xref: /openbmc/linux/arch/ia64/hp/common/sba_iommu.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 **  IA64 System Bus Adapter (SBA) I/O MMU manager
4 **
5 **	(c) Copyright 2002-2005 Alex Williamson
6 **	(c) Copyright 2002-2003 Grant Grundler
7 **	(c) Copyright 2002-2005 Hewlett-Packard Company
8 **
9 **	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
10 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
11 **
12 **
13 **
14 ** This module initializes the IOC (I/O Controller) found on HP
15 ** McKinley machines and their successors.
16 **
17 */
18 
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/acpi.h>
31 #include <linux/efi.h>
32 #include <linux/nodemask.h>
33 #include <linux/bitops.h>         /* hweight64() */
34 #include <linux/crash_dump.h>
35 #include <linux/iommu-helper.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/prefetch.h>
38 
39 #include <asm/delay.h>		/* ia64_get_itc() */
40 #include <asm/io.h>
41 #include <asm/page.h>		/* PAGE_OFFSET */
42 #include <asm/dma.h>
43 
44 #include <asm/acpi-ext.h>
45 
46 extern int swiotlb_late_init_with_default_size (size_t size);
47 
48 #define PFX "IOC: "
49 
50 /*
51 ** Enabling timing search of the pdir resource map.  Output in /proc.
52 ** Disabled by default to optimize performance.
53 */
54 #undef PDIR_SEARCH_TIMING
55 
56 /*
57 ** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
58 ** not defined, all DMA will be 32bit and go through the TLB.
59 ** There's potentially a conflict in the bio merge code with us
60 ** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
61 ** appears to give more performance than bio-level virtual merging, we'll
62 ** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
63 ** completely restrict DMA to the IOMMU.
64 */
65 #define ALLOW_IOV_BYPASS
66 
67 /*
68 ** This option specifically allows/disallows bypassing scatterlists with
69 ** multiple entries.  Coalescing these entries can allow better DMA streaming
70 ** and in some cases shows better performance than entirely bypassing the
71 ** IOMMU.  Performance increase on the order of 1-2% sequential output/input
72 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
73 */
74 #undef ALLOW_IOV_BYPASS_SG
75 
76 /*
77 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
78 ** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
79 ** disconnect on 4k boundaries and prevent such issues.  If the device is
80 ** particularly aggressive, this option will keep the entire pdir valid such
81 ** that prefetching will hit a valid address.  This could severely impact
82 ** error containment, and is therefore off by default.  The page that is
83 ** used for spill-over is poisoned, so that should help debugging somewhat.
84 */
85 #undef FULL_VALID_PDIR
86 
87 #define ENABLE_MARK_CLEAN
88 
89 /*
90 ** The number of debug flags is a clue - this code is fragile.  NOTE: since
91 ** tightening the use of res_lock the resource bitmap and actual pdir are no
92 ** longer guaranteed to stay in sync.  The sanity checking code isn't going to
93 ** like that.
94 */
95 #undef DEBUG_SBA_INIT
96 #undef DEBUG_SBA_RUN
97 #undef DEBUG_SBA_RUN_SG
98 #undef DEBUG_SBA_RESOURCE
99 #undef ASSERT_PDIR_SANITY
100 #undef DEBUG_LARGE_SG_ENTRIES
101 #undef DEBUG_BYPASS
102 
103 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
104 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
105 #endif
106 
107 #define SBA_INLINE	__inline__
108 /* #define SBA_INLINE */
109 
110 #ifdef DEBUG_SBA_INIT
111 #define DBG_INIT(x...)	printk(x)
112 #else
113 #define DBG_INIT(x...)
114 #endif
115 
116 #ifdef DEBUG_SBA_RUN
117 #define DBG_RUN(x...)	printk(x)
118 #else
119 #define DBG_RUN(x...)
120 #endif
121 
122 #ifdef DEBUG_SBA_RUN_SG
123 #define DBG_RUN_SG(x...)	printk(x)
124 #else
125 #define DBG_RUN_SG(x...)
126 #endif
127 
128 
129 #ifdef DEBUG_SBA_RESOURCE
130 #define DBG_RES(x...)	printk(x)
131 #else
132 #define DBG_RES(x...)
133 #endif
134 
135 #ifdef DEBUG_BYPASS
136 #define DBG_BYPASS(x...)	printk(x)
137 #else
138 #define DBG_BYPASS(x...)
139 #endif
140 
141 #ifdef ASSERT_PDIR_SANITY
142 #define ASSERT(expr) \
143         if(!(expr)) { \
144                 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
145                 panic(#expr); \
146         }
147 #else
148 #define ASSERT(expr)
149 #endif
150 
151 /*
152 ** The number of pdir entries to "free" before issuing
153 ** a read to PCOM register to flush out PCOM writes.
