1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 ** IA64 System Bus Adapter (SBA) I/O MMU manager 4 ** 5 ** (c) Copyright 2002-2005 Alex Williamson 6 ** (c) Copyright 2002-2003 Grant Grundler 7 ** (c) Copyright 2002-2005 Hewlett-Packard Company 8 ** 9 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code) 10 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code) 11 ** 12 ** 13 ** 14 ** This module initializes the IOC (I/O Controller) found on HP 15 ** McKinley machines and their successors. 16 ** 17 */ 18 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/mm.h> 26 #include <linux/string.h> 27 #include <linux/pci.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/acpi.h> 31 #include <linux/efi.h> 32 #include <linux/nodemask.h> 33 #include <linux/bitops.h> /* hweight64() */ 34 #include <linux/crash_dump.h> 35 #include <linux/iommu-helper.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/prefetch.h> 38 39 #include <asm/delay.h> /* ia64_get_itc() */ 40 #include <asm/io.h> 41 #include <asm/page.h> /* PAGE_OFFSET */ 42 #include <asm/dma.h> 43 44 #include <asm/acpi-ext.h> 45 46 extern int swiotlb_late_init_with_default_size (size_t size); 47 48 #define PFX "IOC: " 49 50 /* 51 ** Enabling timing search of the pdir resource map. Output in /proc. 52 ** Disabled by default to optimize performance. 53 */ 54 #undef PDIR_SEARCH_TIMING 55 56 /* 57 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If 58 ** not defined, all DMA will be 32bit and go through the TLB. 59 ** There's potentially a conflict in the bio merge code with us 60 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing 61 ** appears to give more performance than bio-level virtual merging, we'll 62 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to 63 ** completely restrict DMA to the IOMMU. 64 */ 65 #define ALLOW_IOV_BYPASS 66 67 /* 68 ** This option specifically allows/disallows bypassing scatterlists with 69 ** multiple entries. Coalescing these entries can allow better DMA streaming 70 ** and in some cases shows better performance than entirely bypassing the 71 ** IOMMU. Performance increase on the order of 1-2% sequential output/input 72 ** using bonnie++ on a RAID0 MD device (sym2 & mpt). 73 */ 74 #undef ALLOW_IOV_BYPASS_SG 75 76 /* 77 ** If a device prefetches beyond the end of a valid pdir entry, it will cause 78 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should 79 ** disconnect on 4k boundaries and prevent such issues. If the device is 80 ** particularly aggressive, this option will keep the entire pdir valid such 81 ** that prefetching will hit a valid address. This could severely impact 82 ** error containment, and is therefore off by default. The page that is 83 ** used for spill-over is poisoned, so that should help debugging somewhat. 84 */ 85 #undef FULL_VALID_PDIR 86 87 #define ENABLE_MARK_CLEAN 88 89 /* 90 ** The number of debug flags is a clue - this code is fragile. NOTE: since 91 ** tightening the use of res_lock the resource bitmap and actual pdir are no 92 ** longer guaranteed to stay in sync. The sanity checking code isn't going to 93 ** like that. 94 */ 95 #undef DEBUG_SBA_INIT 96 #undef DEBUG_SBA_RUN 97 #undef DEBUG_SBA_RUN_SG 98 #undef DEBUG_SBA_RESOURCE 99 #undef ASSERT_PDIR_SANITY 100 #undef DEBUG_LARGE_SG_ENTRIES 101 #undef DEBUG_BYPASS 102 103 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY) 104 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive 105 #endif 106 107 #define SBA_INLINE __inline__ 108 /* #define SBA_INLINE */ 109 110 #ifdef DEBUG_SBA_INIT 111 #define DBG_INIT(x...) printk(x) 112 #else 113 #define DBG_INIT(x...) 114 #endif 115 116 #ifdef DEBUG_SBA_RUN 117 #define DBG_RUN(x...) printk(x) 118 #else 119 #define DBG_RUN(x...) 120 #endif 121 122 #ifdef DEBUG_SBA_RUN_SG 123 #define DBG_RUN_SG(x...) printk(x) 124 #else 125 #define DBG_RUN_SG(x...) 126 #endif 127 128 129 #ifdef DEBUG_SBA_RESOURCE 130 #define DBG_RES(x...) printk(x) 131 #else 132 #define DBG_RES(x...) 133 #endif 134 135 #ifdef DEBUG_BYPASS 136 #define DBG_BYPASS(x...) printk(x) 137 #else 138 #define DBG_BYPASS(x...) 139 #endif 140 141 #ifdef ASSERT_PDIR_SANITY 142 #define ASSERT(expr) \ 143 if(!(expr)) { \ 144 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \ 145 panic(#expr); \ 146 } 147 #else 148 #define ASSERT(expr) 149 #endif 150 151 /* 152 ** The number of pdir entries to "free" before issuing 153 ** a read to PCOM register to flush out PCOM writes. 154 ** Interacts with allocation granularity (ie 4 or 8 entries 155 ** allocated and free'd/purged at a time might make this 156 ** less interesting). 157 */ 158 #define DELAYED_RESOURCE_CNT 64 159 160 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec 161 162 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP) 163 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP) 164 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP) 165 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP) 166 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP) 167 168 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */ 169 170 #define IOC_FUNC_ID 0x000 171 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */ 172 #define IOC_IBASE 0x300 /* IO TLB */ 173 #define IOC_IMASK 0x308 174 #define IOC_PCOM 0x310 175 #define IOC_TCNFG 0x318 176 #define IOC_PDIR_BASE 0x320 177 178 #define IOC_ROPE0_CFG 0x500 179 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */ 180 181 182 /* AGP GART driver looks for this */ 183 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL 184 185 /* 186 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register) 187 ** 188 ** Some IOCs (sx1000) can run at the above pages sizes, but are 189 ** really only supported using the IOC at a 4k page size. 190 ** 191 ** iovp_size could only be greater than PAGE_SIZE if we are 192 ** confident the drivers really only touch the next physical 193 ** page iff that driver instance owns it. 194 */ 195 static unsigned long iovp_size; 196 static unsigned long iovp_shift; 197 static unsigned long iovp_mask; 198 199 struct ioc { 200 void __iomem *ioc_hpa; /* I/O MMU base address */ 201 char *res_map; /* resource map, bit == pdir entry */ 202 u64 *pdir_base; /* physical base address */ 203 unsigned long ibase; /* pdir IOV Space base */ 204 unsigned long imask; /* pdir IOV Space mask */ 205 206 unsigned long *res_hint; /* next avail IOVP - circular search */ 207 unsigned long dma_mask; 208 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */ 209 /* clearing pdir to prevent races with allocations. */ 210 unsigned int res_bitshift; /* from the RIGHT! */ 211 unsigned int res_size; /* size of resource map in bytes */ 212 #ifdef CONFIG_NUMA 213 unsigned int node; /* node where this IOC lives */ 214 #endif 215 #if DELAYED_RESOURCE_CNT > 0 216 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */ 217 /* than res_lock for bigger systems. */ 218 int saved_cnt; 219 struct sba_dma_pair { 220 dma_addr_t iova; 221 size_t size; 222 } saved[DELAYED_RESOURCE_CNT]; 223 #endif 224 225 #ifdef PDIR_SEARCH_TIMING 226 #define SBA_SEARCH_SAMPLE 0x100 227 unsigned long avg_search[SBA_SEARCH_SAMPLE]; 228 unsigned long avg_idx; /* current index into avg_search */ 229 #endif 230 231 /* Stuff we don't need in performance path */ 232 struct ioc *next; /* list of IOC's in system */ 233 acpi_handle handle; /* for multiple IOC's */ 234 const char *name; 235 unsigned int func_id; 236 unsigned int rev; /* HW revision of chip */ 237 u32 iov_size; 238 unsigned int pdir_size; /* in bytes, determined by IOV Space size */ 239 struct pci_dev *sac_only_dev; 240 }; 241 242 static struct ioc *ioc_list, *ioc_found; 243 static int reserve_sba_gart = 1; 244 245 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t); 246 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t); 247 248 #define sba_sg_address(sg) sg_virt((sg)) 249 250 #ifdef FULL_VALID_PDIR 251 static u64 prefetch_spill_page; 252 #endif 253 254 #ifdef CONFIG_PCI 255 # define GET_IOC(dev) ((dev_is_pci(dev)) \ 256 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL) 257 #else 258 # define GET_IOC(dev) NULL 259 #endif 260 261 /* 262 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up 263 ** (or rather not merge) DMAs into manageable chunks. 