xref: /openbmc/linux/arch/ia64/include/asm/processor.h (revision 6db6b729)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_IA64_PROCESSOR_H
3 #define _ASM_IA64_PROCESSOR_H
4 
5 /*
6  * Copyright (C) 1998-2004 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *	Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11  *
12  * 11/24/98	S.Eranian	added ia64_set_iva()
13  * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
14  * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
15  */
16 
17 
18 #include <asm/intrinsics.h>
19 #include <asm/kregs.h>
20 #include <asm/ptrace.h>
21 #include <asm/ustack.h>
22 
23 #define IA64_NUM_PHYS_STACK_REG	96
24 #define IA64_NUM_DBG_REGS	8
25 
26 #define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
27 #define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
28 
29 /*
30  * TASK_SIZE really is a mis-named.  It really is the maximum user
31  * space address (plus one).  On IA-64, there are five regions of 2TB
32  * each (assuming 8KB page size), for a total of 8TB of user virtual
33  * address space.
34  */
35 #define TASK_SIZE       	DEFAULT_TASK_SIZE
36 
37 /*
38  * This decides where the kernel will search for a free chunk of vm
39  * space during mmap's.
40  */
41 #define TASK_UNMAPPED_BASE	(current->thread.map_base)
42 
43 #define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
44 #define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
45 #define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
46 #define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
47 #define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
48 #define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
49 							   sync at ctx sw */
50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
51 #define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
52 
53 #define IA64_THREAD_UAC_SHIFT	3
54 #define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55 #define IA64_THREAD_FPEMU_SHIFT	6
56 #define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57 
58 
59 /*
60  * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61  * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62  * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63  */
64 #define IA64_NSEC_PER_CYC_SHIFT	30
65 
66 #ifndef __ASSEMBLY__
67 
68 #include <linux/cache.h>
69 #include <linux/compiler.h>
70 #include <linux/threads.h>
71 #include <linux/types.h>
72 #include <linux/bitops.h>
73 
74 #include <asm/fpu.h>
75 #include <asm/page.h>
76 #include <asm/percpu.h>
77 #include <asm/rse.h>
78 #include <asm/unwind.h>
79 #include <linux/atomic.h>
80 #ifdef CONFIG_NUMA
81 #include <asm/nodedata.h>
82 #endif
83 
84 /* like above but expressed as bitfields for more efficient access: */
85 struct ia64_psr {
86 	__u64 reserved0 : 1;
87 	__u64 be : 1;
88 	__u64 up : 1;
89 	__u64 ac : 1;
90 	__u64 mfl : 1;
91 	__u64 mfh : 1;
92 	__u64 reserved1 : 7;
93 	__u64 ic : 1;
94 	__u64 i : 1;
95 	__u64 pk : 1;
96 	__u64 reserved2 : 1;
97 	__u64 dt : 1;
98 	__u64 dfl : 1;
99 	__u64 dfh : 1;
100 	__u64 sp : 1;
101 	__u64 pp : 1;
102 	__u64 di : 1;
103 	__u64 si : 1;
104 	__u64 db : 1;
105 	__u64 lp : 1;
106 	__u64 tb : 1;
107 	__u64 rt : 1;
108 	__u64 reserved3 : 4;
109 	__u64 cpl : 2;
110 	__u64 is : 1;
111 	__u64 mc : 1;
112 	__u64 it : 1;
113 	__u64 id : 1;
114 	__u64 da : 1;
