1 #ifndef _ASM_IA64_PGTABLE_H 2 #define _ASM_IA64_PGTABLE_H 3 4 /* 5 * This file contains the functions and defines necessary to modify and use 6 * the IA-64 page table tree. 7 * 8 * This hopefully works with any (fixed) IA-64 page-size, as defined 9 * in <asm/page.h>. 10 * 11 * Copyright (C) 1998-2005 Hewlett-Packard Co 12 * David Mosberger-Tang <davidm@hpl.hp.com> 13 */ 14 15 16 #include <asm/mman.h> 17 #include <asm/page.h> 18 #include <asm/processor.h> 19 #include <asm/system.h> 20 #include <asm/types.h> 21 22 #define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 23 24 /* 25 * First, define the various bits in a PTE. Note that the PTE format 26 * matches the VHPT short format, the firt doubleword of the VHPD long 27 * format, and the first doubleword of the TLB insertion format. 28 */ 29 #define _PAGE_P_BIT 0 30 #define _PAGE_A_BIT 5 31 #define _PAGE_D_BIT 6 32 33 #define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 34 #define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 35 #define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 36 #define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 37 #define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 38 #define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 39 #define _PAGE_MA_MASK (0x7 << 2) 40 #define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 41 #define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 42 #define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 43 #define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 44 #define _PAGE_PL_MASK (3 << 7) 45 #define _PAGE_AR_R (0 << 9) /* read only */ 46 #define _PAGE_AR_RX (1 << 9) /* read & execute */ 47 #define _PAGE_AR_RW (2 << 9) /* read & write */ 48 #define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 49 #define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 50 #define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 51 #define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 52 #define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 53 #define _PAGE_AR_MASK (7 << 9) 54 #define _PAGE_AR_SHIFT 9 55 #define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 56 #define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 57 #define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 58 #define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 59 #define _PAGE_PROTNONE (__IA64_UL(1) << 63) 60 61 /* Valid only for a PTE with the present bit cleared: */ 62 #define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ 63 64 #define _PFN_MASK _PAGE_PPN_MASK 65 /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 66 #define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 67 68 #define _PAGE_SIZE_4K 12 69 #define _PAGE_SIZE_8K 13 70 #define _PAGE_SIZE_16K 14 71 #define _PAGE_SIZE_64K 16 72 #define _PAGE_SIZE_256K 18 73 #define _PAGE_SIZE_1M 20 74 #define _PAGE_SIZE_4M 22 75 #define _PAGE_SIZE_16M 24 76 #define _PAGE_SIZE_64M 26 77 #define _PAGE_SIZE_256M 28 78 #define _PAGE_SIZE_1G 30 79 #define _PAGE_SIZE_4G 32 80 81 #define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 82 #define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 83 #define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 84 85 /* 86 * How many pointers will a page table level hold expressed in shift 87 */ 88 #define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) 89 90 /* 91 * Definitions for fourth level: 92 */ 93 #define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) 94 95 /* 96 * Definitions for third level: 97 * 98 * PMD_SHIFT determines the size of the area a third-level page table 99 * can map. 100 */ 101 #define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) 102 #define PMD_SIZE (1UL << PMD_SHIFT) 103 #define PMD_MASK (~(PMD_SIZE-1)) 104 #define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) 105 106 #ifdef CONFIG_PGTABLE_4 107 /* 108 * Definitions for second level: 109 * 110 * PUD_SHIFT determines the size of the area a second-level page table 111 * can map. 112 */ 113 #define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 114 #define PUD_SIZE (1UL << PUD_SHIFT) 115 #define PUD_MASK (~(PUD_SIZE-1)) 116 #define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) 117 #endif 118 119 /* 120 * Definitions for first level: 121 * 122 * PGDIR_SHIFT determines what a first-level page table entry can map. 123 */ 124 #ifdef CONFIG_PGTABLE_4 125 #define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) 126 #else 127 #define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 128 #endif 129 #define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 130 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 131 #define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT 132 #define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) 133 #define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 134 #define FIRST_USER_ADDRESS 0 135 136 /* 137 * All the normal masks have the "page accessed" bits on, as any time 138 * they are used, the page is accessed. They are cleared only by the 139 * page-out routines. 