xref: /openbmc/linux/arch/ia64/include/asm/processor.h (revision 8dd3cdea)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_PROCESSOR_H
3 #define _ASM_IA64_PROCESSOR_H
4 
5 /*
6  * Copyright (C) 1998-2004 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11  *
12  * 11/24/98	S.Eranian	added ia64_set_iva()
13  * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
14  * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
15  */
16 
17 
18 #include <asm/intrinsics.h>
19 #include <asm/kregs.h>
20 #include <asm/ptrace.h>
21 #include <asm/ustack.h>
22 
23 #define IA64_NUM_PHYS_STACK_REG	96
24 #define IA64_NUM_DBG_REGS	8
25 
26 #define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
27 #define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
28 
29 /*
30  * TASK_SIZE really is a mis-named.  It really is the maximum user
31  * space address (plus one).  On IA-64, there are five regions of 2TB
32  * each (assuming 8KB page size), for a total of 8TB of user virtual
33  * address space.
34  */
35 #define TASK_SIZE       	DEFAULT_TASK_SIZE
36 
37 /*
38  * This decides where the kernel will search for a free chunk of vm
39  * space during mmap's.
40  */
41 #define TASK_UNMAPPED_BASE	(current->thread.map_base)
42 
43 #define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
44 #define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
45 #define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
46 #define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
47 #define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
48 #define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
49 							   sync at ctx sw */
50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
51 #define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
52 
53 #define IA64_THREAD_UAC_SHIFT	3
54 #define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55 #define IA64_THREAD_FPEMU_SHIFT	6
56 #define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57 
58 
59 /*
60  * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61  * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62  * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63  */
64 #define IA64_NSEC_PER_CYC_SHIFT	30
65 
66 #ifndef __ASSEMBLY__
67 
68 #include <linux/cache.h>
69 #include <linux/compiler.h>
70 #include <linux/threads.h>
71 #include <linux/types.h>
72 #include <linux/bitops.h>
73 
74 #include <asm/fpu.h>
75 #include <asm/page.h>
76 #include <asm/percpu.h>
77 #include <asm/rse.h>
78 #include <asm/unwind.h>
79 #include <linux/atomic.h>
80 #ifdef CONFIG_NUMA
81 #include <asm/nodedata.h>
82 #endif
83 
84 /* like above but expressed as bitfields for more efficient access: */
85 struct ia64_psr {
86 	__u64 reserved0 : 1;
87 	__u64 be : 1;
88 	__u64 up : 1;
89 	__u64 ac : 1;
90 	__u64 mfl : 1;
91 	__u64 mfh : 1;
92 	__u64 reserved1 : 7;
93 	__u64 ic : 1;
94 	__u64 i : 1;
95 	__u64 pk : 1;
96 	__u64 reserved2 : 1;
97 	__u64 dt : 1;
98 	__u64 dfl : 1;
99 	__u64 dfh : 1;
100 	__u64 sp : 1;
101 	__u64 pp : 1;
102 	__u64 di : 1;
103 	__u64 si : 1;
104 	__u64 db : 1;
105 	__u64 lp : 1;
106 	__u64 tb : 1;
107 	__u64 rt : 1;
108 	__u64 reserved3 : 4;
109 	__u64 cpl : 2;
110 	__u64 is : 1;
111 	__u64 mc : 1;
112 	__u64 it : 1;
113 	__u64 id : 1;
114 	__u64 da : 1;
115 	__u64 dd : 1;
116 	__u64 ss : 1;