115 	__u64 dd : 1;
116 	__u64 ss : 1;
117 	__u64 ri : 2;
118 	__u64 ed : 1;
119 	__u64 bn : 1;
120 	__u64 reserved4 : 19;
121 };
122 
123 union ia64_isr {
124 	__u64  val;
125 	struct {
126 		__u64 code : 16;
127 		__u64 vector : 8;
128 		__u64 reserved1 : 8;
129 		__u64 x : 1;
130 		__u64 w : 1;
131 		__u64 r : 1;
132 		__u64 na : 1;
133 		__u64 sp : 1;
134 		__u64 rs : 1;
135 		__u64 ir : 1;
136 		__u64 ni : 1;
137 		__u64 so : 1;
138 		__u64 ei : 2;
139 		__u64 ed : 1;
140 		__u64 reserved2 : 20;
141 	};
142 };
143 
144 union ia64_lid {
145 	__u64 val;
146 	struct {
147 		__u64  rv  : 16;
148 		__u64  eid : 8;
149 		__u64  id  : 8;
150 		__u64  ig  : 32;
151 	};
152 };
153 
154 union ia64_tpr {
155 	__u64 val;
156 	struct {
157 		__u64 ig0 : 4;
158 		__u64 mic : 4;
159 		__u64 rsv : 8;
160 		__u64 mmi : 1;
161 		__u64 ig1 : 47;
162 	};
163 };
164 
165 union ia64_itir {
166 	__u64 val;
167 	struct {
168 		__u64 rv3  :  2; /* 0-1 */
169 		__u64 ps   :  6; /* 2-7 */
170 		__u64 key  : 24; /* 8-31 */
171 		__u64 rv4  : 32; /* 32-63 */
172 	};
173 };
174 
175 union  ia64_rr {
176 	__u64 val;
177 	struct {
178 		__u64  ve	:  1;  /* enable hw walker */
179 		__u64  reserved0:  1;  /* reserved */
180 		__u64  ps	:  6;  /* log page size */
181 		__u64  rid	: 24;  /* region id */
182 		__u64  reserved1: 32;  /* reserved */
183 	};
184 };
185 
186 /*
187  * CPU type, hardware bug flags, and per-CPU state.  Frequently used
188  * state comes earlier:
189  */
190 struct cpuinfo_ia64 {
191 	unsigned int softirq_pending;
192 	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
193 	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
194 	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
196 	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
197 	unsigned long itc_freq;		/* frequency of ITC counter */
198 	unsigned long proc_freq;	/* frequency of processor */
199 	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
200 	unsigned long ptce_base;
201 	unsigned int ptce_count[2];
202 	unsigned int ptce_stride[2];
203 	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
204 
205 #ifdef CONFIG_SMP
206 	unsigned long loops_per_jiffy;
207 	int cpu;
208 	unsigned int socket_id;	/* physical processor socket id */
209 	unsigned short core_id;	/* core id */
210 	unsigned short thread_id; /* thread id */
211 	unsigned short num_log;	/* Total number of logical processors on
212 				 * this socket that were successfully booted */
213 	unsigned char cores_per_socket;	/* Cores per processor socket */
214 	unsigned char threads_per_core;	/* Threads per core */
215 #endif
216 
217 	/* CPUID-derived information: */
218 	unsigned long ppn;
219 	unsigned long features;
220 	unsigned char number;
221 	unsigned char revision;
222 	unsigned char model;
223 	unsigned char family;
224 	unsigned char archrev;
225 	char vendor[16];
226 	char *model_name;
227 
228 #ifdef CONFIG_NUMA
229 	struct ia64_node_data *node_data;
230 #endif
231 };
232 
233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234 
235 /*
236  * The "local" data variable.  It refers to the per-CPU data of the currently executing
237  * CPU, much like "current" points to the per-task data of the currently executing task.
238  * Do not use the address of local_cpu_data, since it will be different from
239  * cpu_data(smp_processor_id())!
