 unsigned long ptce_base; 201 unsigned int ptce_count[2]; 202 unsigned int ptce_stride[2]; 203 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ 204 205 #ifdef CONFIG_SMP 206 unsigned long loops_per_jiffy; 207 int cpu; 208 unsigned int socket_id; /* physical processor socket id */ 209 unsigned short core_id; /* core id */ 210 unsigned short thread_id; /* thread id */ 211 unsigned short num_log; /* Total number of logical processors on 212 * this socket that were successfully booted */ 213 unsigned char cores_per_socket; /* Cores per processor socket */ 214 unsigned char threads_per_core; /* Threads per core */ 215 #endif 216 217 /* CPUID-derived information: */ 218 unsigned long ppn; 219 unsigned long features; 220 unsigned char number; 221 unsigned char revision; 222 unsigned char model; 223 unsigned char family; 224 unsigned char archrev; 225 char vendor[16]; 226 char *model_name; 227 228 #ifdef CONFIG_NUMA 229 struct ia64_node_data *node_data; 230 #endif 231 }; 232 233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); 234 235 /* 236 * The "local" data variable. It refers to the per-CPU data of the currently executing 237 * CPU, much like "current" points to the per-task data of the currently executing task. 238 * Do not use the address of local_cpu_data, since it will be different from 239 * cpu_data(smp_processor_id())! 240 */ 241 #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info)) 242 #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu)) 243 244 extern void print_cpu_info (struct cpuinfo_ia64 *); 245 246 typedef struct { 247 unsigned long seg; 248 } mm_segment_t; 249 250 #define SET_UNALIGN_CTL(task,value) \ 251 ({ \ 252 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ 253 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 254 0; \ 255 }) 256 #define GET_UNALIGN_CTL(task,addr) \ 257 ({ \ 258 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ 259 (int __user *) (addr)); \ 260 }) 261 262 #define SET_FPEMU_CTL(task,value) \ 263 ({ \ 264 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ 265 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 266 0; \ 267 }) 268 #define GET_FPEMU_CTL(task,addr) \ 269 ({ \ 270 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ 271 (int __user *) (addr)); \ 272 }) 273 274 struct thread_struct { 275 __u32 flags; /* various thread flags (see IA64_THREAD_*) */ 276 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ 277 __u8 on_ustack; /* executing on user-stacks? */ 278 __u8 pad[3]; 279 __u64 ksp; /* kernel stack pointer */ 280 __u64 map_base; /* base address for get_unmapped_area() */ 281 __u64 rbs_bot; /* the base address for the RBS */ 282 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ 283 unsigned long dbr[IA64_NUM_DBG_REGS]; 284 unsigned long ibr[IA64_NUM_DBG_REGS]; 285 struct ia64_fpreg fph[96]; /* saved/loaded on demand */ 286 }; 287 288 #define INIT_THREAD { \ 289 .flags = 0, \ 290 .on_ustack = 0, \ 291 .ksp = 0, \ 292 .map_base = DEFAULT_MAP_BASE, \ 293 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ 294 .last_fph_cpu = -1, \ 295 .dbr = {0, }, \ 296 .ibr = {0, }, \ 297 .fph = {{{{0}}}, } \ 298 } 299 300 #define start_thread(regs,new_ip,new_sp) do { \ 301 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ 302 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ 303 regs->cr_iip = new_ip; \ 304 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ 305 regs->ar_rnat = 0; \ 306 regs->ar_bspstore = current->thread.rbs_bot; \ 307 regs->ar_fpsr = FPSR_DEFAULT; \ 308 regs->loadrs = 0; \ 309 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \ 310 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ 311 if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \ 312 /* \ 313 * Zap scratch regs to avoid leaking bits between processes with different \ 314 * uid/privileges. \ 315 */ \ 316 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ 317 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ 318 } \ 319 } while (0) 320 321 /* Forward declarations, a strange C thing... */ 322 struct mm_struct; 323 struct task_struct; 324 325 /* 326 * Free all resources held by a thread. This is called after the 327 * parent of DEAD_TASK has collected the exit status of the task via 328 * wait(). 