264 ** On parisc, this is more of the software/tuning constraint 265 ** rather than the HW. I/O MMU allocation algorithms can be 266 ** faster with smaller sizes (to some degree). 267 */ 268 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size) 269 270 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1)) 271 272 /************************************ 273 ** SBA register read and write support 274 ** 275 ** BE WARNED: register writes are posted. 276 ** (ie follow writes which must reach HW with a read) 277 ** 278 */ 279 #define READ_REG(addr) __raw_readq(addr) 280 #define WRITE_REG(val, addr) __raw_writeq(val, addr) 281 282 #ifdef DEBUG_SBA_INIT 283 284 /** 285 * sba_dump_tlb - debugging only - print IOMMU operating parameters 286 * @hpa: base address of the IOMMU 287 * 288 * Print the size/location of the IO MMU PDIR. 289 */ 290 static void 291 sba_dump_tlb(char *hpa) 292 { 293 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa); 294 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE)); 295 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK)); 296 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG)); 297 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE)); 298 DBG_INIT("\n"); 299 } 300 #endif 301 302 303 #ifdef ASSERT_PDIR_SANITY 304 305 /** 306 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry 307 * @ioc: IO MMU structure which owns the pdir we are interested in. 308 * @msg: text to print ont the output line. 309 * @pide: pdir index. 310 * 311 * Print one entry of the IO MMU PDIR in human readable form. 312 */ 313 static void 314 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide) 315 { 316 /* start printing from lowest pde in rval */ 317 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)]; 318 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)]; 319 uint rcnt; 320 321 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n", 322 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr); 323 324 rcnt = 0; 325 while (rcnt < BITS_PER_LONG) { 326 printk(KERN_DEBUG "%s %2d %p %016Lx\n", 327 (rcnt == (pide & (BITS_PER_LONG - 1))) 328 ? " -->" : " ", 329 rcnt, ptr, (unsigned long long) *ptr ); 330 rcnt++; 331 ptr++; 332 } 333 printk(KERN_DEBUG "%s", msg); 334 } 335 336 337 /** 338 * sba_check_pdir - debugging only - consistency checker 339 * @ioc: IO MMU structure which owns the pdir we are interested in. 340 * @msg: text to print ont the output line. 341 * 342 * Verify the resource map and pdir state is consistent 343 */ 344 static int 345 sba_check_pdir(struct ioc *ioc, char *msg) 346 { 347 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]); 348 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */ 349 u64 *pptr = ioc->pdir_base; /* pdir ptr */ 350 uint pide = 0; 351 352 while (rptr < rptr_end) { 353 u64 rval; 354 int rcnt; /* number of bits we might check */ 355 356 rval = *rptr; 357 rcnt = 64; 358 359 while (rcnt) { 360 /* Get last byte and highest bit from that */ 361 u32 pde = ((u32)((*pptr >> (63)) & 0x1)); 362 if ((rval & 0x1) ^ pde) 363 { 364 /* 365 ** BUMMER! -- res_map != pdir -- 366 ** Dump rval and matching pdir entries 367 */ 368 sba_dump_pdir_entry(ioc, msg, pide); 369 return(1); 370 } 371 rcnt--; 372 rval >>= 1; /* try the next bit */ 373 pptr++; 374 pide++; 375 } 376 rptr++; /* look at next word of res_map */ 377 } 378 /* It'd be nice if we always got here :^) */ 379 return 0; 380 } 381 382 383 /** 384 * sba_dump_sg - debugging only - print Scatter-Gather list 385 * @ioc: IO MMU structure which owns the pdir we are interested in. 386 * @startsg: head of the SG list 387 * @nents: number of entries in SG list 388 * 389 * print the SG list so we can verify it's correct by hand. 390 */ 391 static void 392 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 393 { 394 while (nents-- > 0) { 395 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents, 396 startsg->dma_address, startsg->dma_length, 397 sba_sg_address(startsg)); 398 startsg = sg_next(startsg); 399 } 400 } 401 402 static void 403 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 404 { 405 struct scatterlist *the_sg = startsg; 406 int the_nents = nents; 407 408 while (the_nents-- > 0) { 409 if (sba_sg_address(the_sg) == 0x0UL) 410 sba_dump_sg(NULL, startsg, nents); 411 the_sg = sg_next(the_sg); 412 } 413 } 414 415 #endif /* ASSERT_PDIR_SANITY */ 416 417 418 419 420 /************************************************************** 421 * 422 * I/O Pdir Resource Management 423 * 424 * Bits set in the resource map are in use. 425 * Each bit can represent a number of pages. 426 * LSbs represent lower addresses (IOVA's). 427 * 428 ***************************************************************/ 429 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */ 430 431 /* Convert from IOVP to IOVA and vice versa. */ 432 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset)) 433 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase)) 434 435 #define PDIR_ENTRY_SIZE sizeof(u64) 436 437 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift) 438 439 #define RESMAP_MASK(n) ~(~0UL << (n)) 440 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1) 441 442 443 /** 444 * For most cases the normal get_order is sufficient, however it limits us 445 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity. 446 * It only incurs about 1 clock cycle to use this one with the static variable 447 * and makes the code more intuitive. 448 */ 449 static SBA_INLINE int 450 get_iovp_order (unsigned long size) 451 { 452 long double d = size - 1; 453 long order; 454 455 order = ia64_getf_exp(d); 456 order = order - iovp_shift - 0xffff + 1; 457 if (order < 0) 458 order = 0; 459 return order; 460 } 461 462 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr, 463 unsigned int bitshiftcnt) 464 { 465 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3) 466 + bitshiftcnt; 467 } 468 469 /** 470 * sba_search_bitmap - find free space in IO PDIR resource bitmap 471 * @ioc: IO MMU structure which owns the pdir we are interested in. 472 * @bits_wanted: number of entries we need. 473 * @use_hint: use res_hint to indicate where to start looking 474 * 475 * Find consecutive free bits in resource bitmap. 476 * Each bit represents one entry in the IO Pdir. 477 * Cool perf optimization: search for log2(size) bits at a time. 478 */ 479 static SBA_INLINE unsigned long 480 sba_search_bitmap(struct ioc *ioc, struct device *dev, 481 unsigned long bits_wanted, int use_hint) 482 { 483 unsigned long *res_ptr; 484 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]); 485 unsigned long flags, pide = ~0UL, tpide; 486 unsigned long boundary_size; 487 unsigned long shift; 488 int ret; 489 490 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0); 491 ASSERT(res_ptr < res_end); 492 493 boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1; 494 boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift; 495 496 BUG_ON(ioc->ibase & ~iovp_mask); 497 shift = ioc->ibase >> iovp_shift; 498 499 spin_lock_irqsave(&ioc->res_lock, flags); 500 501 /* Allow caller to force a search through the entire resource space */ 502 if (likely(use_hint)) { 503 res_ptr = ioc->res_hint; 504 } else { 505 res_ptr = (ulong *)ioc->res_map; 506 ioc->res_bitshift = 0; 507 } 508 509 /* 510 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts 511 * if a TLB entry is purged while in use. sba_mark_invalid() 512 * purges IOTLB entries in power-of-two sizes, so we also 513 * allocate IOVA space in power-of-two sizes. 