1 #ifndef _ASM_IA64_PROCESSOR_H 2 #define _ASM_IA64_PROCESSOR_H 3 4 /* 5 * Copyright (C) 1998-2004 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Stephane Eranian <eranian@hpl.hp.com> 8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 10 * 11 * 11/24/98 S.Eranian added ia64_set_iva() 12 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API 13 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support 14 */ 15 16 17 #include <asm/intrinsics.h> 18 #include <asm/kregs.h> 19 #include <asm/ptrace.h> 20 #include <asm/ustack.h> 21 22 #define IA64_NUM_PHYS_STACK_REG 96 23 #define IA64_NUM_DBG_REGS 8 24 25 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) 26 #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) 27 28 /* 29 * TASK_SIZE really is a mis-named. It really is the maximum user 30 * space address (plus one). On IA-64, there are five regions of 2TB 31 * each (assuming 8KB page size), for a total of 8TB of user virtual 32 * address space. 33 */ 34 #define TASK_SIZE_OF(tsk) ((tsk)->thread.task_size) 35 #define TASK_SIZE TASK_SIZE_OF(current) 36 37 /* 38 * This decides where the kernel will search for a free chunk of vm 39 * space during mmap's. 40 */ 41 #define TASK_UNMAPPED_BASE (current->thread.map_base) 42 43 #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ 44 #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ 45 #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ 46 #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ 47 #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ 48 #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration 49 sync at ctx sw */ 50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ 51 #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ 52 53 #define IA64_THREAD_UAC_SHIFT 3 54 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) 55 #define IA64_THREAD_FPEMU_SHIFT 6 56 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) 57 58 59 /* 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number). 63 */ 64 #define IA64_NSEC_PER_CYC_SHIFT 30 65 66 #ifndef __ASSEMBLY__ 67 68 #include <linux/cache.h> 69 #include <linux/compiler.h> 70 #include <linux/threads.h> 71 #include <linux/types.h> 72 73 #include <asm/fpu.h> 74 #include <asm/page.h> 75 #include <asm/percpu.h> 76 #include <asm/rse.h> 77 #include <asm/unwind.h> 78 #include <linux/atomic.h> 79 #ifdef CONFIG_NUMA 80 #include <asm/nodedata.h> 81 #endif 82 83 /* like above but expressed as bitfields for more efficient access: */ 84 struct ia64_psr { 85 __u64 reserved0 : 1; 86 __u64 be : 1; 87 __u64 up : 1; 88 __u64 ac : 1; 89 __u64 mfl : 1; 90 __u64 mfh : 1; 91 __u64 reserved1 : 7; 92 __u64 ic : 1; 93 __u64 i : 1; 94 __u64 pk : 1; 95 __u64 reserved2 : 1; 96 __u64 dt : 1; 97 __u64 dfl : 1; 98 __u64 dfh : 1; 99 __u64 sp : 1; 100 __u64 pp : 1; 101 __u64 di : 1; 102 __u64 si : 1; 103 __u64 db : 1; 104 __u64 lp : 1; 105 __u64 tb : 1; 106 __u64 rt : 1; 107 __u64 reserved3 : 4; 108 __u64 cpl : 2; 109 __u64 is : 1; 110 __u64 mc : 1; 111 __u64 it : 1; 112 __u64 id : 1; 113 __u64 da : 1; 114 __u64 dd : 1; 115 __u64 ss : 1; 116 __u64 ri : 2; 117 __u64 ed : 1; 118 __u64 bn : 1; 119 __u64 reserved4 : 19; 120 }; 121 122 union ia64_isr { 123 __u64 val; 124 struct { 125 __u64 code : 16; 126 __u64 vector : 8; 127 __u64 reserved1 : 8; 128 __u64 x : 1; 129 __u64 w : 1; 130 __u64 r : 1; 131 __u64 na : 1; 132 __u64 sp : 1; 133 __u64 rs : 1; 134 __u64 ir : 1; 135 __u64 ni : 1; 136 __u64 so : 1; 137 __u64 ei : 2; 138 __u64 ed : 1; 139 __u64 reserved2 : 20; 140 }; 141 }; 142 143 union ia64_lid { 144 __u64 val; 145 struct { 146 __u64 rv : 16; 147 __u64 eid : 8; 148 __u64 id : 8; 149 __u64 ig : 32; 150 }; 151 }; 152 153 union ia64_tpr { 154 __u64 val; 155 struct { 156 __u64 ig0 : 4; 157 __u64 mic : 4; 158 __u64 rsv : 8; 159 __u64 mmi : 1; 160 __u64 ig1 : 47; 161 }; 162 }; 163 164 union ia64_itir { 165 __u64 val; 166 struct { 167 __u64 rv3 : 2; /* 0-1 */ 168 __u64 ps : 6; /* 2-7 */ 169 __u64 key : 24; /* 8-31 */ 170 __u64 rv4 : 32; /* 32-63 */ 171 }; 172 }; 173 174 union