240  */
241 #define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
242 #define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
243 
244 extern void print_cpu_info (struct cpuinfo_ia64 *);
245 
246 #define SET_UNALIGN_CTL(task,value)								\
247 ({												\
248 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
249 				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
250 	0;											\
251 })
252 #define GET_UNALIGN_CTL(task,addr)								\
253 ({												\
254 	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
255 		 (int __user *) (addr));							\
256 })
257 
258 #define SET_FPEMU_CTL(task,value)								\
259 ({												\
260 	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
261 			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
262 	0;											\
263 })
264 #define GET_FPEMU_CTL(task,addr)								\
265 ({												\
266 	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
267 		 (int __user *) (addr));							\
268 })
269 
270 struct thread_struct {
271 	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
272 	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
273 	__u8 on_ustack;			/* executing on user-stacks? */
274 	__u8 pad[3];
275 	__u64 ksp;			/* kernel stack pointer */
276 	__u64 map_base;			/* base address for get_unmapped_area() */
277 	__u64 rbs_bot;			/* the base address for the RBS */
278 	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
279 	unsigned long dbr[IA64_NUM_DBG_REGS];
280 	unsigned long ibr[IA64_NUM_DBG_REGS];
281 	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
282 };
283 
284 #define INIT_THREAD {						\
285 	.flags =	0,					\
286 	.on_ustack =	0,					\
287 	.ksp =		0,					\
288 	.map_base =	DEFAULT_MAP_BASE,			\
289 	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
290 	.last_fph_cpu =  -1,					\
291 	.dbr =		{0, },					\
292 	.ibr =		{0, },					\
293 	.fph =		{{{{0}}}, }				\
294 }
295 
296 #define start_thread(regs,new_ip,new_sp) do {							\
297 	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
298 			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
299 	regs->cr_iip = new_ip;									\
300 	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
301 	regs->ar_rnat = 0;									\
302 	regs->ar_bspstore = current->thread.rbs_bot;						\
303 	regs->ar_fpsr = FPSR_DEFAULT;								\
304 	regs->loadrs = 0;									\
305 	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
306 	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
307 	if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) {	\
308 		/*										\
309 		 * Zap scratch regs to avoid leaking bits between processes with different	\
310 		 * uid/privileges.								\
311 		 */										\
312 		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
313 		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
314 	}											\
315 } while (0)
316 
317 /* Forward declarations, a strange C thing... */
318 struct mm_struct;
319 struct task_struct;
320 
321 /* Get wait channel for task P.  */
322 extern unsigned long __get_wchan (struct task_struct *p);
323 
324 /* Return instruction pointer of blocked task TSK.  */
325 #define KSTK_EIP(tsk)					\
326   ({							\
327 	struct pt_regs *_regs = task_pt_regs(tsk);	\
328 	_regs->cr_iip + ia64_psr(_regs)->ri;		\
329   })
330 
331 /* Return stack pointer of blocked task TSK.  */
332 #define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
333 
334 extern void ia64_getreg_unknown_kr (void);
335 extern void ia64_setreg_unknown_kr (void);
336 
337 #define ia64_get_kr(regnum)					\
338 ({								\
339 	unsigned long r = 0;					\
340 								\
341 	switch (regnum) {					\
342 	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
343 	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
344 	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
345 	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
346 	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
347 	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
348 	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
349 	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
350 	    default: ia64_getreg_unknown_kr(); break;		\
351 	}							\
352 	r;							\
353 })
354 
355 #define ia64_set_kr(regnum, r) 					\
356 ({								\
357 	switch (regnum) {					\
358 	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
359 	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
360 	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
361 	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
362 	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
363 	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
364 	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
365 	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
366 	    default: ia64_setreg_unknown_kr(); break;		\
367 	}							\
368 })
369 
370 /*
371  * The following three macros can't be inline functions because we don't have struct
372  * task_struct at this point.
373  */
374 
375 /*
376  * Return TRUE if task T owns the fph partition of the CPU we're running on.
377  * Must be called from code that has preemption disabled.
378  */
379 #define ia64_is_local_fpu_owner(t)								\
380 ({												\
381 	struct task_struct *__ia64_islfo_task = (t);						\
382 	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
383 	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
384 })
385 
386 /*
387  * Mark task T as owning the fph partition of the CPU we're running on.