514 */ 515 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift); 516 517 if (likely(bits_wanted == 1)) { 518 unsigned int bitshiftcnt; 519 for(; res_ptr < res_end ; res_ptr++) { 520 if (likely(*res_ptr != ~0UL)) { 521 bitshiftcnt = ffz(*res_ptr); 522 *res_ptr |= (1UL << bitshiftcnt); 523 pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 524 ioc->res_bitshift = bitshiftcnt + bits_wanted; 525 goto found_it; 526 } 527 } 528 goto not_found; 529 530 } 531 532 if (likely(bits_wanted <= BITS_PER_LONG/2)) { 533 /* 534 ** Search the resource bit map on well-aligned values. 535 ** "o" is the alignment. 536 ** We need the alignment to invalidate I/O TLB using 537 ** SBA HW features in the unmap path. 538 */ 539 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift); 540 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o); 541 unsigned long mask, base_mask; 542 543 base_mask = RESMAP_MASK(bits_wanted); 544 mask = base_mask << bitshiftcnt; 545 546 DBG_RES("%s() o %ld %p", __func__, o, res_ptr); 547 for(; res_ptr < res_end ; res_ptr++) 548 { 549 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr); 550 ASSERT(0 != mask); 551 for (; mask ; mask <<= o, bitshiftcnt += o) { 552 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 553 ret = iommu_is_span_boundary(tpide, bits_wanted, 554 shift, 555 boundary_size); 556 if ((0 == ((*res_ptr) & mask)) && !ret) { 557 *res_ptr |= mask; /* mark resources busy! */ 558 pide = tpide; 559 ioc->res_bitshift = bitshiftcnt + bits_wanted; 560 goto found_it; 561 } 562 } 563 564 bitshiftcnt = 0; 565 mask = base_mask; 566 567 } 568 569 } else { 570 int qwords, bits, i; 571 unsigned long *end; 572 573 qwords = bits_wanted >> 6; /* /64 */ 574 bits = bits_wanted - (qwords * BITS_PER_LONG); 575 576 end = res_end - qwords; 577 578 for (; res_ptr < end; res_ptr++) { 579 tpide = ptr_to_pide(ioc, res_ptr, 0); 580 ret = iommu_is_span_boundary(tpide, bits_wanted, 581 shift, boundary_size); 582 if (ret) 583 goto next_ptr; 584 for (i = 0 ; i < qwords ; i++) { 585 if (res_ptr[i] != 0) 586 goto next_ptr; 587 } 588 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits)) 589 continue; 590 591 /* Found it, mark it */ 592 for (i = 0 ; i < qwords ; i++) 593 res_ptr[i] = ~0UL; 594 res_ptr[i] |= RESMAP_MASK(bits); 595 596 pide = tpide; 597 res_ptr += qwords; 598 ioc->res_bitshift = bits; 599 goto found_it; 600 next_ptr: 601 ; 602 } 603 } 604 605 not_found: 606 prefetch(ioc->res_map); 607 ioc->res_hint = (unsigned long *) ioc->res_map; 608 ioc->res_bitshift = 0; 609 spin_unlock_irqrestore(&ioc->res_lock, flags); 610 return (pide); 611 612 found_it: 613 ioc->res_hint = res_ptr; 614 spin_unlock_irqrestore(&ioc->res_lock, flags); 615 return (pide); 616 } 617 618 619 /** 620 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap 621 * @ioc: IO MMU structure which owns the pdir we are interested in. 622 * @size: number of bytes to create a mapping for 623 * 624 * Given a size, find consecutive unmarked and then mark those bits in the 625 * resource bit map. 626 */ 627 static int 628 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 629 { 630 unsigned int pages_needed = size >> iovp_shift; 631 #ifdef PDIR_SEARCH_TIMING 632 unsigned long itc_start; 633 #endif 634 unsigned long pide; 635 636 ASSERT(pages_needed); 637 ASSERT(0 == (size & ~iovp_mask)); 638 639 #ifdef PDIR_SEARCH_TIMING 640 itc_start = ia64_get_itc(); 641 #endif 642 /* 643 ** "seek and ye shall find"...praying never hurts either... 644 */ 645 pide = sba_search_bitmap(ioc, dev, pages_needed, 1); 646 if (unlikely(pide >= (ioc->res_size << 3))) { 647 pide = sba_search_bitmap(ioc, dev, pages_needed, 0); 648 if (unlikely(pide >= (ioc->res_size << 3))) { 649 #if DELAYED_RESOURCE_CNT > 0 650 unsigned long flags; 651 652 /* 653 ** With delayed resource freeing, we can give this one more shot. We're 654 ** getting close to being in trouble here, so do what we can to make this 655 ** one count. 656 */ 657 spin_lock_irqsave(&ioc->saved_lock, flags); 658 if (ioc->saved_cnt > 0) { 659 struct sba_dma_pair *d; 660 int cnt = ioc->saved_cnt; 661 662 d = &(ioc->saved[ioc->saved_cnt - 1]); 663 664 spin_lock(&ioc->res_lock); 665 while (cnt--) { 666 sba_mark_invalid(ioc, d->iova, d->size); 667 sba_free_range(ioc, d->iova, d->size); 668 d--; 669 } 670 ioc->saved_cnt = 0; 671 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 672 spin_unlock(&ioc->res_lock); 673 } 674 spin_unlock_irqrestore(&ioc->saved_lock, flags); 675 676 pide = sba_search_bitmap(ioc, dev, pages_needed, 0); 677 if (unlikely(pide >= (ioc->res_size << 3))) { 678 printk(KERN_WARNING "%s: I/O MMU @ %p is" 679 "out of mapping resources, %u %u %lx\n", 680 __func__, ioc->ioc_hpa, ioc->res_size, 681 pages_needed, dma_get_seg_boundary(dev)); 682 return -1; 683 } 684 #else 685 printk(KERN_WARNING "%s: I/O MMU @ %p is" 686 "out of mapping resources, %u %u %lx\n", 687 __func__, ioc->ioc_hpa, ioc->res_size, 688 pages_needed, dma_get_seg_boundary(dev)); 689 return -1; 690 #endif 691 } 692 } 693 694 #ifdef PDIR_SEARCH_TIMING 695 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed; 696 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1; 697 #endif 698 699 prefetchw(&(ioc->pdir_base[pide])); 700 701 #ifdef ASSERT_PDIR_SANITY 702 /* verify the first enable bit is clear */ 703 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) { 704 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide); 705 } 706 #endif 707 708 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n", 709 __func__, size, pages_needed, pide, 710 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map), 711 ioc->res_bitshift ); 712 713 return (pide); 714 } 715 716 717 /** 718 * sba_free_range - unmark bits in IO PDIR resource bitmap 719 * @ioc: IO MMU structure which owns the pdir we are interested in. 720 * @iova: IO virtual address which was previously allocated. 721 * @size: number of bytes to create a mapping for 722 * 723 * clear bits in the ioc's resource map 724 */ 725 static SBA_INLINE void 726 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size) 727 { 728 unsigned long iovp = SBA_IOVP(ioc, iova); 729 unsigned int pide = PDIR_INDEX(iovp); 730 unsigned int ridx = pide >> 3; /* convert bit to byte address */ 731 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]); 732 int bits_not_wanted = size >> iovp_shift; 733 unsigned long m; 734 735 /* Round up to power-of-two size: see AR2305 note above */ 736 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift); 737 for (; bits_not_wanted > 0 ; res_ptr++) { 738 739 if (unlikely(bits_not_wanted > BITS_PER_LONG)) { 740 741 /* these mappings start 64bit aligned */ 742 *res_ptr = 0UL; 743 bits_not_wanted -= BITS_PER_LONG; 744 pide += BITS_PER_LONG; 745 746 } else { 747 748 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */ 749 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1)); 750 bits_not_wanted = 0; 751 752 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size, 753 bits_not_wanted, m, pide, res_ptr, *res_ptr); 754 755 ASSERT(m != 0); 756 ASSERT(bits_not_wanted); 757 ASSERT((*res_ptr & m) == m); /* verify same bits are set */ 758 *res_ptr &= ~m; 759 } 760 } 761 } 762 763 764 /************************************************************** 765 * 766 * "Dynamic DMA Mapping" support (aka "Coherent I/O") 767 * 768 ***************************************************************/ 769 770 /** 771 * sba_io_pdir_entry - fill in one IO PDIR entry 772 * @pdir_ptr: pointer to IO PDIR entry 773 * @vba: Virtual CPU address of buffer to map 774 * 775 * SBA Mapping Routine 776 * 777 * Given a virtual address (vba, arg1) sba_io_pdir_entry() 778 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0). 