1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_IA64_PROCESSOR_H 3 #define _ASM_IA64_PROCESSOR_H 4 5 /* 6 * Copyright (C) 1998-2004 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * Stephane Eranian <eranian@hpl.hp.com> 9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 11 * 12 * 11/24/98 S.Eranian added ia64_set_iva() 13 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API 14 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support 15 */ 16 17 18 #include <asm/intrinsics.h> 19 #include <asm/kregs.h> 20 #include <asm/ptrace.h> 21 #include <asm/ustack.h> 22 23 #define IA64_NUM_PHYS_STACK_REG 96 24 #define IA64_NUM_DBG_REGS 8 25 26 #define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000) 27 #define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000) 28 29 /* 30 * TASK_SIZE really is a mis-named. It really is the maximum user 31 * space address (plus one). On IA-64, there are five regions of 2TB 32 * each (assuming 8KB page size), for a total of 8TB of user virtual 33 * address space. 34 */ 35 #define TASK_SIZE DEFAULT_TASK_SIZE 36 37 /* 38 * This decides where the kernel will search for a free chunk of vm 39 * space during mmap's. 40 */ 41 #define TASK_UNMAPPED_BASE (current->thread.map_base) 42 43 #define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */ 44 #define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */ 45 #define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */ 46 #define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */ 47 #define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */ 48 #define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration 49 sync at ctx sw */ 50 #define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */ 51 #define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */ 52 53 #define IA64_THREAD_UAC_SHIFT 3 54 #define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS) 55 #define IA64_THREAD_FPEMU_SHIFT 6 56 #define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE) 57 58 59 /* 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number). 63 */ 64 #define IA64_NSEC_PER_CYC_SHIFT 30 65 66 #ifndef __ASSEMBLY__ 67 68 #include <linux/cache.h> 69 #include <linux/compiler.h> 70 #include <linux/threads.h> 71 #include <linux/types.h> 72 #include <linux/bitops.h> 73 74 #include <asm/fpu.h> 75 #include <asm/page.h> 76 #include <asm/percpu.h> 77 #include <asm/rse.h> 78 #include <asm/unwind.h> 79 #include <linux/atomic.h> 80 #ifdef CONFIG_NUMA 81 #include <asm/nodedata.h> 82 #endif 83 84 /* like above but expressed as bitfields for more efficient access: */ 85 struct ia64_psr { 86 __u64 reserved0 : 1; 87 __u64 be : 1; 88 __u64 up : 1; 89 __u64 ac : 1; 90 __u64 mfl : 1; 91 __u64 mfh : 1; 92 __u64 reserved1 : 7; 93 __u64 ic : 1; 94 __u64 i : 1; 95 __u64 pk : 1; 96 __u64 reserved2 : 1; 97 __u64 dt : 1; 98 __u64 dfl : 1; 99 __u64 dfh : 1; 100 __u64 sp : 1; 101 __u64 pp : 1; 102 __u64 di : 1; 103 __u64 si : 1; 104 __u64 db : 1; 105 __u64 lp : 1; 106 __u64 tb : 1; 107 __u64 rt : 1; 108 __u64 reserved3 : 4; 109 __u64 cpl : 2; 110 __u64 is : 1; 111 __u64 mc : 1; 112 __u64 it : 1; 113 __u64 id : 1; 114 __u64 da : 1; 115 __u64 dd : 1; 116 __u64 ss : 1; 117 __u64 ri : 2; 118 __u64 ed : 1; 119 __u64 bn : 1; 120 __u64 reserved4 : 19; 121 }; 122 123 union ia64_isr { 124 __u64 val; 125 struct { 126 __u64 code : 16; 127 __u64 vector : 8; 128 __u64 reserved1 : 8; 129 __u64 x : 1; 130 __u64 w : 1; 131 __u64 r : 1; 132 __u64 na : 1; 133 __u64 sp : 1; 134 __u64 rs : 1; 135 __u64 ir : 1; 136 __u64 ni : 1; 137 __u64 so : 1; 138 __u64 ei : 2; 139 __u64 ed : 1; 140 __u64 reserved2 : 20; 141 }; 142 }; 143 144 union ia64_lid { 145 __u64 val; 146 struct { 147 __u64 rv : 16; 148 __u64 eid : 8; 149 __u64 id : 8; 150 __u64 ig : 32; 151 }; 152 }; 153 154 union ia64_tpr { 155 __u64 val; 156 struct { 157 __u64 ig0 : 4; 158 __u64 mic : 4; 159 __u64 rsv : 8; 160 __u64 mmi : 1; 161 __u64 ig1 : 47; 162 }; 163 }; 164 165 union ia64_itir { 166 __u64 val; 167 struct { 168 __u64 rv3 : 2; /* 0-1 */ 169 __u64 ps : 6; /* 2-7 */ 170 __u64 key : 24; /* 8-31 */ 171 __u64 rv4 : 32; /* 32-63 */ 172 }; 173 }; 174 175 union ia64_rr { 176 __u64 val; 177 struct { 178 __u64 ve : 1; /* enable hw walker */ 179 __u64 reserved0: 1; /* reserved */ 180 __u64 ps : 6; /* log page size */ 181 __u64 rid : 24; /* region id */ 182 __u64 reserved1: 32; /* reserved */ 183 }; 184 }; 185 186 /* 187 * CPU type, hardware bug flags, and per-CPU state. Frequently used 188 * state comes earlier: 189 */ 190 struct cpuinfo_ia64 { 191 unsigned int softirq_pending; 192 unsigned long itm_delta; /* # of clock cycles between clock ticks */ 193 unsigned long itm_next; /* interval timer mask value to use for next clock tick */ 194 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */ 195 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */ 196 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */ 197 unsigned long itc_freq; /* frequency of ITC counter */ 198 unsigned long proc_freq; /* frequency of processor */ 199 unsigned long cyc_per_usec; /* itc_freq/1000000 */ 200 unsigned long ptce_base; 201 unsigned int ptce_count[2]; 202 unsigned int ptce_stride[2]; 203 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */ 204 205 #ifdef CONFIG_SMP 206 unsigned long loops_per_jiffy; 207 int cpu; 208 unsigned int socket_id; /* physical processor socket id */ 209 unsigned short core_id; /* core id */ 210 unsigned short thread_id; /* thread id */ 211 unsigned short num_log; /* Total number of logical processors on 212 * this socket that were successfully booted */ 213 unsigned char cores_per_socket; /* Cores per processor socket */ 214 unsigned char threads_per_core; /* Threads per core */ 215 #endif 216 217 /* CPUID-derived information: */ 218 unsigned long ppn; 219 unsigned long features; 220 unsigned char number; 221 unsigned char revision; 222 unsigned char model; 223 unsigned char family; 224 unsigned char archrev; 225 char vendor[16]; 226 char *model_name; 227 228 #ifdef CONFIG_NUMA 229 struct ia64_node_data *node_data; 230 #endif 231 }; 232 233 DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); 234 235 /* 236 * The "local" data variable. It refers to the per-CPU data of the currently executing 237 * CPU, much like "current" points to the per-task data of the currently executing task. 238 * Do not use the address of local_cpu_data, since it will be different from 239 * cpu_data(smp_processor_id())! 240 */ 241 #define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info)) 242 #define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu)) 243 244 extern void print_cpu_info (struct cpuinfo_ia64 *); 245 246 #define SET_UNALIGN_CTL(task,value) \ 247 ({ \ 248 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \ 249 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \ 250 0; \ 251 }) 252 #define GET_UNALIGN_CTL(task,addr) \ 253 ({ \ 254 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \ 255 (int __user *) (addr)); \ 256 }) 257 258 #define SET_FPEMU_CTL(task,value) \ 259 ({ \ 260 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \ 261 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \ 262 0; \ 263 }) 264 #define GET_FPEMU_CTL(task,addr) \ 265 ({ \ 266 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \ 267 (int __user *) (addr)); \ 268 }) 269 270 struct thread_struct { 271 __u32 flags; /* various thread flags (see IA64_THREAD_*) */ 272 