140 */ 141 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 142 #define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 143 #define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 144 #define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 145 #define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 146 #define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 147 #define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 148 #define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 149 #define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \ 150 _PAGE_MA_UC) 151 152 # ifndef __ASSEMBLY__ 153 154 #include <linux/sched.h> /* for mm_struct */ 155 #include <linux/bitops.h> 156 #include <asm/cacheflush.h> 157 #include <asm/mmu_context.h> 158 #include <asm/processor.h> 159 160 /* 161 * Next come the mappings that determine how mmap() protection bits 162 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 163 * _P version gets used for a private shared memory segment, the _S 164 * version gets used for a shared memory segment with MAP_SHARED on. 165 * In a private shared memory segment, we do a copy-on-write if a task 166 * attempts to write to the page. 167 */ 168 /* xwr */ 169 #define __P000 PAGE_NONE 170 #define __P001 PAGE_READONLY 171 #define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 172 #define __P011 PAGE_READONLY /* ditto */ 173 #define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 174 #define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 175 #define __P110 PAGE_COPY_EXEC 176 #define __P111 PAGE_COPY_EXEC 177 178 #define __S000 PAGE_NONE 179 #define __S001 PAGE_READONLY 180 #define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 181 #define __S011 PAGE_SHARED 182 #define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 183 #define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 184 #define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 185 #define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 186 187 #define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 188 #ifdef CONFIG_PGTABLE_4 189 #define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 190 #endif 191 #define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 192 #define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 193 194 195 /* 196 * Some definitions to translate between mem_map, PTEs, and page addresses: 197 */ 198 199 200 /* Quick test to see if ADDR is a (potentially) valid physical address. */ 201 static inline long 202 ia64_phys_addr_valid (unsigned long addr) 203 { 204 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 205 } 206 207 /* 208 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 209 * memory. For the return value to be meaningful, ADDR must be >= 210 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 211 * require a hash-, or multi-level tree-lookup or something of that 212 * sort) but it guarantees to return TRUE only if accessing the page 213 * at that address does not cause an error. Note that there may be 214 * addresses for which kern_addr_valid() returns FALSE even though an 215 * access would not cause an error (e.g., this is typically true for 216 * memory mapped I/O regions. 217 * 218 * XXX Need to implement this for IA-64. 219 */ 220 #define kern_addr_valid(addr) (1) 221 222 223 /* 224 * Now come the defines and routines to manage and access the three-level 225 * page table. 226 */ 227 228 229 #define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 230 #ifdef CONFIG_VIRTUAL_MEM_MAP 231 # define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 232 # define VMALLOC_END vmalloc_end 233 extern unsigned long vmalloc_end; 234 #else 235 #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP) 236 /* SPARSEMEM_VMEMMAP uses half of vmalloc... */ 237 # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10))) 238 # define vmemmap ((struct page *)VMALLOC_END) 239 #else 240 # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 241 #endif 242 #endif 243 244 /* fs/proc/kcore.c */ 245 #define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 246 #define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 247 248 #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) 249 #define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ 250 251 /* 252 * Conversion functions: convert page frame number (pfn) and a protection value to a page 253 * table entry (pte). 254 */ 255 #define pfn_pte(pfn, pgprot) \ 256 ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 257 258 /* Extract pfn from pte. */ 259 #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 260 261 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 262 263 /* This takes a physical page address that is used by the remapping functions */ 264 #define mk_pte_phys(physpage, pgprot) \ 265 ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 266 267 #define pte_modify(_pte, newprot) \ 268 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 269 270 #define pte_none(pte) (!pte_val(pte)) 271 #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 272 #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 273 /* pte_page() returns the "struct page *" corresponding to the PTE: */ 274 #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 275 276 #define pmd_none(pmd) (!pmd_val(pmd)) 277 #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 278 #define pmd_present(pmd) (pmd_val(pmd) != 0UL) 279 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 280 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 281 #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 282 283 #define pud_none(pud) (!pud_val(pud)) 284 #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 285 #define pud_present(pud) (pud_val(pud) != 0UL) 286 #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 287 #define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) 288 #define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) 289 290 #ifdef CONFIG_PGTABLE_4 291 #define pgd_none(pgd) (!pgd_val(pgd)) 292 #define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd))) 293 #define pgd_present(pgd) (pgd_val(pgd) != 0UL) 294 #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) 