779 * Each IO Pdir entry consists of 8 bytes as shown below 780 * (LSB == bit 0): 781 * 782 * 63 40 11 7 0 783 * +-+---------------------+----------------------------------+----+--------+ 784 * |V| U | PPN[39:12] | U | FF | 785 * +-+---------------------+----------------------------------+----+--------+ 786 * 787 * V == Valid Bit 788 * U == Unused 789 * PPN == Physical Page Number 790 * 791 * The physical address fields are filled with the results of virt_to_phys() 792 * on the vba. 793 */ 794 795 #if 1 796 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \ 797 | 0x8000000000000000ULL) 798 #else 799 void SBA_INLINE 800 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba) 801 { 802 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL); 803 } 804 #endif 805 806 #ifdef ENABLE_MARK_CLEAN 807 /** 808 * Since DMA is i-cache coherent, any (complete) pages that were written via 809 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 810 * flush them when they get mapped into an executable vm-area. 811 */ 812 static void 813 mark_clean (void *addr, size_t size) 814 { 815 unsigned long pg_addr, end; 816 817 pg_addr = PAGE_ALIGN((unsigned long) addr); 818 end = (unsigned long) addr + size; 819 while (pg_addr + PAGE_SIZE <= end) { 820 struct page *page = virt_to_page((void *)pg_addr); 821 set_bit(PG_arch_1, &page->flags); 822 pg_addr += PAGE_SIZE; 823 } 824 } 825 #endif 826 827 /** 828 * sba_mark_invalid - invalidate one or more IO PDIR entries 829 * @ioc: IO MMU structure which owns the pdir we are interested in. 830 * @iova: IO Virtual Address mapped earlier 831 * @byte_cnt: number of bytes this mapping covers. 832 * 833 * Marking the IO PDIR entry(ies) as Invalid and invalidate 834 * corresponding IO TLB entry. The PCOM (Purge Command Register) 835 * is to purge stale entries in the IO TLB when unmapping entries. 836 * 837 * The PCOM register supports purging of multiple pages, with a minium 838 * of 1 page and a maximum of 2GB. Hardware requires the address be 839 * aligned to the size of the range being purged. The size of the range 840 * must be a power of 2. The "Cool perf optimization" in the 841 * allocation routine helps keep that true. 842 */ 843 static SBA_INLINE void 844 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 845 { 846 u32 iovp = (u32) SBA_IOVP(ioc,iova); 847 848 int off = PDIR_INDEX(iovp); 849 850 /* Must be non-zero and rounded up */ 851 ASSERT(byte_cnt > 0); 852 ASSERT(0 == (byte_cnt & ~iovp_mask)); 853 854 #ifdef ASSERT_PDIR_SANITY 855 /* Assert first pdir entry is set */ 856 if (!(ioc->pdir_base[off] >> 60)) { 857 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp)); 858 } 859 #endif 860 861 if (byte_cnt <= iovp_size) 862 { 863 ASSERT(off < ioc->pdir_size); 864 865 iovp |= iovp_shift; /* set "size" field for PCOM */ 866 867 #ifndef FULL_VALID_PDIR 868 /* 869 ** clear I/O PDIR entry "valid" bit 870 ** Do NOT clear the rest - save it for debugging. 871 ** We should only clear bits that have previously 872 ** been enabled. 873 */ 874 ioc->pdir_base[off] &= ~(0x80000000000000FFULL); 875 #else 876 /* 877 ** If we want to maintain the PDIR as valid, put in 878 ** the spill page so devices prefetching won't 879 ** cause a hard fail. 880 */ 881 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); 882 #endif 883 } else { 884 u32 t = get_iovp_order(byte_cnt) + iovp_shift; 885 886 iovp |= t; 887 ASSERT(t <= 31); /* 2GB! Max value of "size" field */ 888 889 do { 890 /* verify this pdir entry is enabled */ 891 ASSERT(ioc->pdir_base[off] >> 63); 892 #ifndef FULL_VALID_PDIR 893 /* clear I/O Pdir entry "valid" bit first */ 894 ioc->pdir_base[off] &= ~(0x80000000000000FFULL); 895 #else 896 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); 897 #endif 898 off++; 899 byte_cnt -= iovp_size; 900 } while (byte_cnt > 0); 901 } 902 903 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM); 904 } 905 906 /** 907 * sba_map_page - map one buffer and return IOVA for DMA 908 * @dev: instance of PCI owned by the driver that's asking. 909 * @page: page to map 910 * @poff: offset into page 911 * @size: number of bytes to map 912 * @dir: dma direction 913 * @attrs: optional dma attributes 914 * 915 * See Documentation/DMA-API-HOWTO.txt 916 */ 917 static dma_addr_t sba_map_page(struct device *dev, struct page *page, 918 unsigned long poff, size_t size, 919 enum dma_data_direction dir, 920 unsigned long attrs) 921 { 922 struct ioc *ioc; 923 void *addr = page_address(page) + poff; 924 dma_addr_t iovp; 925 dma_addr_t offset; 926 u64 *pdir_start; 927 int pide; 928 #ifdef ASSERT_PDIR_SANITY 929 unsigned long flags; 930 #endif 931 #ifdef ALLOW_IOV_BYPASS 932 unsigned long pci_addr = virt_to_phys(addr); 933 #endif 934 935 #ifdef ALLOW_IOV_BYPASS 936 ASSERT(to_pci_dev(dev)->dma_mask); 937 /* 938 ** Check if the PCI device can DMA to ptr... if so, just return ptr 939 */ 940 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) { 941 /* 942 ** Device is bit capable of DMA'ing to the buffer... 943 ** just return the PCI address of ptr 944 */ 945 DBG_BYPASS("sba_map_page() bypass mask/addr: " 946 "0x%lx/0x%lx\n", 947 to_pci_dev(dev)->dma_mask, pci_addr); 948 return pci_addr; 949 } 950 #endif 951 ioc = GET_IOC(dev); 952 ASSERT(ioc); 953 954 prefetch(ioc->res_hint); 955 956 ASSERT(size > 0); 957 ASSERT(size <= DMA_CHUNK_SIZE); 958 959 /* save offset bits */ 960 offset = ((dma_addr_t) (long) addr) & ~iovp_mask; 961 962 /* round up to nearest iovp_size */ 963 size = (size + offset + ~iovp_mask) & iovp_mask; 964 965 #ifdef ASSERT_PDIR_SANITY 966 spin_lock_irqsave(&ioc->res_lock, flags); 967 if (sba_check_pdir(ioc,"Check before sba_map_page()")) 968 panic("Sanity check failed"); 969 spin_unlock_irqrestore(&ioc->res_lock, flags); 970 #endif 971 972 pide = sba_alloc_range(ioc, dev, size); 973 if (pide < 0) 974 return DMA_MAPPING_ERROR; 975 976 iovp = (dma_addr_t) pide << iovp_shift; 977 978 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset); 979 980 pdir_start = &(ioc->pdir_base[pide]); 981 982 while (size > 0) { 983 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */ 984 sba_io_pdir_entry(pdir_start, (unsigned long) addr); 985 986 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start); 987 988 addr += iovp_size; 989 size -= iovp_size; 990 pdir_start++; 991 } 992 /* force pdir update */ 993 wmb(); 994 995 /* form complete address */ 996 #ifdef ASSERT_PDIR_SANITY 997 spin_lock_irqsave(&ioc->res_lock, flags); 998 sba_check_pdir(ioc,"Check after sba_map_page()"); 999 spin_unlock_irqrestore(&ioc->res_lock, flags); 1000 #endif 1001 return SBA_IOVA(ioc, iovp, offset); 1002 } 1003 1004 #ifdef ENABLE_MARK_CLEAN 1005 static SBA_INLINE void 1006 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size) 1007 { 1008 u32 iovp = (u32) SBA_IOVP(ioc,iova); 1009 int off = PDIR_INDEX(iovp); 1010 void *addr; 1011 1012 if (size <= iovp_size) { 1013 addr = phys_to_virt(ioc->pdir_base[off] & 1014 ~0xE000000000000FFFULL); 1015 mark_clean(addr, size); 1016 } else { 1017 do { 1018 addr = phys_to_virt(ioc->pdir_base[off] & 1019 ~0xE000000000000FFFULL); 1020 mark_clean(addr, min(size, iovp_size)); 1021 off++; 1022 size -= iovp_size; 1023 } while (size > 0); 1024 } 1025 } 1026 #endif 1027 1028 /** 1029 * sba_unmap_page - unmap one IOVA and free resources 1030 * @dev: instance of PCI owned by the driver that's asking. 1031 * @iova: IOVA of driver buffer previously mapped. 1032 * @size: number of bytes mapped in driver buffer. 1033 * @dir: R/W or both. 1034 * @attrs: optional dma attributes 1035 * 1036 * See Documentation/DMA-API-HOWTO.txt 1037 */ 1038 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size, 1039 enum dma_data_direction dir, unsigned long attrs) 1040 { 1041 struct ioc *ioc; 1042 #if DELAYED_RESOURCE_CNT > 0 1043 struct sba_dma_pair *d; 1044 #endif 1045 unsigned long flags; 1046 dma_addr_t offset; 1047 1048 ioc = GET_IOC(dev); 1049 ASSERT(ioc); 1050 1051 #ifdef ALLOW_IOV_BYPASS 1052 if (likely((iova & ioc->imask) != ioc->ibase)) { 1053 /* 1054 ** Address does not fall w/in IOVA, must be bypassing 1055 */ 1056 DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n", 1057 iova); 1058 1059 #ifdef ENABLE_MARK_CLEAN 1060 if (dir == DMA_FROM_DEVICE) { 1061 mark_clean(phys_to_virt(iova), size); 1062 } 1063 #endif 1064 return; 1065 } 1066 #endif 1067 offset = iova & ~iovp_mask; 1068 1069 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size); 1070 1071 iova ^= offset; /* clear offset bits */ 1072 size += offset; 1073 size = ROUNDUP(size, iovp_size); 1074 1075 #ifdef ENABLE_MARK_CLEAN 1076 if (dir == DMA_FROM_DEVICE) 1077 sba_mark_clean(ioc, iova, size); 1078 #endif 1079 1080 #if DELAYED_RESOURCE_CNT > 0 1081 spin_lock_irqsave(&ioc->saved_lock, flags); 1082 d = &(ioc->saved[ioc->saved_cnt]); 1083 d->iova = iova; 1084 d->size = size; 1085 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) { 1086 int cnt = ioc->saved_cnt; 1087 spin_lock(&ioc->res_lock); 1088 while (cnt--) { 1089 sba_mark_invalid(ioc, d->iova, d->size); 1090 sba_free_range(ioc, d->iova, d->size); 1091 d--; 1092 } 1093 ioc->saved_cnt = 0; 1094 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 1095 spin_unlock(&ioc->res_lock); 1096 } 1097 spin_unlock_irqrestore(&ioc->saved_lock, flags); 1098 #else /* DELAYED_RESOURCE_CNT == 0 */ 1099 spin_lock_irqsave(&ioc->res_lock, flags); 1100 sba_mark_invalid(ioc, iova, size); 1101 sba_free_range(ioc, iova, size); 1102 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 1103 spin_unlock_irqrestore(&ioc->res_lock, flags); 1104 #endif /* DELAYED_RESOURCE_CNT == 0 */ 1105 } 1106 1107 /** 1108 * sba_alloc_coherent - allocate/map shared mem for DMA 1109 * @dev: instance of PCI owned by the driver that's asking. 