ia64_rr { 175 __u64 val; 176 struct { 177 __u64 ve : 1; /* enable hw walker */ 178 __u64 reserved0: 1; /* reserved */ 179 __u64 ps : 6; /* log page size */ 180 __u64 rid : 24; /* region id */ 181 __u64 reserved1: 32; /* reserved */ 182 }; 183 }; 184 185 /* 186 * CPU type, hardware bug flags, and per-CPU state. Frequently used 187 * state comes earlier: 188 */ 189 struct cpuinfo_ia64 { 190 unsigned int softirq_pending; 191 unsigned long itm_delta; /* # of clock cycles between clock ticks */ 192 unsigned long itm_next; /* interval timer mask value to use for next clock tick */ 193 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ 194 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ 195 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ 196 unsigned long itc_freq; /* frequency of ITC counter */ 197 unsigned long proc_freq; /* frequency of processor */ 198 unsigned long cyc_per_usec; /* itc_freq/1000000 */ 199 unsigned long ptce_base; 200 unsigned int ptce_count[2]; 201 unsigned int ptce_stride[2]; 202 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ 203 204 #ifdef CONFIG_SMP 205 unsigned long loops_per_jiffy; 206 int cpu; 207 unsigned int socket_id; /* physical processor socket id */ 208 unsigned short core_id; /* core id */ 209 unsigned short thread_id; /* thread id */ 210 unsigned short num_log; /* Total number of logical processors on 211 * this socket that were successfully booted */ 212 unsigned char cores_per_socket; /* Cores per processor socket */ 213 unsigned char threads_per_core; /* Threads per core */ 214 #endif 215 216 /* CPUID-derived information: */ 217 unsigned long ppn; 218 unsigned long features; 219 unsigned char number; 220 unsigned char revision; 221 unsigned char model; 222 unsigned char family; 223 unsigned char archrev; 224 char vendor[16]; 225 char *model_name; 226 227 #ifdef CONFIG_NUMA 228 struct ia64_node_data *node_data; 229 #endif 230 }; 231 232 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); 233 234 /* 235 * The "local" data variable. It refers to the per-CPU data of the currently executing 236 * CPU, much like "current" points to the per-task data of the currently executing task. 237 * Do not use the address of local_cpu_data, since it will be different from 238 * cpu_data(smp_processor_id())! 239 */ 240 #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info)) 241 #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu)) 242 243 extern void print_cpu_info (struct cpuinfo_ia64 *); 244 245 typedef struct { 246 unsigned long seg; 247 } mm_segment_t; 248 249 #define SET_UNALIGN_CTL(task,value) \ 250 ({ \ 251 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ 252 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 253 0; \ 254 }) 255 #define GET_UNALIGN_CTL(task,addr) \ 256 ({ \ 257 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ 258 (int __user *) (addr)); \ 259 }) 260 261 #define SET_FPEMU_CTL(task,value) \ 262 ({ \ 263 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ 264 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 265 0; \ 266 }) 267 #define GET_FPEMU_CTL(task,addr) \ 268 ({ \ 269 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ 270 (int __user *) (addr)); \ 271 }) 272 273 struct thread_struct { 274 __u32 flags; /* various thread flags (see IA64_THREAD_*) */ 275 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ 276 __u8 on_ustack; /* executing on user-stacks? */ 277 __u8 pad[3]; 278 __u64 ksp; /* kernel stack pointer */ 279 __u64 map_base; /* base address for get_unmapped_area() */ 280 __u64 task_size; /* limit for task size */ 281 __u64 rbs_bot; /* the base address for the RBS */ 282 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ 283 284 #ifdef CONFIG_PERFMON 285 void *pfm_context; /* pointer to detailed PMU context */ 286 unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ 287 # define INIT_THREAD_PM .pfm_context = NULL, \ 288 .pfm_needs_checking = 0UL, 289 #else 290 # define INIT_THREAD_PM 291 #endif 292 unsigned long dbr[IA64_NUM_DBG_REGS]; 293 unsigned long