388  * Must be called from code that has preemption disabled.
389  */
390 #define ia64_set_local_fpu_owner(t) do {						\
391 	struct task_struct *__ia64_slfo_task = (t);					\
392 	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
393 	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
394 } while (0)
395 
396 /* Mark the fph partition of task T as being invalid on all CPUs.  */
397 #define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
398 
399 extern void __ia64_init_fpu (void);
400 extern void __ia64_save_fpu (struct ia64_fpreg *fph);
401 extern void __ia64_load_fpu (struct ia64_fpreg *fph);
402 extern void ia64_save_debug_regs (unsigned long *save_area);
403 extern void ia64_load_debug_regs (unsigned long *save_area);
404 
405 #define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
406 #define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
407 
408 /* load fp 0.0 into fph */
409 static inline void
410 ia64_init_fpu (void) {
411 	ia64_fph_enable();
412 	__ia64_init_fpu();
413 	ia64_fph_disable();
414 }
415 
416 /* save f32-f127 at FPH */
417 static inline void
418 ia64_save_fpu (struct ia64_fpreg *fph) {
419 	ia64_fph_enable();
420 	__ia64_save_fpu(fph);
421 	ia64_fph_disable();
422 }
423 
424 /* load f32-f127 from FPH */
425 static inline void
426 ia64_load_fpu (struct ia64_fpreg *fph) {
427 	ia64_fph_enable();
428 	__ia64_load_fpu(fph);
429 	ia64_fph_disable();
430 }
431 
432 static inline __u64
433 ia64_clear_ic (void)
434 {
435 	__u64 psr;
436 	psr = ia64_getreg(_IA64_REG_PSR);
437 	ia64_stop();
438 	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
439 	ia64_srlz_i();
440 	return psr;
441 }
442 
443 /*
444  * Restore the psr.
445  */
446 static inline void
447 ia64_set_psr (__u64 psr)
448 {
449 	ia64_stop();
450 	ia64_setreg(_IA64_REG_PSR_L, psr);
451 	ia64_srlz_i();
452 }
453 
454 /*
455  * Insert a translation into an instruction and/or data translation
456  * register.
457  */
458 static inline void
459 ia64_itr (__u64 target_mask, __u64 tr_num,
460 	  __u64 vmaddr, __u64 pte,
461 	  __u64 log_page_size)
462 {
463 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
464 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
465 	ia64_stop();
466 	if (target_mask & 0x1)
467 		ia64_itri(tr_num, pte);
468 	if (target_mask & 0x2)
469 		ia64_itrd(tr_num, pte);
470 }
471 
472 /*
473  * Insert a translation into the instruction and/or data translation
474  * cache.
475  */
476 static inline void
477 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
478 	  __u64 log_page_size)
479 {
480 	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
481 	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
482 	ia64_stop();
483 	/* as per EAS2.6, itc must be the last instruction in an instruction group */
484 	if (target_mask & 0x1)
485 		ia64_itci(pte);
486 	if (target_mask & 0x2)
487 		ia64_itcd(pte);
488 }
489 
490 /*
491  * Purge a range of addresses from instruction and/or data translation
492  * register(s).