1110 * @size: number of bytes mapped in driver buffer. 1111 * @dma_handle: IOVA of new buffer. 1112 * 1113 * See Documentation/DMA-API-HOWTO.txt 1114 */ 1115 static void * 1116 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 1117 gfp_t flags, unsigned long attrs) 1118 { 1119 struct page *page; 1120 struct ioc *ioc; 1121 int node = -1; 1122 void *addr; 1123 1124 ioc = GET_IOC(dev); 1125 ASSERT(ioc); 1126 #ifdef CONFIG_NUMA 1127 node = ioc->node; 1128 #endif 1129 1130 page = alloc_pages_node(node, flags, get_order(size)); 1131 if (unlikely(!page)) 1132 return NULL; 1133 1134 addr = page_address(page); 1135 memset(addr, 0, size); 1136 *dma_handle = page_to_phys(page); 1137 1138 #ifdef ALLOW_IOV_BYPASS 1139 ASSERT(dev->coherent_dma_mask); 1140 /* 1141 ** Check if the PCI device can DMA to ptr... if so, just return ptr 1142 */ 1143 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) { 1144 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n", 1145 dev->coherent_dma_mask, *dma_handle); 1146 1147 return addr; 1148 } 1149 #endif 1150 1151 /* 1152 * If device can't bypass or bypass is disabled, pass the 32bit fake 1153 * device to map single to get an iova mapping. 1154 */ 1155 *dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size, 1156 DMA_BIDIRECTIONAL, 0); 1157 if (dma_mapping_error(dev, *dma_handle)) 1158 return NULL; 1159 return addr; 1160 } 1161 1162 1163 /** 1164 * sba_free_coherent - free/unmap shared mem for DMA 1165 * @dev: instance of PCI owned by the driver that's asking. 1166 * @size: number of bytes mapped in driver buffer. 1167 * @vaddr: virtual address IOVA of "consistent" buffer. 1168 * @dma_handler: IO virtual address of "consistent" buffer. 1169 * 1170 * See Documentation/DMA-API-HOWTO.txt 1171 */ 1172 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr, 1173 dma_addr_t dma_handle, unsigned long attrs) 1174 { 1175 sba_unmap_page(dev, dma_handle, size, 0, 0); 1176 free_pages((unsigned long) vaddr, get_order(size)); 1177 } 1178 1179 1180 /* 1181 ** Since 0 is a valid pdir_base index value, can't use that 1182 ** to determine if a value is valid or not. Use a flag to indicate 1183 ** the SG list entry contains a valid pdir index. 1184 */ 1185 #define PIDE_FLAG 0x1UL 1186 1187 #ifdef DEBUG_LARGE_SG_ENTRIES 1188 int dump_run_sg = 0; 1189 #endif 1190 1191 1192 /** 1193 * sba_fill_pdir - write allocated SG entries into IO PDIR 1194 * @ioc: IO MMU structure which owns the pdir we are interested in. 1195 * @startsg: list of IOVA/size pairs 1196 * @nents: number of entries in startsg list 1197 * 1198 * Take preprocessed SG list and write corresponding entries 1199 * in the IO PDIR. 1200 */ 1201 1202 static SBA_INLINE int 1203 sba_fill_pdir( 1204 struct ioc *ioc, 1205 struct scatterlist *startsg, 1206 int nents) 1207 { 1208 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */ 1209 int n_mappings = 0; 1210 u64 *pdirp = NULL; 1211 unsigned long dma_offset = 0; 1212 1213 while (nents-- > 0) { 1214 int cnt = startsg->dma_length; 1215 startsg->dma_length = 0; 1216 1217 #ifdef DEBUG_LARGE_SG_ENTRIES 1218 if (dump_run_sg) 1219 printk(" %2d : %08lx/%05x %p\n", 1220 nents, startsg->dma_address, cnt, 1221 sba_sg_address(startsg)); 1222 #else 1223 DBG_RUN_SG(" %d : %08lx/%05x %p\n", 1224 nents, startsg->dma_address, cnt, 1225 sba_sg_address(startsg)); 1226 #endif 1227 /* 1228 ** Look for the start of a new DMA stream 1229 */ 1230 if (startsg->dma_address & PIDE_FLAG) { 1231 u32 pide = startsg->dma_address & ~PIDE_FLAG; 1232 dma_offset = (unsigned long) pide & ~iovp_mask; 1233 startsg->dma_address = 0; 1234 if (n_mappings) 1235 dma_sg = sg_next(dma_sg); 1236 dma_sg->dma_address = pide | ioc->ibase; 1237 pdirp = &(ioc->pdir_base[pide >> iovp_shift]); 1238 n_mappings++; 1239 } 1240 1241 /* 1242 ** Look for a VCONTIG chunk 1243 */ 1244 if (cnt) { 1245 unsigned long vaddr = (unsigned long) sba_sg_address(startsg); 1246 ASSERT(pdirp); 1247 1248 /* Since multiple Vcontig blocks could make up 1249 ** one DMA stream, *add* cnt to dma_len. 1250 */ 1251 dma_sg->dma_length += cnt; 1252 cnt += dma_offset; 1253 dma_offset=0; /* only want offset on first chunk */ 1254 cnt = ROUNDUP(cnt, iovp_size); 1255 do { 1256 sba_io_pdir_entry(pdirp, vaddr); 1257 vaddr += iovp_size; 1258 cnt -= iovp_size; 1259 pdirp++; 1260 } while (cnt > 0); 1261 } 1262 startsg = sg_next(startsg); 1263 } 1264 /* force pdir update */ 1265 wmb(); 1266 1267 #ifdef DEBUG_LARGE_SG_ENTRIES 1268 dump_run_sg = 0; 1269 #endif 1270 return(n_mappings); 1271 } 1272 1273 1274 /* 1275 ** Two address ranges are DMA contiguous *iff* "end of prev" and 1276 ** "start of next" are both on an IOV page boundary. 1277 ** 1278 ** (shift left is a quick trick to mask off upper bits) 1279 */ 1280 #define DMA_CONTIG(__X, __Y) \ 1281 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL) 1282 1283 1284 /** 1285 * sba_coalesce_chunks - preprocess the SG list 1286 * @ioc: IO MMU structure which owns the pdir we are interested in. 1287 * @startsg: list of IOVA/size pairs 1288 * @nents: number of entries in startsg list 1289 * 1290 * First pass is to walk the SG list and determine where the breaks are 1291 * in the DMA stream. Allocates PDIR entries but does not fill them. 1292 * Returns the number of DMA chunks. 1293 * 1294 * Doing the fill separate from the coalescing/allocation keeps the 1295 * code simpler. Future enhancement could make one pass through 1296 * the sglist do both. 1297 */ 1298 static SBA_INLINE int 1299 sba_coalesce_chunks(struct ioc *ioc, struct device *dev, 1300 struct scatterlist *startsg, 1301 int nents) 1302 { 1303 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */ 1304 unsigned long vcontig_len; /* len of VCONTIG chunk */ 1305 unsigned long vcontig_end; 1306 struct scatterlist *dma_sg; /* next DMA stream head */ 1307 unsigned long dma_offset, dma_len; /* start/len of DMA stream */ 1308 int n_mappings = 0; 1309 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1310 int idx; 1311 1312 while (nents > 0) { 1313 unsigned long vaddr = (unsigned long) sba_sg_address(startsg); 1314 1315 /* 1316 ** Prepare for first/next DMA stream 1317 */ 1318 dma_sg = vcontig_sg = startsg; 1319 dma_len = vcontig_len = vcontig_end = startsg->length; 1320 vcontig_end += vaddr; 1321 dma_offset = vaddr & ~iovp_mask; 1322 1323 /* PARANOID: clear entries */ 1324 startsg->dma_address = startsg->dma_length = 0; 1325 1326 /* 1327 ** This loop terminates one iteration "early" since 1328 ** it's always looking one "ahead". 1329 */ 1330 while (--nents > 0) { 1331 unsigned long vaddr; /* tmp */ 1332 1333 startsg = sg_next(startsg); 1334 1335 /* PARANOID */ 1336 startsg->dma_address = startsg->dma_length = 0; 1337 1338 /* catch brokenness in SCSI layer */ 1339 ASSERT(startsg->length <= DMA_CHUNK_SIZE); 1340 1341 /* 1342 ** First make sure current dma stream won't 1343 ** exceed DMA_CHUNK_SIZE if we coalesce the 1344 ** next entry. 