295 #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) 296 #define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET)) 297 #endif 298 299 /* 300 * The following have defined behavior only work if pte_present() is true. 301 */ 302 #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 303 #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 304 #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 305 #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 306 #define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) 307 #define pte_special(pte) 0 308 309 /* 310 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 311 * access rights: 312 */ 313 #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 314 #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 315 #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 316 #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 317 #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 318 #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 319 #define pte_mkhuge(pte) (__pte(pte_val(pte))) 320 #define pte_mkspecial(pte) (pte) 321 322 /* 323 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to 324 * sync icache and dcache when we insert *new* executable page. 325 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache 326 * if necessary. 327 * 328 * set_pte() is also called by the kernel, but we can expect that the kernel 329 * flushes icache explicitly if necessary. 330 */ 331 #define pte_present_exec_user(pte)\ 332 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \ 333 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)) 334 335 extern void __ia64_sync_icache_dcache(pte_t pteval); 336 static inline void set_pte(pte_t *ptep, pte_t pteval) 337 { 338 /* page is present && page is user && page is executable 339 * && (page swapin or new page or page migraton 340 * || copy_on_write with page copying.) 341 */ 342 if (pte_present_exec_user(pteval) && 343 (!pte_present(*ptep) || 344 pte_pfn(*ptep) != pte_pfn(pteval))) 345 /* load_module() calles flush_icache_range() explicitly*/ 346 __ia64_sync_icache_dcache(pteval); 347 *ptep = pteval; 348 } 349 350 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 351 352 /* 353 * Make page protection values cacheable, uncacheable, or write- 354 * combining. Note that "protection" is really a misnomer here as the 355 * protection value contains the memory attribute bits, dirty bits, and 356 * various other bits as well. 357 */ 358 #define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) 359 #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 360 #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 361 362 struct file; 363 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 364 unsigned long size, pgprot_t vma_prot); 365 #define __HAVE_PHYS_MEM_ACCESS_PROT 366 367 static inline unsigned long 368 pgd_index (unsigned long address) 369 { 370 unsigned long region = address >> 61; 371 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 372 373 return (region << (PAGE_SHIFT - 6)) | l1index; 374 } 375 376 /* The offset in the 1-level directory is given by the 3 region bits 377 (61..63) and the level-1 bits. */ 378 static inline pgd_t* 379 pgd_offset (const struct mm_struct *mm, unsigned long address) 380 { 381 return mm->pgd + pgd_index(address); 382 } 383 384 /* In the kernel's mapped region we completely ignore the region number 385 (since we know it's in region number 5). */ 386 #define pgd_offset_k(addr) \ 387 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 388 389 /* Look up a pgd entry in the gate area. On IA-64, the gate-area 390 resides in the kernel-mapped segment, hence we use pgd_offset_k() 391 here. */ 392 #define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 393 394 #ifdef CONFIG_PGTABLE_4 395 /* Find an entry in the second-level page table.. */ 396 #define pud_offset(dir,addr) \ 397 ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) 398 #endif 399 400 /* Find an entry in the third-level page table.. */ 401 #define pmd_offset(dir,addr) \ 402 ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 403 404 /* 405 * Find an entry in the third-level page table. This looks more complicated than it 406 * should be because some platforms place page tables in high memory. 407 */ 408 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 409 #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 410 #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 411 #define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) 412 #define pte_unmap(pte) do { } while (0) 413 #define pte_unmap_nested(pte) do { } while (0) 414 415 /* atomic versions of the some PTE manipulations: */ 416 417 static inline int 418 ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 419 { 420 #ifdef CONFIG_SMP 421 if (!pte_young(*ptep)) 422 return 0; 423 return test_and_clear_bit(_PAGE_A_BIT, ptep); 424 #else 425 pte_t pte = *ptep; 426 if (!pte_young(pte)) 427 return 0; 428 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 429 return 1; 430 #endif 431 } 432 433 static inline pte_t 434 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 435 { 436 #ifdef CONFIG_SMP 437 return __pte(xchg((long *) ptep, 0)); 438 #else 439 pte_t pte = *ptep; 440 pte_clear(mm, addr, ptep); 441 return pte; 442 #endif 443 } 444 445 static inline void 446 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 447 { 448 #ifdef CONFIG_SMP 449 unsigned long new, old; 450 451 do { 452 old = pte_val(*ptep); 453 new = pte_val(pte_wrprotect(__pte (old))); 454 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 455 #else 456 pte_t old_pte = *ptep; 457 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 