ibr[IA64_NUM_DBG_REGS]; 294 struct ia64_fpreg fph[96]; /* saved/loaded on demand */ 295 }; 296 297 #define INIT_THREAD { \ 298 .flags = 0, \ 299 .on_ustack = 0, \ 300 .ksp = 0, \ 301 .map_base = DEFAULT_MAP_BASE, \ 302 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ 303 .task_size = DEFAULT_TASK_SIZE, \ 304 .last_fph_cpu = -1, \ 305 INIT_THREAD_PM \ 306 .dbr = {0, }, \ 307 .ibr = {0, }, \ 308 .fph = {{{{0}}}, } \ 309 } 310 311 #define start_thread(regs,new_ip,new_sp) do { \ 312 set_fs(USER_DS); \ 313 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ 314 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ 315 regs->cr_iip = new_ip; \ 316 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ 317 regs->ar_rnat = 0; \ 318 regs->ar_bspstore = current->thread.rbs_bot; \ 319 regs->ar_fpsr = FPSR_DEFAULT; \ 320 regs->loadrs = 0; \ 321 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \ 322 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ 323 if (unlikely(!get_dumpable(current->mm))) { \ 324 /* \ 325 * Zap scratch regs to avoid leaking bits between processes with different \ 326 * uid/privileges. \ 327 */ \ 328 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ 329 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ 330 } \ 331 } while (0) 332 333 /* Forward declarations, a strange C thing... */ 334 struct mm_struct; 335 struct task_struct; 336 337 /* 338 * Free all resources held by a thread. This is called after the 339 * parent of DEAD_TASK has collected the exit status of the task via 340 * wait(). 341 */ 342 #define release_thread(dead_task) 343 344 /* Prepare to copy thread state - unlazy all lazy status */ 345 #define prepare_to_copy(tsk) do { } while (0) 346 347 /* 348 * This is the mechanism for creating a new kernel thread. 349 * 350 * NOTE 1: Only a kernel-only process (ie the swapper or direct 351 * descendants who haven't done an "execve()") should use this: it 352 * will work within a system call from a "real" process, but the 353 * process memory space will not be free'd until both the parent and 354 * the child have exited. 355 * 356 * NOTE 2: This MUST NOT be an inlined function. Otherwise, we get 357 * into trouble in init/main.c when the child thread returns to 358 * do_basic_setup() and the timing is such that free_initmem() has 359 * been called already. 360 */ 361 extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags); 362 363 /* Get wait channel for task P. */ 364 extern unsigned long get_wchan (struct task_struct *p); 365 366 /* Return instruction pointer of blocked task TSK. */ 367 #define KSTK_EIP(tsk) \ 368 ({ \ 369 struct pt_regs *_regs = task_pt_regs(tsk); \ 370 _regs->cr_iip + ia64_psr(_regs)->ri; \ 371 }) 372 373 /* Return stack pointer of blocked task TSK. */ 374 #define KSTK_ESP(tsk) ((tsk)->thread.ksp) 375 376 extern void ia64_getreg_unknown_kr (void); 377 extern void ia64_setreg_unknown_kr (void); 378 379 #define ia64_get_kr(regnum) \ 380 ({ \ 381 unsigned long r = 0; \ 382 \ 383 switch (regnum) { \ 384 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ 385 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ 386 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ 387 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ 388 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ 389 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ 390 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ 391 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ 392 default: ia64_getreg_unknown_kr(); break; \ 393 } \ 394 r; \ 395 }) 396 397 #define ia64_set_kr(regnum, r) \ 398 ({ \ 399 switch (regnum) { \ 400 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ 401 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ 402 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ 403 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ 404 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ 405 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ 406 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ 407 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ 408 default: ia64_setreg_unknown_kr(); break; \ 409 } \ 410 }) 411 412 /* 413 * The following three macros can't be inline functions because we don't have struct 414 * task_struct at this point. 