117 	__u64 ri : 2;
118 	__u64 ed : 1;
119 	__u64 bn : 1;
120 	__u64 reserved4 : 19;
121 };
122 
123 union ia64_isr {
124 	__u64  val;
125 	struct {
126 		__u64 code : 16;
127 		__u64 vector : 8;
128 		__u64 reserved1 : 8;
129 		__u64 x : 1;
130 		__u64 w : 1;
131 		__u64 r : 1;
132 		__u64 na : 1;
133 		__u64 sp : 1;
134 		__u64 rs : 1;
135 		__u64 ir : 1;
136 		__u64 ni : 1;
137 		__u64 so : 1;
138 		__u64 ei : 2;
139 		__u64 ed : 1;
140 		__u64 reserved2 : 20;
141 	};
142 };
143 
144 union ia64_lid {
145 	__u64 val;
146 	struct {
147 		__u64  rv  : 16;
148 		__u64  eid : 8;
149 		__u64  id  : 8;
150 		__u64  ig  : 32;
151 	};
152 };
153 
154 union ia64_tpr {
155 	__u64 val;
156 	struct {
157 		__u64 ig0 : 4;
158 		__u64 mic : 4;
159 		__u64 rsv : 8;
160 		__u64 mmi : 1;
161 		__u64 ig1 : 47;
162 	};
163 };
164 
165 union ia64_itir {
166 	__u64 val;
167 	struct {
168 		__u64 rv3  :  2; /* 0-1 */
169 		__u64 ps   :  6; /* 2-7 */
170 		__u64 key  : 24; /* 8-31 */
171 		__u64 rv4  : 32; /* 32-63 */
172 	};
173 };
174 
175 union  ia64_rr {
176 	__u64 val;
177 	struct {
178 		__u64  ve	:  1;  /* enable hw walker */
179 		__u64  reserved0:  1;  /* reserved */
180 		__u64  ps	:  6;  /* log page size */
181 		__u64  rid	: 24;  /* region id */
182 		__u64  reserved1: 32;  /* reserved */
183 	};
184 };
185 
186 /*
187  * CPU type, hardware bug flags, and per-CPU state.  Frequently used
188  * state comes earlier:
189  */
190 struct cpuinfo_ia64 {
191 	unsigned int softirq_pending;
192 	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
193 	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
194 	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
196 	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
197 	unsigned long itc_freq;		/* frequency of ITC counter */
198 	unsigned long proc_freq;	/* frequency of processor */
199 	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
200 	unsigned long ptce_base;
201 	unsigned int ptce_count[2];
202 	unsigned int ptce_stride[2];
203 	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
204 
205 #ifdef CONFIG_SMP
206 	unsigned long loops_per_jiffy;
207 	int cpu;
208 	unsigned int socket_id;	/* physical processor socket id */
209 	unsigned short core_id;	/* core id */
210 	unsigned short thread_id; /* thread id */
211 	unsigned short num_log;	/* Total number of logical processors on
212 				 * this socket that were successfully booted */
213 	unsigned char cores_per_socket;	/* Cores per processor socket */
214 	unsigned char threads_per_core;	/* Threads per core */
215 #endif
216 
217 	/* CPUID-derived information: */
218 	unsigned long ppn;
219 	unsigned long features;
220 	unsigned char number;
221 	unsigned char revision;
222 	unsigned char model;
223 	unsigned char family;
224 	unsigned char archrev;
225 	char vendor[16];
226 	char *model_name;
227 
228 #ifdef CONFIG_NUMA
229 	struct ia64_node_data *node_data;
230 #endif
231 };
232 
233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234 
235 /*
236  * The "local" data variable.  It refers to the per-CPU data of the currently executing
237  * CPU, much like "current" points to the per-task data of the currently executing task.
238  * Do not use the address of local_cpu_data, since it will be different from
239  * cpu_data(smp_processor_id())!