458 #endif 459 } 460 461 static inline int 462 pte_same (pte_t a, pte_t b) 463 { 464 return pte_val(a) == pte_val(b); 465 } 466 467 #define update_mmu_cache(vma, address, pte) do { } while (0) 468 469 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 470 extern void paging_init (void); 471 472 /* 473 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 474 * bits in the swap-type field of the swap pte. It would be nice to 475 * enforce that, but we can't easily include <linux/swap.h> here. 476 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 477 * 478 * Format of swap pte: 479 * bit 0 : present bit (must be zero) 480 * bit 1 : _PAGE_FILE (must be zero) 481 * bits 2- 8: swap-type 482 * bits 9-62: swap offset 483 * bit 63 : _PAGE_PROTNONE bit 484 * 485 * Format of file pte: 486 * bit 0 : present bit (must be zero) 487 * bit 1 : _PAGE_FILE (must be one) 488 * bits 2-62: file_offset/PAGE_SIZE 489 * bit 63 : _PAGE_PROTNONE bit 490 */ 491 #define __swp_type(entry) (((entry).val >> 2) & 0x7f) 492 #define __swp_offset(entry) (((entry).val << 1) >> 10) 493 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) 494 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 495 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 496 497 #define PTE_FILE_MAX_BITS 61 498 #define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) 499 #define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) 500 501 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 502 remap_pfn_range(vma, vaddr, pfn, size, prot) 503 504 /* 505 * ZERO_PAGE is a global shared page that is always zero: used 506 * for zero-mapped memory areas etc.. 507 */ 508 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 509 extern struct page *zero_page_memmap_ptr; 510 #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 511 512 /* We provide our own get_unmapped_area to cope with VA holes for userland */ 513 #define HAVE_ARCH_UNMAPPED_AREA 514 515 #ifdef CONFIG_HUGETLB_PAGE 516 #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 517 #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 518 #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 519 #endif 520 521 522 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 523 /* 524 * Update PTEP with ENTRY, which is guaranteed to be a less 525 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 526 * WRITABLE bits turned on, when the value at PTEP did not. The 527 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 528 * 529 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 530 * having to worry about races. On SMP machines, there are only two 531 * cases where this is true: 532 * 533 * (1) *PTEP has the PRESENT bit turned OFF 534 * (2) ENTRY has the DIRTY bit turned ON 535 * 536 * On ia64, we could implement this routine with a cmpxchg()-loop 537 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 538 * However, like on x86, we can get a more streamlined version by 539 * observing that it is OK to drop ACCESSED bit updates when 540 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 541 * result in an extra Access-bit fault, which would then turn on the 542 * ACCESSED bit in the low-level fault handler (iaccess_bit or 543 * daccess_bit in ivt.S). 544 */ 545 #ifdef CONFIG_SMP 546 # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 547 ({ \ 548 int __changed = !pte_same(*(__ptep), __entry); \ 549 if (__changed && __safely_writable) { \ 550 set_pte(__ptep, __entry); \ 551 flush_tlb_page(__vma, __addr); \ 552 } \ 553 __changed; \ 554 }) 555 #else 556 # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 557 ({ \ 558 int __changed = !pte_same(*(__ptep), __entry); \ 559 if (__changed) { \ 560 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \ 561 flush_tlb_page(__vma, __addr); \ 562 } \ 563 __changed; \ 564 }) 565 #endif 566 567 # ifdef CONFIG_VIRTUAL_MEM_MAP 568 /* arch mem_map init routine is needed due to holes in a virtual mem_map */ 569 # define __HAVE_ARCH_MEMMAP_INIT 570 extern void memmap_init (unsigned long size, int nid, unsigned long zone, 571 unsigned long start_pfn); 572 # endif /* CONFIG_VIRTUAL_MEM_MAP */ 573 # endif /* !__ASSEMBLY__ */ 574 575 /* 576 * Identity-mapped regions use a large page size. We'll call such large pages 577 * "granules". If you can think of a better name that's unambiguous, let me 578 * know... 579 */ 580 #if defined(CONFIG_IA64_GRANULE_64MB) 581 # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 582 #elif defined(CONFIG_IA64_GRANULE_16MB) 583 # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 584 #endif 585 #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 586 /* 587 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 588 */ 589 #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 590 #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 591 592 /* 593 * No page table caches to initialise 594 */ 595 #define pgtable_cache_init() do { } while (0) 596 597 /* These tell get_user_pages() that the first gate page is accessible from user-level. */ 598 #define FIXADDR_USER_START GATE_ADDR 599 #ifdef HAVE_BUGGY_SEGREL 600 # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 601 #else 602 # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 603 #endif 604 605 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 606 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 607 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 608 #define __HAVE_ARCH_PTE_SAME 609 #define __HAVE_ARCH_PGD_OFFSET_GATE 610 611 612 #ifndef CONFIG_PGTABLE_4 613 #include <asm-generic/pgtable-nopud.h> 614 #endif 615 #include <asm-generic/pgtable.h> 616 617 #endif /* _ASM_IA64_PGTABLE_H */ 618