1345 */ 1346 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask) 1347 > DMA_CHUNK_SIZE) 1348 break; 1349 1350 if (dma_len + startsg->length > max_seg_size) 1351 break; 1352 1353 /* 1354 ** Then look for virtually contiguous blocks. 1355 ** 1356 ** append the next transaction? 1357 */ 1358 vaddr = (unsigned long) sba_sg_address(startsg); 1359 if (vcontig_end == vaddr) 1360 { 1361 vcontig_len += startsg->length; 1362 vcontig_end += startsg->length; 1363 dma_len += startsg->length; 1364 continue; 1365 } 1366 1367 #ifdef DEBUG_LARGE_SG_ENTRIES 1368 dump_run_sg = (vcontig_len > iovp_size); 1369 #endif 1370 1371 /* 1372 ** Not virtually contiguous. 1373 ** Terminate prev chunk. 1374 ** Start a new chunk. 1375 ** 1376 ** Once we start a new VCONTIG chunk, dma_offset 1377 ** can't change. And we need the offset from the first 1378 ** chunk - not the last one. Ergo Successive chunks 1379 ** must start on page boundaries and dove tail 1380 ** with it's predecessor. 1381 */ 1382 vcontig_sg->dma_length = vcontig_len; 1383 1384 vcontig_sg = startsg; 1385 vcontig_len = startsg->length; 1386 1387 /* 1388 ** 3) do the entries end/start on page boundaries? 1389 ** Don't update vcontig_end until we've checked. 1390 */ 1391 if (DMA_CONTIG(vcontig_end, vaddr)) 1392 { 1393 vcontig_end = vcontig_len + vaddr; 1394 dma_len += vcontig_len; 1395 continue; 1396 } else { 1397 break; 1398 } 1399 } 1400 1401 /* 1402 ** End of DMA Stream 1403 ** Terminate last VCONTIG block. 1404 ** Allocate space for DMA stream. 1405 */ 1406 vcontig_sg->dma_length = vcontig_len; 1407 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask; 1408 ASSERT(dma_len <= DMA_CHUNK_SIZE); 1409 idx = sba_alloc_range(ioc, dev, dma_len); 1410 if (idx < 0) { 1411 dma_sg->dma_length = 0; 1412 return -1; 1413 } 1414 dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift) 1415 | dma_offset); 1416 n_mappings++; 1417 } 1418 1419 return n_mappings; 1420 } 1421 1422 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, 1423 int nents, enum dma_data_direction dir, 1424 unsigned long attrs); 1425 /** 1426 * sba_map_sg - map Scatter/Gather list 1427 * @dev: instance of PCI owned by the driver that's asking. 1428 * @sglist: array of buffer/length pairs 1429 * @nents: number of entries in list 1430 * @dir: R/W or both. 1431 * @attrs: optional dma attributes 1432 * 1433 * See Documentation/DMA-API-HOWTO.txt 1434 */ 1435 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist, 1436 int nents, enum dma_data_direction dir, 1437 unsigned long attrs) 1438 { 1439 struct ioc *ioc; 1440 int coalesced, filled = 0; 1441 #ifdef ASSERT_PDIR_SANITY 1442 unsigned long flags; 1443 #endif 1444 #ifdef ALLOW_IOV_BYPASS_SG 1445 struct scatterlist *sg; 1446 #endif 1447 1448 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 1449 ioc = GET_IOC(dev); 1450 ASSERT(ioc); 1451 1452 #ifdef ALLOW_IOV_BYPASS_SG 1453 ASSERT(to_pci_dev(dev)->dma_mask); 1454 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) { 1455 for_each_sg(sglist, sg, nents, filled) { 1456 sg->dma_length = sg->length; 1457 sg->dma_address = virt_to_phys(sba_sg_address(sg)); 1458 } 1459 return filled; 1460 } 1461 #endif 1462 /* Fast path single entry scatterlists. */ 1463 if (nents == 1) { 1464 sglist->dma_length = sglist->length; 1465 sglist->dma_address = sba_map_page(dev, sg_page(sglist), 1466 sglist->offset, sglist->length, dir, attrs); 1467 if (dma_mapping_error(dev, sglist->dma_address)) 1468 return 0; 1469 return 1; 1470 } 1471 1472 #ifdef ASSERT_PDIR_SANITY 1473 spin_lock_irqsave(&ioc->res_lock, flags); 1474 if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()")) 1475 { 1476 sba_dump_sg(ioc, sglist, nents); 1477 panic("Check before sba_map_sg_attrs()"); 1478 } 1479 spin_unlock_irqrestore(&ioc->res_lock, flags); 1480 #endif 1481 1482 prefetch(ioc->res_hint); 1483 1484 /* 1485 ** First coalesce the chunks and allocate I/O pdir space 1486 ** 1487 ** If this is one DMA stream, we can properly map using the 1488 ** correct virtual address associated with each DMA page. 1489 ** w/o this association, we wouldn't have coherent DMA! 1490 ** Access to the virtual address is what forces a two pass algorithm. 1491 */ 1492 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents); 1493 if (coalesced < 0) { 1494 sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs); 1495 return 0; 1496 } 1497 1498 /* 1499 ** Program the I/O Pdir 1500 ** 1501 ** map the virtual addresses to the I/O Pdir 1502 ** o dma_address will contain the pdir index 1503 ** o dma_len will contain the number of bytes to map 1504 ** o address contains the virtual address. 1505 */ 1506 filled = sba_fill_pdir(ioc, sglist, nents); 1507 1508 #ifdef ASSERT_PDIR_SANITY 1509 spin_lock_irqsave(&ioc->res_lock, flags); 1510 if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()")) 1511 { 1512 sba_dump_sg(ioc, sglist, nents); 1513 panic("Check after sba_map_sg_attrs()\n"); 1514 } 1515 spin_unlock_irqrestore(&ioc->res_lock, flags); 1516 #endif 1517 1518 ASSERT(coalesced == filled); 1519 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 1520 1521 return filled; 1522 } 1523 1524 /** 1525 * sba_unmap_sg_attrs - unmap Scatter/Gather list 1526 * @dev: instance of PCI owned by the driver that's asking. 1527 * @sglist: array of buffer/length pairs 1528 * @nents: number of entries in list 1529 * @dir: R/W or both. 1530 * @attrs: optional dma attributes 1531 * 1532 * See Documentation/DMA-API-HOWTO.txt 1533 */ 1534 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, 1535 int nents, enum dma_data_direction dir, 1536 unsigned long attrs) 1537 { 1538 #ifdef ASSERT_PDIR_SANITY 1539 struct ioc *ioc; 1540 unsigned long flags; 1541 #endif 1542 1543 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 1544 __func__, nents, sba_sg_address(sglist), sglist->length); 1545 1546 #ifdef ASSERT_PDIR_SANITY 1547 ioc = GET_IOC(dev); 1548 ASSERT(ioc); 1549 1550 spin_lock_irqsave(&ioc->res_lock, flags); 1551 sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()"); 1552 spin_unlock_irqrestore(&ioc->res_lock, flags); 1553 #endif 1554 1555 while (nents && sglist->dma_length) { 1556 1557 sba_unmap_page(dev, sglist->dma_address, sglist->dma_length, 1558 dir, attrs); 1559 sglist = sg_next(sglist); 1560 nents--; 1561 } 1562 1563 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1564 1565 #ifdef ASSERT_PDIR_SANITY 1566 spin_lock_irqsave(&ioc->res_lock, flags); 1567 sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()"); 1568 spin_unlock_irqrestore(&ioc->res_lock, flags); 1569 #endif 1570 1571 } 1572 1573 /************************************************************** 1574 * 1575 * Initialization and claim 1576 * 1577 ***************************************************************/ 1578 1579 static void 1580 ioc_iova_init(struct ioc *ioc) 1581 { 1582 int tcnfg; 1583 int agp_found = 0; 1584 struct pci_dev *device = NULL; 1585 #ifdef FULL_VALID_PDIR 1586 unsigned long index; 1587 #endif 1588 1589 /* 1590 ** Firmware programs the base and size of a "safe IOVA space" 1591 ** (one that doesn't overlap memory or LMMIO space) in the 1592 ** IBASE and IMASK registers. 1593 */ 1594 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL; 1595 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL; 1596 1597 ioc->iov_size = ~ioc->imask + 1; 1598 1599 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n", 1600 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask, 1601 ioc->iov_size >> 20); 1602 1603 switch (iovp_size) { 1604 case 4*1024: tcnfg = 0; break; 1605 case 8*1024: tcnfg = 1; break; 1606 case 16*1024: tcnfg = 2; break; 1607 case 64*1024: tcnfg = 3; break; 1608 default: 1609 panic(PFX "Unsupported IOTLB page size %ldK", 1610 iovp_size >> 10); 1611 break; 1612 } 1613 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG); 1614 1615 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE; 1616 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL, 1617 get_order(ioc->pdir_size)); 1618 if (!ioc->pdir_base) 1619 panic(PFX "Couldn't allocate I/O Page Table\n"); 1620 1621 memset(ioc->pdir_base, 0, ioc->pdir_size); 1622 1623 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__, 1624 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size); 1625 1626 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base); 1627 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE); 1628 1629 /* 1630 ** If an AGP device is present, only use half of the IOV space 1631 ** for PCI DMA. Unfortunately we can't know ahead of time 1632 ** whether GART support will actually be used, for now we 1633 ** can just key on an AGP device found in the system. 