240  */
241 #define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
242 #define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
243 
244 extern void print_cpu_info (struct cpuinfo_ia64 *);
245 
246 #define SET_UNALIGN_CTL(task,value)								\
247 ({												\
248 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
249 				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
250 	0;											\
251 })
252 #define GET_UNALIGN_CTL(task,addr)								\
253 ({												\
254 	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
255 		 (int __user *) (addr));							\
256 })
257 
258 #define SET_FPEMU_CTL(task,value)								\
259 ({												\
260 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
261 			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
262 	0;											\
263 })
264 #define GET_FPEMU_CTL(task,addr)								\
265 ({												\
266 	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
267 		 (int __user *) (addr));							\
268 })
269 
270 struct thread_struct {
271 	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
272 	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
273 	__u8 on_ustack;			/* executing on user-stacks? */
274 	__u8 pad[3];
275 	__u64 ksp;			/* kernel stack pointer */
276 	__u64 map_base;			/* base address for get_unmapped_area() */
277 	__u64 rbs_bot;			/* the base address for the RBS */
278 	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
279 	unsigned long dbr[IA64_NUM_DBG_REGS];
280 	unsigned long ibr[IA64_NUM_DBG_REGS];
281 	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
282 };
283 
284 #define INIT_THREAD {						\
285 	.flags =	0,					\
286 	.on_ustack =	0,					\
287 	.ksp =		0,					\
288 	.map_base =	DEFAULT_MAP_BASE,			\
289 	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
290 	.last_fph_cpu =  -1,					\
291 	.dbr =		{0, },					\
292 	.ibr =		{0, },					\
293 	.fph =		{{{{0}}}, }				\
294 }
295 
296 #define start_thread(regs,new_ip,new_sp) do {							\
297 	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
298 			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
299 	regs->cr_iip = new_ip;									\
300 	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
301 	regs->ar_rnat = 0;									\
302 	regs->ar_bspstore = current->thread.rbs_bot;						\
303 	regs->ar_fpsr = FPSR_DEFAULT;								\
304 	regs->loadrs = 0;									\
305 	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
306 	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
307 	if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) {	\
308 		/*										\
309 		 * Zap scratch regs to avoid leaking bits between processes with different	\
310 		 * uid/privileges.								\
311 		 */										\
312 		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
313 		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
314 	}											\
315 } while (0)
316 
317 /* Forward declarations, a strange C thing... */
318 struct mm_struct;
319 struct task_struct;
320 
321 /*
322  * Free all resources held by a thread. This is called after the
323  * parent of DEAD_TASK has collected the exit status of the task via
324  * wait().
325  */
326 #define release_thread(dead_task)
327 
328 /* Get wait channel for task P.  */
329 extern unsigned long __get_wchan (struct task_struct *p);
330 
331 /* Return instruction pointer of blocked task TSK.  */
332 #define KSTK_EIP(tsk)					\
333   ({							\
334 	struct pt_regs *_regs = task_pt_regs(tsk);	\
335 	_regs->cr_iip + ia64_psr(_regs)->ri;		\
336   })
337 
338 /* Return stack pointer of blocked task TSK.  */
339 #define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
340 
341 extern void ia64_getreg_unknown_kr (void);
342 extern void ia64_setreg_unknown_kr (void);
343 
344 #define ia64_get_kr(regnum)					\
345 ({								\
346 	unsigned long r = 0;					\
347 								\
348 	switch (regnum) {					\
349 	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
350 	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
351 	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
352 	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
353 	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
354 	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
355 	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
356 	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
357 	    default: ia64_getreg_unknown_kr(); break;		\
358 	}							\
359 	r;							\
360 })
361 
362 #define ia64_set_kr(regnum, r) 					\
363 ({								\
364 	switch (regnum) {					\
365 	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
366 	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
367 	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
368 	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
369 	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
370 	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
371 	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
372 	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
373 	    default: ia64_setreg_unknown_kr(); break;		\
374 	}							\
375 })
376 
377 /*
378  * The following three macros can't be inline functions because we don't have struct
379  * task_struct at this point.
380  */
381 
382 /*
383  * Return TRUE if task T owns the fph partition of the CPU we're running on.
384  * Must be called from code that has preemption disabled.
385  */
386 #define ia64_is_local_fpu_owner(t)								\
387 ({												\
388 	struct task_struct *__ia64_islfo_task = (t);						\
389 	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
390 	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
391 })
392 
393 /*
394  * Mark task T as owning the fph partition of the CPU we're running on.