493  */
494 static inline void
495 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
496 {
497 	if (target_mask & 0x1)
498 		ia64_ptri(vmaddr, (log_size << 2));
499 	if (target_mask & 0x2)
500 		ia64_ptrd(vmaddr, (log_size << 2));
501 }
502 
503 /* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
504 static inline void
505 ia64_set_iva (void *ivt_addr)
506 {
507 	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
508 	ia64_srlz_i();
509 }
510 
511 /* Set the page table address and control bits.  */
512 static inline void
513 ia64_set_pta (__u64 pta)
514 {
515 	/* Note: srlz.i implies srlz.d */
516 	ia64_setreg(_IA64_REG_CR_PTA, pta);
517 	ia64_srlz_i();
518 }
519 
520 static inline void
521 ia64_eoi (void)
522 {
523 	ia64_setreg(_IA64_REG_CR_EOI, 0);
524 	ia64_srlz_d();
525 }
526 
527 #define cpu_relax()	ia64_hint(ia64_hint_pause)
528 
529 static inline int
530 ia64_get_irr(unsigned int vector)
531 {
532 	unsigned int reg = vector / 64;
533 	unsigned int bit = vector % 64;
534 	unsigned long irr;
535 
536 	switch (reg) {
537 	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
538 	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
539 	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
540 	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
541 	}
542 
543 	return test_bit(bit, &irr);
544 }
545 
546 static inline void
547 ia64_set_lrr0 (unsigned long val)
548 {
549 	ia64_setreg(_IA64_REG_CR_LRR0, val);
550 	ia64_srlz_d();
551 }
552 
553 static inline void
554 ia64_set_lrr1 (unsigned long val)
555 {
556 	ia64_setreg(_IA64_REG_CR_LRR1, val);
557 	ia64_srlz_d();
558 }
559 
560 
561 /*
562  * Given the address to which a spill occurred, return the unat bit
563  * number that corresponds to this address.
564  */
565 static inline __u64
566 ia64_unat_pos (void *spill_addr)
567 {
568 	return ((__u64) spill_addr >> 3) & 0x3f;
569 }
570 
571 /*
572  * Set the NaT bit of an integer register which was spilled at address
573  * SPILL_ADDR.  UNAT is the mask to be updated.
574  */
575 static inline void
576 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
577 {
578 	__u64 bit = ia64_unat_pos(spill_addr);
579 	__u64 mask = 1UL << bit;
580 
581 	*unat = (*unat & ~mask) | (nat << bit);
582 }
583 
584 static inline __u64
585 ia64_get_ivr (void)
586 {
587 	__u64 r;
588 	ia64_srlz_d();
589 	r = ia64_getreg(_IA64_REG_CR_IVR);
590 	ia64_srlz_d();
591 	return r;
592 }
593 
594 static inline void
595 ia64_set_dbr (__u64 regnum, __u64 value)
596 {
597 	__ia64_set_dbr(regnum, value);
598 #ifdef CONFIG_ITANIUM
599 	ia64_srlz_d();
600 #endif
601 }
602 
603 static inline __u64
604 ia64_get_dbr (__u64 regnum)
605 {
606 	__u64 retval;
607 
608 	retval = __ia64_get_dbr(regnum);
609 #ifdef CONFIG_ITANIUM
610 	ia64_srlz_d();
611 #endif
612 	return retval;
613 }
614 
615 static inline __u64
616 ia64_rotr (__u64 w, __u64 n)
617 {
618 	return (w >> n) | (w << (64 - n));
619 }
620 
621 #define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
622 
623 /*
624  * Take a mapped kernel address and return the equivalent address
625  * in the region 7 identity mapped virtual area.
626  */
627 static inline void *
628 ia64_imva (void *addr)
629 {
630 	void *result;
631 	result = (void *) ia64_tpa(addr);
632 	return __va(result);
633 }
634 
635 #define ARCH_HAS_PREFETCH
636 #define ARCH_HAS_PREFETCHW
637 #define PREFETCH_STRIDE			L1_CACHE_BYTES
638 
639 static inline void
640 prefetch (const void *x)
641 {
642 	 ia64_lfetch(ia64_lfhint_none, x);
643 }
644 
645 static inline void
646 prefetchw (const void *x)
647 {
648 	ia64_lfetch_excl(ia64_lfhint_none, x);
649 }
650 
651 extern unsigned long boot_option_idle_override;
652 
653 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
654 			 IDLE_NOMWAIT, IDLE_POLL};
655 
656 void default_idle(void);
657 
658 #endif /* !__ASSEMBLY__ */
659 
660 #endif /* _ASM_IA64_PROCESSOR_H */
661