1634 ** We program the next pdir index after we stop w/ a key for 1635 ** the GART code to handshake on. 1636 */ 1637 for_each_pci_dev(device) 1638 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP); 1639 1640 if (agp_found && reserve_sba_gart) { 1641 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n", 1642 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2); 1643 ioc->pdir_size /= 2; 1644 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE; 1645 } 1646 #ifdef FULL_VALID_PDIR 1647 /* 1648 ** Check to see if the spill page has been allocated, we don't need more than 1649 ** one across multiple SBAs. 1650 */ 1651 if (!prefetch_spill_page) { 1652 char *spill_poison = "SBAIOMMU POISON"; 1653 int poison_size = 16; 1654 void *poison_addr, *addr; 1655 1656 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size)); 1657 if (!addr) 1658 panic(PFX "Couldn't allocate PDIR spill page\n"); 1659 1660 poison_addr = addr; 1661 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size) 1662 memcpy(poison_addr, spill_poison, poison_size); 1663 1664 prefetch_spill_page = virt_to_phys(addr); 1665 1666 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page); 1667 } 1668 /* 1669 ** Set all the PDIR entries valid w/ the spill page as the target 1670 */ 1671 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++) 1672 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page); 1673 #endif 1674 1675 /* Clear I/O TLB of any possible entries */ 1676 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM); 1677 READ_REG(ioc->ioc_hpa + IOC_PCOM); 1678 1679 /* Enable IOVA translation */ 1680 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE); 1681 READ_REG(ioc->ioc_hpa + IOC_IBASE); 1682 } 1683 1684 static void __init 1685 ioc_resource_init(struct ioc *ioc) 1686 { 1687 spin_lock_init(&ioc->res_lock); 1688 #if DELAYED_RESOURCE_CNT > 0 1689 spin_lock_init(&ioc->saved_lock); 1690 #endif 1691 1692 /* resource map size dictated by pdir_size */ 1693 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */ 1694 ioc->res_size >>= 3; /* convert bit count to byte count */ 1695 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1696 1697 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL, 1698 get_order(ioc->res_size)); 1699 if (!ioc->res_map) 1700 panic(PFX "Couldn't allocate resource map\n"); 1701 1702 memset(ioc->res_map, 0, ioc->res_size); 1703 /* next available IOVP - circular search */ 1704 ioc->res_hint = (unsigned long *) ioc->res_map; 1705 1706 #ifdef ASSERT_PDIR_SANITY 1707 /* Mark first bit busy - ie no IOVA 0 */ 1708 ioc->res_map[0] = 0x1; 1709 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE; 1710 #endif 1711 #ifdef FULL_VALID_PDIR 1712 /* Mark the last resource used so we don't prefetch beyond IOVA space */ 1713 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */ 1714 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF 1715 | prefetch_spill_page); 1716 #endif 1717 1718 DBG_INIT("%s() res_map %x %p\n", __func__, 1719 ioc->res_size, (void *) ioc->res_map); 1720 } 1721 1722 static void __init 1723 ioc_sac_init(struct ioc *ioc) 1724 { 1725 struct pci_dev *sac = NULL; 1726 struct pci_controller *controller = NULL; 1727 1728 /* 1729 * pci_alloc_coherent() must return a DMA address which is 1730 * SAC (single address cycle) addressable, so allocate a 1731 * pseudo-device to enforce that. 1732 */ 1733 sac = kzalloc(sizeof(*sac), GFP_KERNEL); 1734 if (!sac) 1735 panic(PFX "Couldn't allocate struct pci_dev"); 1736 1737 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 1738 if (!controller) 1739 panic(PFX "Couldn't allocate struct pci_controller"); 1740 1741 controller->iommu = ioc; 1742 sac->sysdata = controller; 1743 sac->dma_mask = 0xFFFFFFFFUL; 1744 #ifdef CONFIG_PCI 1745 sac->dev.bus = &pci_bus_type; 1746 #endif 1747 ioc->sac_only_dev = sac; 1748 } 1749 1750 static void __init 1751 ioc_zx1_init(struct ioc *ioc) 1752 { 1753 unsigned long rope_config; 1754 unsigned int i; 1755 1756 if (ioc->rev < 0x20) 1757 panic(PFX "IOC 2.0 or later required for IOMMU support\n"); 1758 1759 /* 38 bit memory controller + extra bit for range displaced by MMIO */ 1760 ioc->dma_mask = (0x1UL << 39) - 1; 1761 1762 /* 1763 ** Clear ROPE(N)_CONFIG AO bit. 1764 ** Disables "NT Ordering" (~= !"Relaxed Ordering") 1765 ** Overrides bit 1 in DMA Hint Sets. 1766 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701. 1767 */ 1768 for (i=0; i<(8*8); i+=8) { 1769 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i); 1770 rope_config &= ~IOC_ROPE_AO; 1771 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i); 1772 } 1773 } 1774 1775 typedef void (initfunc)(struct ioc *); 1776 1777 struct ioc_iommu { 1778 u32 func_id; 1779 char *name; 1780 initfunc *init; 1781 }; 1782 1783 static struct ioc_iommu ioc_iommu_info[] __initdata = { 1784 { ZX1_IOC_ID, "zx1", ioc_zx1_init }, 1785 { ZX2_IOC_ID, "zx2", NULL }, 1786 { SX1000_IOC_ID, "sx1000", NULL }, 1787 { SX2000_IOC_ID, "sx2000", NULL }, 1788 }; 1789 1790 static void __init ioc_init(unsigned long hpa, struct ioc *ioc) 1791 { 1792 struct ioc_iommu *info; 1793 1794 ioc->next = ioc_list; 1795 ioc_list = ioc; 1796 1797 ioc->ioc_hpa = ioremap(hpa, 0x1000); 1798 1799 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID); 1800 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL; 1801 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */ 1802 1803 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) { 1804 if (ioc->func_id == info->func_id) { 1805 ioc->name = info->name; 1806 if (info->init) 1807 (info->init)(ioc); 1808 } 1809 } 1810 1811 iovp_size = (1 << iovp_shift); 1812 iovp_mask = ~(iovp_size - 1); 1813 1814 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__, 1815 PAGE_SIZE >> 10, iovp_size >> 10); 1816 1817 if (!ioc->name) { 1818 ioc->name = kmalloc(24, GFP_KERNEL); 1819 if (ioc->name) 1820 sprintf((char *) ioc->name, "Unknown (%04x:%04x)", 1821 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF); 1822 else 1823 ioc->name = "Unknown"; 1824 } 1825 1826 ioc_iova_init(ioc); 1827 ioc_resource_init(ioc); 1828 ioc_sac_init(ioc); 1829 1830 printk(KERN_INFO PFX 1831 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n", 1832 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF, 1833 hpa, ioc->iov_size >> 20, ioc->ibase); 1834 } 1835 1836 1837 1838 /************************************************************************** 1839 ** 1840 ** SBA initialization code (HW and SW) 1841 ** 1842 ** o identify SBA chip itself 1843 ** o FIXME: initialize DMA hints for reasonable defaults 1844 ** 1845 **************************************************************************/ 1846 1847 #ifdef CONFIG_PROC_FS 1848 static void * 1849 ioc_start(struct seq_file *s, loff_t *pos) 1850 { 1851 struct ioc *ioc; 1852 loff_t n = *pos; 1853 1854 for (ioc = ioc_list; ioc; ioc = ioc->next) 1855 if (!n--) 1856 return ioc; 1857 1858 return NULL; 1859 } 1860 1861 static void * 1862 ioc_next(struct seq_file *s, void *v, loff_t *pos) 1863 { 1864 struct ioc *ioc = v; 1865 1866 ++*pos; 1867 return ioc->next; 1868 } 1869 1870 static void 1871 ioc_stop(struct seq_file *s, void *v) 1872 { 1873 } 1874 1875 static int 1876 ioc_show(struct seq_file *s, void *v) 1877 { 1878 struct ioc *ioc = v; 1879 unsigned long *res_ptr = (unsigned long *)ioc->res_map; 1880 int i, used = 0; 1881 1882 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n", 1883 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF)); 1884 #ifdef