415 */ 416 417 /* 418 * Return TRUE if task T owns the fph partition of the CPU we're running on. 419 * Must be called from code that has preemption disabled. 420 */ 421 #define ia64_is_local_fpu_owner(t) \ 422 ({ \ 423 struct task_struct *__ia64_islfo_task = (t); \ 424 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ 425 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ 426 }) 427 428 /* 429 * Mark task T as owning the fph partition of the CPU we're running on. 430 * Must be called from code that has preemption disabled. 431 */ 432 #define ia64_set_local_fpu_owner(t) do { \ 433 struct task_struct *__ia64_slfo_task = (t); \ 434 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ 435 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ 436 } while (0) 437 438 /* Mark the fph partition of task T as being invalid on all CPUs. */ 439 #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) 440 441 extern void __ia64_init_fpu (void); 442 extern void __ia64_save_fpu (struct ia64_fpreg *fph); 443 extern void __ia64_load_fpu (struct ia64_fpreg *fph); 444 extern void ia64_save_debug_regs (unsigned long *save_area); 445 extern void ia64_load_debug_regs (unsigned long *save_area); 446 447 #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 448 #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 449 450 /* load fp 0.0 into fph */ 451 static inline void 452 ia64_init_fpu (void) { 453 ia64_fph_enable(); 454 __ia64_init_fpu(); 455 ia64_fph_disable(); 456 } 457 458 /* save f32-f127 at FPH */ 459 static inline void 460 ia64_save_fpu (struct ia64_fpreg *fph) { 461 ia64_fph_enable(); 462 __ia64_save_fpu(fph); 463 ia64_fph_disable(); 464 } 465 466 /* load f32-f127 from FPH */ 467 static inline void 468 ia64_load_fpu (struct ia64_fpreg *fph) { 469 ia64_fph_enable(); 470 __ia64_load_fpu(fph); 471 ia64_fph_disable(); 472 } 473 474 static inline __u64 475 ia64_clear_ic (void) 476 { 477 __u64 psr; 478 psr = ia64_getreg(_IA64_REG_PSR); 479 ia64_stop(); 480 ia64_rsm(IA64_PSR_I | IA64_PSR_IC); 481 ia64_srlz_i(); 482 return psr; 483 } 484 485 /* 486 * Restore the psr. 487 */ 488 static inline void 489 ia64_set_psr (__u64 psr) 490 { 491 ia64_stop(); 492 ia64_setreg(_IA64_REG_PSR_L, psr); 493 ia64_srlz_i(); 494 } 495 496 /* 497 * Insert a translation into an instruction and/or data translation 498 * register. 499 */ 500 static inline void 501 ia64_itr (__u64 target_mask, __u64 tr_num, 502 __u64 vmaddr, __u64 pte, 503 __u64 log_page_size) 504 { 505 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 506 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 507 ia64_stop(); 508 if (target_mask & 0x1) 509 ia64_itri(tr_num, pte); 510 if (target_mask & 0x2) 511 ia64_itrd(tr_num, pte); 512 } 513 514 /* 515 * Insert a translation into the instruction and/or data translation 516 * cache. 517 */ 518 static inline void 519 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, 520 __u64 log_page_size) 521 { 522 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 523 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 524 ia64_stop(); 525 /* as per EAS2.6, itc must be the last instruction in an instruction group */ 526 if (target_mask & 0x1) 527 ia64_itci(pte); 528 if (target_mask & 0x2) 529 ia64_itcd(pte); 530 } 531 532 /* 533 * Purge a range of addresses from instruction and/or data translation 534 * register(s). 