329 */ 330 #define release_thread(dead_task) 331 332 /* Get wait channel for task P. */ 333 extern unsigned long __get_wchan (struct task_struct *p); 334 335 /* Return instruction pointer of blocked task TSK. */ 336 #define KSTK_EIP(tsk) \ 337 ({ \ 338 struct pt_regs *_regs = task_pt_regs(tsk); \ 339 _regs->cr_iip + ia64_psr(_regs)->ri; \ 340 }) 341 342 /* Return stack pointer of blocked task TSK. */ 343 #define KSTK_ESP(tsk) ((tsk)->thread.ksp) 344 345 extern void ia64_getreg_unknown_kr (void); 346 extern void ia64_setreg_unknown_kr (void); 347 348 #define ia64_get_kr(regnum) \ 349 ({ \ 350 unsigned long r = 0; \ 351 \ 352 switch (regnum) { \ 353 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ 354 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ 355 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ 356 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ 357 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ 358 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ 359 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ 360 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ 361 default: ia64_getreg_unknown_kr(); break; \ 362 } \ 363 r; \ 364 }) 365 366 #define ia64_set_kr(regnum, r) \ 367 ({ \ 368 switch (regnum) { \ 369 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ 370 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ 371 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ 372 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ 373 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ 374 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ 375 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ 376 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ 377 default: ia64_setreg_unknown_kr(); break; \ 378 } \ 379 }) 380 381 /* 382 * The following three macros can't be inline functions because we don't have struct 383 * task_struct at this point. 384 */ 385 386 /* 387 * Return TRUE if task T owns the fph partition of the CPU we're running on. 388 * Must be called from code that has preemption disabled. 389 */ 390 #define ia64_is_local_fpu_owner(t) \ 391 ({ \ 392 struct task_struct *__ia64_islfo_task = (t); \ 393 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ 394 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ 395 }) 396 397 /* 398 * Mark task T as owning the fph partition of the CPU we're running on. 399 * Must be called from code that has preemption disabled. 400 */ 401 #define ia64_set_local_fpu_owner(t) do { \ 402 struct task_struct *__ia64_slfo_task = (t); \ 403 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ 404 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ 405 } while (0) 406 407 /* Mark the fph partition of task T as being invalid on all CPUs. */ 408 #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) 409 410 extern void __ia64_init_fpu (void); 411 extern void __ia64_save_fpu (struct ia64_fpreg *fph); 412 extern void __ia64_load_fpu (struct ia64_fpreg *fph); 413 extern void ia64_save_debug_regs (unsigned long *save_area); 414 extern void ia64_load_debug_regs (unsigned long *save_area); 415 416 #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 417 #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 418 419 /* load fp 0.0 into fph */ 420 static inline void 421 ia64_init_fpu (void) { 422 ia64_fph_enable(); 423 __ia64_init_fpu(); 424 ia64_fph_disable(); 425 } 426 427 /* save f32-f127 at FPH */ 428 static inline void 429 ia64_save_fpu (struct ia64_fpreg *fph) { 430 ia64_fph_enable(); 431 __ia64_save_fpu(fph); 432 ia64_fph_disable(); 433 } 434 435 /* load f32-f127 from FPH */ 436 static inline void 437 ia64_load_fpu (struct ia64_fpreg *fph) { 438 ia64_fph_enable(); 439 __ia64_load_fpu(fph); 440 ia64_fph_disable(); 441 } 442 443 static inline __u64 444 ia64_clear_ic (void) 445 { 446 __u64 psr; 447 psr = ia64_getreg(_IA64_REG_PSR); 448 ia64_stop(); 449 ia64_rsm(IA64_PSR_I | IA64_PSR_IC); 450 ia64_srlz_i(); 451 return psr; 452 } 453 454 /* 455 * Restore the psr. 456 */ 457 static inline void 458 ia64_set_psr (__u64 psr) 459 { 460 ia64_stop(); 461 ia64_setreg(_IA64_REG_PSR_L, psr); 462 ia64_srlz_i(); 463 } 464 465 /* 466 * Insert a translation into an instruction and/or data translation 467 * register. 468 */ 469 static inline void 470 ia64_itr (__u64 target_mask, __u64 tr_num, 471 __u64 vmaddr, __u64 pte, 472 __u64 log_page_size) 473 { 474 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 475 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 476 ia64_stop(); 477 if (target_mask & 0x1) 478 ia64_itri(tr_num, pte); 479 if (target_mask & 0x2) 480 ia64_itrd(tr_num, pte); 481 } 482 483 /* 484 * Insert a translation into the instruction and/or data translation 485 * cache. 