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */ 273 __u8 on_ustack; /* executing on user-stacks? */ 274 __u8 pad[3]; 275 __u64 ksp; /* kernel stack pointer */ 276 __u64 map_base; /* base address for get_unmapped_area() */ 277 __u64 rbs_bot; /* the base address for the RBS */ 278 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ 279 unsigned long dbr[IA64_NUM_DBG_REGS]; 280 unsigned long ibr[IA64_NUM_DBG_REGS]; 281 struct ia64_fpreg fph[96]; /* saved/loaded on demand */ 282 }; 283 284 #define INIT_THREAD { \ 285 .flags = 0, \ 286 .on_ustack = 0, \ 287 .ksp = 0, \ 288 .map_base = DEFAULT_MAP_BASE, \ 289 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ 290 .last_fph_cpu = -1, \ 291 .dbr = {0, }, \ 292 .ibr = {0, }, \ 293 .fph = {{{{0}}}, } \ 294 } 295 296 #define start_thread(regs,new_ip,new_sp) do { \ 297 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \ 298 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \ 299 regs->cr_iip = new_ip; \ 300 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \ 301 regs->ar_rnat = 0; \ 302 regs->ar_bspstore = current->thread.rbs_bot; \ 303 regs->ar_fpsr = FPSR_DEFAULT; \ 304 regs->loadrs = 0; \ 305 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \ 306 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \ 307 if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \ 308 /* \ 309 * Zap scratch regs to avoid leaking bits between processes with different \ 310 * uid/privileges. \ 311 */ \ 312 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \ 313 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \ 314 } \ 315 } while (0) 316 317 /* Forward declarations, a strange C thing... */ 318 struct mm_struct; 319 struct task_struct; 320 321 /* 322 * Free all resources held by a thread. This is called after the 323 * parent of DEAD_TASK has collected the exit status of the task via 324 * wait(). 325 */ 326 #define release_thread(dead_task) 327 328 /* Get wait channel for task P. */ 329 extern unsigned long __get_wchan (struct task_struct *p); 330 331 /* Return instruction pointer of blocked task TSK. */ 332 #define KSTK_EIP(tsk) \ 333 ({ \ 334 struct pt_regs *_regs = task_pt_regs(tsk); \ 335 _regs->cr_iip + ia64_psr(_regs)->ri; \ 336 }) 337 338 /* Return stack pointer of blocked task TSK. */ 339 #define KSTK_ESP(tsk) ((tsk)->thread.ksp) 340 341 extern void ia64_getreg_unknown_kr (void); 342 extern void ia64_setreg_unknown_kr (void); 343 344 #define ia64_get_kr(regnum) \ 345 ({ \ 346 unsigned long r = 0; \ 347 \ 348 switch (regnum) { \ 349 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \ 350 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \ 351 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \ 352 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \ 353 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \ 354 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \ 355 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \ 356 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \ 357 default: ia64_getreg_unknown_kr(); break; \ 358 } \ 359 r; \ 360 }) 361 362 #define ia64_set_kr(regnum, r) \ 363 ({ \ 364 switch (regnum) { \ 365 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \ 366 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \ 367 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \ 368 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \ 369 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \ 370 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \ 371 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \ 372 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \ 373 default: ia64_setreg_unknown_kr(); break; \ 374 } \ 375 }) 376 377 /* 378 * The following three macros can't be inline functions because we don't have struct 379 * task_struct at this point. 