535 */ 536 static inline void 537 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) 538 { 539 if (target_mask & 0x1) 540 ia64_ptri(vmaddr, (log_size << 2)); 541 if (target_mask & 0x2) 542 ia64_ptrd(vmaddr, (log_size << 2)); 543 } 544 545 /* Set the interrupt vector address. The address must be suitably aligned (32KB). */ 546 static inline void 547 ia64_set_iva (void *ivt_addr) 548 { 549 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); 550 ia64_srlz_i(); 551 } 552 553 /* Set the page table address and control bits. */ 554 static inline void 555 ia64_set_pta (__u64 pta) 556 { 557 /* Note: srlz.i implies srlz.d */ 558 ia64_setreg(_IA64_REG_CR_PTA, pta); 559 ia64_srlz_i(); 560 } 561 562 static inline void 563 ia64_eoi (void) 564 { 565 ia64_setreg(_IA64_REG_CR_EOI, 0); 566 ia64_srlz_d(); 567 } 568 569 #define cpu_relax() ia64_hint(ia64_hint_pause) 570 571 static inline int 572 ia64_get_irr(unsigned int vector) 573 { 574 unsigned int reg = vector / 64; 575 unsigned int bit = vector % 64; 576 u64 irr; 577 578 switch (reg) { 579 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; 580 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; 581 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; 582 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; 583 } 584 585 return test_bit(bit, &irr); 586 } 587 588 static inline void 589 ia64_set_lrr0 (unsigned long val) 590 { 591 ia64_setreg(_IA64_REG_CR_LRR0, val); 592 ia64_srlz_d(); 593 } 594 595 static inline void 596 ia64_set_lrr1 (unsigned long val) 597 { 598 ia64_setreg(_IA64_REG_CR_LRR1, val); 599 ia64_srlz_d(); 600 } 601 602 603 /* 604 * Given the address to which a spill occurred, return the unat bit 605 * number that corresponds to this address. 606 */ 607 static inline __u64 608 ia64_unat_pos (void *spill_addr) 609 { 610 return ((__u64) spill_addr >> 3) & 0x3f; 611 } 612 613 /* 614 * Set the NaT bit of an integer register which was spilled at address 615 * SPILL_ADDR. UNAT is the mask to be updated. 616 */ 617 static inline void 618 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) 619 { 620 __u64 bit = ia64_unat_pos(spill_addr); 621 __u64 mask = 1UL << bit; 622 623 *unat = (*unat & ~mask) | (nat << bit); 624 } 625 626 /* 627 * Return saved PC of a blocked thread. 628 * Note that the only way T can block is through a call to schedule() -> switch_to(). 629 */ 630 static inline unsigned long 631 thread_saved_pc (struct task_struct *t) 632 { 633 struct unw_frame_info info; 634 unsigned long ip; 635 636 unw_init_from_blocked_task(&info, t); 637 if (unw_unwind(&info) < 0) 638 return 0; 639 unw_get_ip(&info, &ip); 640 return ip; 641 } 642 643 /* 644 * Get the current instruction/program counter value. 645 */ 646 #define current_text_addr() \ 647 ({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; }) 648 649 static inline __u64 650 ia64_get_ivr (void) 651 { 652 __u64 r; 653 ia64_srlz_d(); 654 r = ia64_getreg(_IA64_REG_CR_IVR); 655 ia64_srlz_d(); 656 return r; 657 } 658 659 static inline void 660 ia64_set_dbr (__u64 regnum, __u64 value) 661 { 662 __ia64_set_dbr(regnum, value); 663 #ifdef CONFIG_ITANIUM 664 ia64_srlz_d(); 665 #endif 666 } 667 668 static inline __u64 669 ia64_get_dbr (__u64 regnum) 670 { 671 __u64 retval; 672 673 retval = __ia64_get_dbr(regnum); 674 #ifdef CONFIG_ITANIUM 675 ia64_srlz_d(); 676 #endif 677 return retval; 678 } 679 680 static inline __u64 681 ia64_rotr (__u64 w, __u64 n) 682 { 683 return (w >> n) | (w << (64 - n)); 684 } 685 686 #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) 687 688 /* 689 * Take a mapped kernel address and return the equivalent address 690 * in the region 7 identity mapped virtual area. 691 */ 692 static inline void * 693 ia64_imva (void *addr) 694 { 695 void *result; 696 result = (void *) ia64_tpa(addr); 697 return __va(result); 698 } 699 700 #define ARCH_HAS_PREFETCH 701 #define ARCH_HAS_PREFETCHW 702 #define ARCH_HAS_SPINLOCK_PREFETCH 703 #define PREFETCH_STRIDE L1_CACHE_BYTES 704 705 static inline void 706 prefetch (const void *x) 707 { 708 ia64_lfetch(ia64_lfhint_none, x); 709 } 710 711 static inline void 712 prefetchw (const void *x) 713 { 714 ia64_lfetch_excl(ia64_lfhint_none, x); 715 } 716 717 #define spin_lock_prefetch(x) prefetchw(x) 718 719 extern unsigned long boot_option_idle_override; 720 721 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT, 722 IDLE_NOMWAIT, IDLE_POLL}; 723 724 #endif /* !__ASSEMBLY__ */ 725 726 #endif /* _ASM_IA64_PROCESSOR_H */ 727