486 */ 487 static inline void 488 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, 489 __u64 log_page_size) 490 { 491 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 492 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 493 ia64_stop(); 494 /* as per EAS2.6, itc must be the last instruction in an instruction group */ 495 if (target_mask & 0x1) 496 ia64_itci(pte); 497 if (target_mask & 0x2) 498 ia64_itcd(pte); 499 } 500 501 /* 502 * Purge a range of addresses from instruction and/or data translation 503 * register(s). 504 */ 505 static inline void 506 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) 507 { 508 if (target_mask & 0x1) 509 ia64_ptri(vmaddr, (log_size << 2)); 510 if (target_mask & 0x2) 511 ia64_ptrd(vmaddr, (log_size << 2)); 512 } 513 514 /* Set the interrupt vector address. The address must be suitably aligned (32KB). */ 515 static inline void 516 ia64_set_iva (void *ivt_addr) 517 { 518 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); 519 ia64_srlz_i(); 520 } 521 522 /* Set the page table address and control bits. */ 523 static inline void 524 ia64_set_pta (__u64 pta) 525 { 526 /* Note: srlz.i implies srlz.d */ 527 ia64_setreg(_IA64_REG_CR_PTA, pta); 528 ia64_srlz_i(); 529 } 530 531 static inline void 532 ia64_eoi (void) 533 { 534 ia64_setreg(_IA64_REG_CR_EOI, 0); 535 ia64_srlz_d(); 536 } 537 538 #define cpu_relax() ia64_hint(ia64_hint_pause) 539 540 static inline int 541 ia64_get_irr(unsigned int vector) 542 { 543 unsigned int reg = vector / 64; 544 unsigned int bit = vector % 64; 545 u64 irr; 546 547 switch (reg) { 548 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; 549 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; 550 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; 551 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; 552 } 553 554 return test_bit(bit, &irr); 555 } 556 557 static inline void 558 ia64_set_lrr0 (unsigned long val) 559 { 560 ia64_setreg(_IA64_REG_CR_LRR0, val); 561 ia64_srlz_d(); 562 } 563 564 static inline void 565 ia64_set_lrr1 (unsigned long val) 566 { 567 ia64_setreg(_IA64_REG_CR_LRR1, val); 568 ia64_srlz_d(); 569 } 570 571 572 /* 573 * Given the address to which a spill occurred, return the unat bit 574 * number that corresponds to this address. 575 */ 576 static inline __u64 577 ia64_unat_pos (void *spill_addr) 578 { 579 return ((__u64) spill_addr >> 3) & 0x3f; 580 } 581 582 /* 583 * Set the NaT bit of an integer register which was spilled at address 584 * SPILL_ADDR. UNAT is the mask to be updated. 585 */ 586 static inline void 587 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) 588 { 589 __u64 bit = ia64_unat_pos(spill_addr); 590 __u64 mask = 1UL << bit; 591 592 *unat = (*unat & ~mask) | (nat << bit); 593 } 594 595 static inline __u64 596 ia64_get_ivr (void) 597 { 598 __u64 r; 599 ia64_srlz_d(); 600 r = ia64_getreg(_IA64_REG_CR_IVR); 601 ia64_srlz_d(); 602 return r; 603 } 604 605 static inline void 606 ia64_set_dbr (__u64 regnum, __u64 value) 607 { 608 __ia64_set_dbr(regnum, value); 609 #ifdef CONFIG_ITANIUM 610 ia64_srlz_d(); 611 #endif 612 } 613 614 static inline __u64 615 ia64_get_dbr (__u64 regnum) 616 { 617 __u64 retval; 618 619 retval = __ia64_get_dbr(regnum); 620 #ifdef CONFIG_ITANIUM 621 ia64_srlz_d(); 622 #endif 623 return retval; 624 } 625 626 static inline __u64 627 ia64_rotr (__u64 w, __u64 n) 628 { 629 return (w >> n) | (w << (64 - n)); 630 } 631 632 #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) 633 634 /* 635 * Take a mapped kernel address and return the equivalent address 636 * in the region 7 identity mapped virtual area. 637 */ 638 static inline void * 639 ia64_imva (void *addr) 640 { 641 void *result; 642 result = (void *) ia64_tpa(addr); 643 return __va(result); 644 } 645 646 #define ARCH_HAS_PREFETCH 647 #define ARCH_HAS_PREFETCHW 648 #define ARCH_HAS_SPINLOCK_PREFETCH 649 #define PREFETCH_STRIDE L1_CACHE_BYTES 650 651 static inline void 652 prefetch (const void *x) 653 { 654 ia64_lfetch(ia64_lfhint_none, x); 655 } 656 657 static inline void 658 prefetchw (const void *x) 659 { 660 ia64_lfetch_excl(ia64_lfhint_none, x); 661 } 662 663 #define spin_lock_prefetch(x) prefetchw(x) 664 665 extern unsigned long boot_option_idle_override; 666 667 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT, 668 IDLE_NOMWAIT, IDLE_POLL}; 669 670 void default_idle(void); 671 672 #endif /* !__ASSEMBLY__ */ 673 674 #endif /* _ASM_IA64_PROCESSOR_H */ 675