380 */ 381 382 /* 383 * Return TRUE if task T owns the fph partition of the CPU we're running on. 384 * Must be called from code that has preemption disabled. 385 */ 386 #define ia64_is_local_fpu_owner(t) \ 387 ({ \ 388 struct task_struct *__ia64_islfo_task = (t); \ 389 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \ 390 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \ 391 }) 392 393 /* 394 * Mark task T as owning the fph partition of the CPU we're running on. 395 * Must be called from code that has preemption disabled. 396 */ 397 #define ia64_set_local_fpu_owner(t) do { \ 398 struct task_struct *__ia64_slfo_task = (t); \ 399 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \ 400 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \ 401 } while (0) 402 403 /* Mark the fph partition of task T as being invalid on all CPUs. */ 404 #define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1) 405 406 extern void __ia64_init_fpu (void); 407 extern void __ia64_save_fpu (struct ia64_fpreg *fph); 408 extern void __ia64_load_fpu (struct ia64_fpreg *fph); 409 extern void ia64_save_debug_regs (unsigned long *save_area); 410 extern void ia64_load_debug_regs (unsigned long *save_area); 411 412 #define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 413 #define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0) 414 415 /* load fp 0.0 into fph */ 416 static inline void 417 ia64_init_fpu (void) { 418 ia64_fph_enable(); 419 __ia64_init_fpu(); 420 ia64_fph_disable(); 421 } 422 423 /* save f32-f127 at FPH */ 424 static inline void 425 ia64_save_fpu (struct ia64_fpreg *fph) { 426 ia64_fph_enable(); 427 __ia64_save_fpu(fph); 428 ia64_fph_disable(); 429 } 430 431 /* load f32-f127 from FPH */ 432 static inline void 433 ia64_load_fpu (struct ia64_fpreg *fph) { 434 ia64_fph_enable(); 435 __ia64_load_fpu(fph); 436 ia64_fph_disable(); 437 } 438 439 static inline __u64 440 ia64_clear_ic (void) 441 { 442 __u64 psr; 443 psr = ia64_getreg(_IA64_REG_PSR); 444 ia64_stop(); 445 ia64_rsm(IA64_PSR_I | IA64_PSR_IC); 446 ia64_srlz_i(); 447 return psr; 448 } 449 450 /* 451 * Restore the psr. 452 */ 453 static inline void 454 ia64_set_psr (__u64 psr) 455 { 456 ia64_stop(); 457 ia64_setreg(_IA64_REG_PSR_L, psr); 458 ia64_srlz_i(); 459 } 460 461 /* 462 * Insert a translation into an instruction and/or data translation 463 * register. 464 */ 465 static inline void 466 ia64_itr (__u64 target_mask, __u64 tr_num, 467 __u64 vmaddr, __u64 pte, 468 __u64 log_page_size) 469 { 470 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 471 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 472 ia64_stop(); 473 if (target_mask & 0x1) 474 ia64_itri(tr_num, pte); 475 if (target_mask & 0x2) 476 ia64_itrd(tr_num, pte); 477 } 478 479 /* 480 * Insert a translation into the instruction and/or data translation 481 * cache. 482 */ 483 static inline void 484 ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte, 485 __u64 log_page_size) 486 { 487 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2)); 488 ia64_setreg(_IA64_REG_CR_IFA, vmaddr); 489 ia64_stop(); 490 /* as per EAS2.6, itc must be the last instruction in an instruction group */ 491 if (target_mask & 0x1) 492 ia64_itci(pte); 493 if (target_mask & 0x2) 494 ia64_itcd(pte); 495 } 496 497 /* 498 * Purge a range of addresses from instruction and/or data translation 499 * register(s). 