395  * Must be called from code that has preemption disabled.
396  */
397 #define ia64_set_local_fpu_owner(t) do {						\
398 	struct task_struct *__ia64_slfo_task = (t);					\
399 	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
400 	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
401 } while (0)
402 
403 /* Mark the fph partition of task T as being invalid on all CPUs.  */
404 #define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
405 
406 extern void __ia64_init_fpu (void);
407 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
408 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
409 extern void ia64_save_debug_regs (unsigned long *save_area);
410 extern void ia64_load_debug_regs (unsigned long *save_area);
411 
412 #define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
413 #define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
414 
415 /* load fp 0.0 into fph */
416 static inline void
417 ia64_init_fpu (void) {
418 	ia64_fph_enable();
419 	__ia64_init_fpu();
420 	ia64_fph_disable();
421 }
422 
423 /* save f32-f127 at FPH */
424 static inline void
425 ia64_save_fpu (struct ia64_fpreg *fph) {
426 	ia64_fph_enable();
427 	__ia64_save_fpu(fph);
428 	ia64_fph_disable();
429 }
430 
431 /* load f32-f127 from FPH */
432 static inline void
433 ia64_load_fpu (struct ia64_fpreg *fph) {
434 	ia64_fph_enable();
435 	__ia64_load_fpu(fph);
436 	ia64_fph_disable();
437 }
438 
439 static inline __u64
440 ia64_clear_ic (void)
441 {
442 	__u64 psr;
443 	psr = ia64_getreg(_IA64_REG_PSR);
444 	ia64_stop();
445 	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
446 	ia64_srlz_i();
447 	return psr;
448 }
449 
450 /*
451  * Restore the psr.
452  */
453 static inline void
454 ia64_set_psr (__u64 psr)
455 {
456 	ia64_stop();
457 	ia64_setreg(_IA64_REG_PSR_L, psr);
458 	ia64_srlz_i();
459 }
460 
461 /*
462  * Insert a translation into an instruction and/or data translation
463  * register.
464  */
465 static inline void
466 ia64_itr (__u64 target_mask, __u64 tr_num,
467 	  __u64 vmaddr, __u64 pte,
468 	  __u64 log_page_size)
469 {
470 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
471 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
472 	ia64_stop();
473 	if (target_mask & 0x1)
474 		ia64_itri(tr_num, pte);
475 	if (target_mask & 0x2)
476 		ia64_itrd(tr_num, pte);
477 }
478 
479 /*
480  * Insert a translation into the instruction and/or data translation
481  * cache.
482  */
483 static inline void
484 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
485 	  __u64 log_page_size)
486 {
487 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
488 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
489 	ia64_stop();
490 	/* as per EAS2.6, itc must be the last instruction in an instruction group */
491 	if (target_mask & 0x1)
492 		ia64_itci(pte);
493 	if (target_mask & 0x2)
494 		ia64_itcd(pte);
495 }
496 
497 /*
498  * Purge a range of addresses from instruction and/or data translation
499  * register(s).