CONFIG_NUMA 1885 if (ioc->node != NUMA_NO_NODE) 1886 seq_printf(s, "NUMA node : %d\n", ioc->node); 1887 #endif 1888 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024)); 1889 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024); 1890 1891 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr) 1892 used += hweight64(*res_ptr); 1893 1894 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3); 1895 seq_printf(s, "PDIR used : %d entries\n", used); 1896 1897 #ifdef PDIR_SEARCH_TIMING 1898 { 1899 unsigned long i = 0, avg = 0, min, max; 1900 min = max = ioc->avg_search[0]; 1901 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) { 1902 avg += ioc->avg_search[i]; 1903 if (ioc->avg_search[i] > max) max = ioc->avg_search[i]; 1904 if (ioc->avg_search[i] < min) min = ioc->avg_search[i]; 1905 } 1906 avg /= SBA_SEARCH_SAMPLE; 1907 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n", 1908 min, avg, max); 1909 } 1910 #endif 1911 #ifndef ALLOW_IOV_BYPASS 1912 seq_printf(s, "IOVA bypass disabled\n"); 1913 #endif 1914 return 0; 1915 } 1916 1917 static const struct seq_operations ioc_seq_ops = { 1918 .start = ioc_start, 1919 .next = ioc_next, 1920 .stop = ioc_stop, 1921 .show = ioc_show 1922 }; 1923 1924 static void __init 1925 ioc_proc_init(void) 1926 { 1927 struct proc_dir_entry *dir; 1928 1929 dir = proc_mkdir("bus/mckinley", NULL); 1930 if (!dir) 1931 return; 1932 1933 proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops); 1934 } 1935 #endif 1936 1937 static void 1938 sba_connect_bus(struct pci_bus *bus) 1939 { 1940 acpi_handle handle, parent; 1941 acpi_status status; 1942 struct ioc *ioc; 1943 1944 if (!PCI_CONTROLLER(bus)) 1945 panic(PFX "no sysdata on bus %d!\n", bus->number); 1946 1947 if (PCI_CONTROLLER(bus)->iommu) 1948 return; 1949 1950 handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion); 1951 if (!handle) 1952 return; 1953 1954 /* 1955 * The IOC scope encloses PCI root bridges in the ACPI 1956 * namespace, so work our way out until we find an IOC we 1957 * claimed previously. 1958 */ 1959 do { 1960 for (ioc = ioc_list; ioc; ioc = ioc->next) 1961 if (ioc->handle == handle) { 1962 PCI_CONTROLLER(bus)->iommu = ioc; 1963 return; 1964 } 1965 1966 status = acpi_get_parent(handle, &parent); 1967 handle = parent; 1968 } while (ACPI_SUCCESS(status)); 1969 1970 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number); 1971 } 1972 1973 static void __init 1974 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle) 1975 { 1976 #ifdef CONFIG_NUMA 1977 unsigned int node; 1978 1979 node = acpi_get_node(handle); 1980 if (node != NUMA_NO_NODE && !node_online(node)) 1981 node = NUMA_NO_NODE; 1982 1983 ioc->node = node; 1984 #endif 1985 } 1986 1987 static void __init acpi_sba_ioc_add(struct ioc *ioc) 1988 { 1989 acpi_handle handle = ioc->handle; 1990 acpi_status status; 1991 u64 hpa, length; 1992 struct acpi_device_info *adi; 1993 1994 ioc_found = ioc->next; 1995 status = hp_acpi_csr_space(handle, &hpa, &length); 1996 if (ACPI_FAILURE(status)) 1997 goto err; 1998 1999 status = acpi_get_object_info(handle, &adi); 2000 if (ACPI_FAILURE(status)) 2001 goto err; 2002 2003 /* 2004 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI 2005 * root bridges, and its CSR space includes the IOC function. 2006 */ 2007 if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) { 2008 hpa += ZX1_IOC_OFFSET; 2009 /* zx1 based systems default to kernel page size iommu pages */ 2010 if (!iovp_shift) 2011 iovp_shift = min(PAGE_SHIFT, 16); 2012 } 2013 kfree(adi); 2014 2015 /* 2016 * default anything not caught above or specified on cmdline to 4k 2017 * iommu page size 2018 */ 2019 if (!iovp_shift) 2020 iovp_shift = 12; 2021 2022 ioc_init(hpa, ioc); 2023 /* setup NUMA node association */ 2024 sba_map_ioc_to_node(ioc, handle); 2025 return; 2026 2027 err: 2028 kfree(ioc); 2029 } 2030 2031 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = { 2032 {"HWP0001", 0}, 2033 {"HWP0004", 0}, 2034 {"", 0}, 2035 }; 2036 2037 static int acpi_sba_ioc_attach(struct acpi_device *device, 2038 const struct acpi_device_id *not_used) 2039 { 2040 struct ioc *ioc; 2041 2042 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2043 if (!ioc) 2044 return -ENOMEM; 2045 2046 ioc->next = ioc_found; 2047 ioc_found = ioc; 2048 ioc->handle = device->handle; 2049 return 1; 2050 } 2051 2052 2053 static struct acpi_scan_handler acpi_sba_ioc_handler = { 2054 .ids = hp_ioc_iommu_device_ids, 2055 .attach = acpi_sba_ioc_attach, 2056 }; 2057 2058 static int __init acpi_sba_ioc_init_acpi(void) 2059 { 2060 return acpi_scan_add_handler(&acpi_sba_ioc_handler); 2061 } 2062 /* This has to run before acpi_scan_init(). */ 2063 arch_initcall(acpi_sba_ioc_init_acpi); 2064 2065 static int __init 2066 sba_init(void) 2067 { 2068 if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb")) 2069 return 0; 2070 2071 #if defined(CONFIG_IA64_GENERIC) 2072 /* If we are booting a kdump kernel, the sba_iommu will 2073 * cause devices that were not shutdown properly to MCA 2074 * as soon as they are turned back on. Our only option for 2075 * a successful kdump kernel boot is to use the swiotlb. 2076 */ 2077 if (is_kdump_kernel()) { 2078 dma_ops = NULL; 2079 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0) 2080 panic("Unable to initialize software I/O TLB:" 2081 " Try machvec=dig boot option"); 2082 machvec_init("dig"); 2083 return 0; 2084 } 2085 #endif 2086 2087 /* 2088 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach() 2089 * routine, but that only happens if acpi_scan_init() has already run. 2090 */ 2091 while (ioc_found) 2092 acpi_sba_ioc_add(ioc_found); 2093 2094 if (!ioc_list) { 2095 #ifdef CONFIG_IA64_GENERIC 2096 /* 2097 * If we didn't find something sba_iommu can claim, we 2098 * need to setup the swiotlb and switch to the dig machvec. 2099 */ 2100 dma_ops = NULL; 2101 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0) 2102 panic("Unable to find SBA IOMMU or initialize " 2103 "software I/O TLB: Try machvec=dig boot option"); 2104 machvec_init("dig"); 2105 #else 2106 panic("Unable to find SBA IOMMU: Try a generic or DIG kernel"); 2107 #endif 2108 return 0; 2109 } 2110 2111 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB) 2112 /* 2113 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce 2114 * buffer setup to support devices with smaller DMA masks than 2115 * sba_iommu can handle. 2116 */ 2117 if (ia64_platform_is("hpzx1_swiotlb")) { 2118 extern void hwsw_init(void); 2119 2120 hwsw_init(); 2121 } 2122 #endif 2123 2124 #ifdef CONFIG_PCI 2125 { 2126 struct pci_bus *b = NULL; 2127 while ((b = pci_find_next_bus(b)) != NULL) 2128 sba_connect_bus(b); 2129 } 2130 #endif 2131 2132 #ifdef CONFIG_PROC_FS 2133 ioc_proc_init(); 2134 #endif 2135 return 0; 2136 } 2137 2138 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */ 2139 2140 static int __init 2141 nosbagart(char *str) 2142 { 2143 reserve_sba_gart = 0; 2144 return 1; 2145 } 2146 2147 static int sba_dma_supported (struct device *dev, u64 mask) 2148 { 2149 /* make sure it's at least 32bit capable */ 2150 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL); 2151 } 2152 2153 __setup("nosbagart", nosbagart); 2154 2155 static int __init 2156 sba_page_override(char *str) 2157 { 2158 unsigned long page_size; 2159 2160 page_size = memparse(str, &str); 2161 switch (page_size) { 2162 case 4096: 2163 case 8192: 2164 case 16384: 2165 case 65536: 2166 iovp_shift = ffs(page_size) - 1; 2167 break; 2168 default: 2169 printk("%s: unknown/unsupported iommu page size %ld\n", 2170 __func__, page_size); 2171 } 2172 2173 return 1; 2174 } 2175 2176 __setup("sbapagesize=",sba_page_override); 2177 2178 const struct dma_map_ops sba_dma_ops = { 2179 .alloc = sba_alloc_coherent, 2180 .free = sba_free_coherent, 2181 .map_page = sba_map_page, 2182 .unmap_page = sba_unmap_page, 2183 .map_sg = sba_map_sg_attrs, 2184 .unmap_sg = sba_unmap_sg_attrs, 2185 .dma_supported = sba_dma_supported, 2186 }; 2187 2188 void sba_dma_init(void) 2189 { 2190 dma_ops = &sba_dma_ops; 2191 } 2192