500 */ 501 static inline void 502 ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size) 503 { 504 if (target_mask & 0x1) 505 ia64_ptri(vmaddr, (log_size << 2)); 506 if (target_mask & 0x2) 507 ia64_ptrd(vmaddr, (log_size << 2)); 508 } 509 510 /* Set the interrupt vector address. The address must be suitably aligned (32KB). */ 511 static inline void 512 ia64_set_iva (void *ivt_addr) 513 { 514 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr); 515 ia64_srlz_i(); 516 } 517 518 /* Set the page table address and control bits. */ 519 static inline void 520 ia64_set_pta (__u64 pta) 521 { 522 /* Note: srlz.i implies srlz.d */ 523 ia64_setreg(_IA64_REG_CR_PTA, pta); 524 ia64_srlz_i(); 525 } 526 527 static inline void 528 ia64_eoi (void) 529 { 530 ia64_setreg(_IA64_REG_CR_EOI, 0); 531 ia64_srlz_d(); 532 } 533 534 #define cpu_relax() ia64_hint(ia64_hint_pause) 535 536 static inline int 537 ia64_get_irr(unsigned int vector) 538 { 539 unsigned int reg = vector / 64; 540 unsigned int bit = vector % 64; 541 u64 irr; 542 543 switch (reg) { 544 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break; 545 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break; 546 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break; 547 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break; 548 } 549 550 return test_bit(bit, &irr); 551 } 552 553 static inline void 554 ia64_set_lrr0 (unsigned long val) 555 { 556 ia64_setreg(_IA64_REG_CR_LRR0, val); 557 ia64_srlz_d(); 558 } 559 560 static inline void 561 ia64_set_lrr1 (unsigned long val) 562 { 563 ia64_setreg(_IA64_REG_CR_LRR1, val); 564 ia64_srlz_d(); 565 } 566 567 568 /* 569 * Given the address to which a spill occurred, return the unat bit 570 * number that corresponds to this address. 571 */ 572 static inline __u64 573 ia64_unat_pos (void *spill_addr) 574 { 575 return ((__u64) spill_addr >> 3) & 0x3f; 576 } 577 578 /* 579 * Set the NaT bit of an integer register which was spilled at address 580 * SPILL_ADDR. UNAT is the mask to be updated. 581 */ 582 static inline void 583 ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat) 584 { 585 __u64 bit = ia64_unat_pos(spill_addr); 586 __u64 mask = 1UL << bit; 587 588 *unat = (*unat & ~mask) | (nat << bit); 589 } 590 591 static inline __u64 592 ia64_get_ivr (void) 593 { 594 __u64 r; 595 ia64_srlz_d(); 596 r = ia64_getreg(_IA64_REG_CR_IVR); 597 ia64_srlz_d(); 598 return r; 599 } 600 601 static inline void 602 ia64_set_dbr (__u64 regnum, __u64 value) 603 { 604 __ia64_set_dbr(regnum, value); 605 #ifdef CONFIG_ITANIUM 606 ia64_srlz_d(); 607 #endif 608 } 609 610 static inline __u64 611 ia64_get_dbr (__u64 regnum) 612 { 613 __u64 retval; 614 615 retval = __ia64_get_dbr(regnum); 616 #ifdef CONFIG_ITANIUM 617 ia64_srlz_d(); 618 #endif 619 return retval; 620 } 621 622 static inline __u64 623 ia64_rotr (__u64 w, __u64 n) 624 { 625 return (w >> n) | (w << (64 - n)); 626 } 627 628 #define ia64_rotl(w,n) ia64_rotr((w), (64) - (n)) 629 630 /* 631 * Take a mapped kernel address and return the equivalent address 632 * in the region 7 identity mapped virtual area. 633 */ 634 static inline void * 635 ia64_imva (void *addr) 636 { 637 void *result; 638 result = (void *) ia64_tpa(addr); 639 return __va(result); 640 } 641 642 #define ARCH_HAS_PREFETCH 643 #define ARCH_HAS_PREFETCHW 644 #define ARCH_HAS_SPINLOCK_PREFETCH 645 #define PREFETCH_STRIDE L1_CACHE_BYTES 646 647 static inline void 648 prefetch (const void *x) 649 { 650 ia64_lfetch(ia64_lfhint_none, x); 651 } 652 653 static inline void 654 prefetchw (const void *x) 655 { 656 ia64_lfetch_excl(ia64_lfhint_none, x); 657 } 658 659 #define spin_lock_prefetch(x) prefetchw(x) 660 661 extern unsigned long boot_option_idle_override; 662 663 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT, 664 IDLE_NOMWAIT, IDLE_POLL}; 665 666 void default_idle(void); 667 668 #endif /* !__ASSEMBLY__ */ 669 670 #endif /* _ASM_IA64_PROCESSOR_H */ 671