500  */
501 static inline void
502 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
503 {
504 	if (target_mask & 0x1)
505 		ia64_ptri(vmaddr, (log_size << 2));
506 	if (target_mask & 0x2)
507 		ia64_ptrd(vmaddr, (log_size << 2));
508 }
509 
510 /* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
511 static inline void
512 ia64_set_iva (void *ivt_addr)
513 {
514 	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
515 	ia64_srlz_i();
516 }
517 
518 /* Set the page table address and control bits.  */
519 static inline void
520 ia64_set_pta (__u64 pta)
521 {
522 	/* Note: srlz.i implies srlz.d */
523 	ia64_setreg(_IA64_REG_CR_PTA, pta);
524 	ia64_srlz_i();
525 }
526 
527 static inline void
528 ia64_eoi (void)
529 {
530 	ia64_setreg(_IA64_REG_CR_EOI, 0);
531 	ia64_srlz_d();
532 }
533 
534 #define cpu_relax()	ia64_hint(ia64_hint_pause)
535 
536 static inline int
537 ia64_get_irr(unsigned int vector)
538 {
539 	unsigned int reg = vector / 64;
540 	unsigned int bit = vector % 64;
541 	u64 irr;
542 
543 	switch (reg) {
544 	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
545 	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
546 	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
547 	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
548 	}
549 
550 	return test_bit(bit, &irr);
551 }
552 
553 static inline void
554 ia64_set_lrr0 (unsigned long val)
555 {
556 	ia64_setreg(_IA64_REG_CR_LRR0, val);
557 	ia64_srlz_d();
558 }
559 
560 static inline void
561 ia64_set_lrr1 (unsigned long val)
562 {
563 	ia64_setreg(_IA64_REG_CR_LRR1, val);
564 	ia64_srlz_d();
565 }
566 
567 
568 /*
569  * Given the address to which a spill occurred, return the unat bit
570  * number that corresponds to this address.
571  */
572 static inline __u64
573 ia64_unat_pos (void *spill_addr)
574 {
575 	return ((__u64) spill_addr >> 3) & 0x3f;
576 }
577 
578 /*
579  * Set the NaT bit of an integer register which was spilled at address
580  * SPILL_ADDR.  UNAT is the mask to be updated.
581  */
582 static inline void
583 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
584 {
585 	__u64 bit = ia64_unat_pos(spill_addr);
586 	__u64 mask = 1UL << bit;
587 
588 	*unat = (*unat & ~mask) | (nat << bit);
589 }
590 
591 static inline __u64
592 ia64_get_ivr (void)
593 {
594 	__u64 r;
595 	ia64_srlz_d();
596 	r = ia64_getreg(_IA64_REG_CR_IVR);
597 	ia64_srlz_d();
598 	return r;
599 }
600 
601 static inline void
602 ia64_set_dbr (__u64 regnum, __u64 value)
603 {
604 	__ia64_set_dbr(regnum, value);
605 #ifdef CONFIG_ITANIUM
606 	ia64_srlz_d();
607 #endif
608 }
609 
610 static inline __u64
611 ia64_get_dbr (__u64 regnum)
612 {
613 	__u64 retval;
614 
615 	retval = __ia64_get_dbr(regnum);
616 #ifdef CONFIG_ITANIUM
617 	ia64_srlz_d();
618 #endif
619 	return retval;
620 }
621 
622 static inline __u64
623 ia64_rotr (__u64 w, __u64 n)
624 {
625 	return (w >> n) | (w << (64 - n));
626 }
627 
628 #define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
629 
630 /*
631  * Take a mapped kernel address and return the equivalent address
632  * in the region 7 identity mapped virtual area.
633  */
634 static inline void *
635 ia64_imva (void *addr)
636 {
637 	void *result;
638 	result = (void *) ia64_tpa(addr);
639 	return __va(result);
640 }
641 
642 #define ARCH_HAS_PREFETCH
643 #define ARCH_HAS_PREFETCHW
644 #define ARCH_HAS_SPINLOCK_PREFETCH
645 #define PREFETCH_STRIDE			L1_CACHE_BYTES
646 
647 static inline void
648 prefetch (const void *x)
649 {
650 	 ia64_lfetch(ia64_lfhint_none, x);
651 }
652 
653 static inline void
654 prefetchw (const void *x)
655 {
656 	ia64_lfetch_excl(ia64_lfhint_none, x);
657 }
658 
659 #define spin_lock_prefetch(x)	prefetchw(x)
660 
661 extern unsigned long boot_option_idle_override;
662 
663 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
664 			 IDLE_NOMWAIT, IDLE_POLL};
665 
666 void default_idle(void);
667 
668 #endif /* !__ASSEMBLY__ */
669 
670 #endif /* _ASM_IA64_PROCESSOR_H */
671