154 ** Interacts with allocation granularity (ie 4 or 8 entries
155 ** allocated and free'd/purged at a time might make this
156 ** less interesting).
157 */
158 #define DELAYED_RESOURCE_CNT	64
159 
160 #define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
161 
162 #define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
163 #define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
164 #define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
165 #define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
166 #define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
167 
168 #define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
169 
170 #define IOC_FUNC_ID	0x000
171 #define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
172 #define IOC_IBASE	0x300	/* IO TLB */
173 #define IOC_IMASK	0x308
174 #define IOC_PCOM	0x310
175 #define IOC_TCNFG	0x318
176 #define IOC_PDIR_BASE	0x320
177 
178 #define IOC_ROPE0_CFG	0x500
179 #define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
180 
181 
182 /* AGP GART driver looks for this */
183 #define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
184 
185 /*
186 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
187 **
188 ** Some IOCs (sx1000) can run at the above pages sizes, but are
189 ** really only supported using the IOC at a 4k page size.
190 **
191 ** iovp_size could only be greater than PAGE_SIZE if we are
192 ** confident the drivers really only touch the next physical
193 ** page iff that driver instance owns it.
194 */
195 static unsigned long iovp_size;
196 static unsigned long iovp_shift;
197 static unsigned long iovp_mask;
198 
199 struct ioc {
200 	void __iomem	*ioc_hpa;	/* I/O MMU base address */
201 	char		*res_map;	/* resource map, bit == pdir entry */
202 	u64		*pdir_base;	/* physical base address */
203 	unsigned long	ibase;		/* pdir IOV Space base */
204 	unsigned long	imask;		/* pdir IOV Space mask */
205 
206 	unsigned long	*res_hint;	/* next avail IOVP - circular search */
207 	unsigned long	dma_mask;
208 	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
209 					/* clearing pdir to prevent races with allocations. */
210 	unsigned int	res_bitshift;	/* from the RIGHT! */
211 	unsigned int	res_size;	/* size of resource map in bytes */
212 #ifdef CONFIG_NUMA
213 	unsigned int	node;		/* node where this IOC lives */
214 #endif
215 #if DELAYED_RESOURCE_CNT > 0
216 	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
217 					/* than res_lock for bigger systems. */
218 	int		saved_cnt;
219 	struct sba_dma_pair {
220 		dma_addr_t	iova;
221 		size_t		size;
222 	} saved[DELAYED_RESOURCE_CNT];
223 #endif
224 
225 #ifdef PDIR_SEARCH_TIMING
226 #define SBA_SEARCH_SAMPLE	0x100
227 	unsigned long avg_search[SBA_SEARCH_SAMPLE];
228 	unsigned long avg_idx;	/* current index into avg_search */
229 #endif
230 
231 	/* Stuff we don't need in performance path */
232 	struct ioc	*next;		/* list of IOC's in system */
233 	acpi_handle	handle;		/* for multiple IOC's */
234 	const char 	*name;
235 	unsigned int	func_id;
236 	unsigned int	rev;		/* HW revision of chip */
237 	u32		iov_size;
238 	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
239 	struct pci_dev	*sac_only_dev;
240 };
241 
242 static struct ioc *ioc_list, *ioc_found;
243 static int reserve_sba_gart = 1;
244 
245 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
246 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
247 
248 #define sba_sg_address(sg)	sg_virt((sg))
249 
250 #ifdef FULL_VALID_PDIR
251 static u64 prefetch_spill_page;
252 #endif
253 
254 #ifdef CONFIG_PCI
255 # define GET_IOC(dev)	((dev_is_pci(dev))						\
256 			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
257 #else
258 # define GET_IOC(dev)	NULL
259 #endif
260 
261 /*
262 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
263 ** (or rather not merge) DMAs into manageable chunks.
264 ** On parisc, this is more of the software/tuning constraint
265 ** rather than the HW. I/O MMU allocation algorithms can be
266 ** faster with smaller sizes (to some degree).
267 */
268 #define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
269 
270 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
271 
272 /************************************
273 ** SBA register read and write support
274 **
275 ** BE WARNED: register writes are posted.
276 **  (ie follow writes which must reach HW with a read)
277 **
278 */
279 #define READ_REG(addr)       __raw_readq(addr)
280 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
281 
282 #ifdef DEBUG_SBA_INIT
283 
284 /**
285  * sba_dump_tlb - debugging only - print IOMMU operating parameters
286  * @hpa: base address of the IOMMU
287  *
288  * Print the size/location of the IO MMU PDIR.
289  */
290 static void
291 sba_dump_tlb(char *hpa)
292 {
293 	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
294 	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
295 	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
296 	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
297 	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
298 	DBG_INIT("\n");
299 }
300 #endif
301 
302 
303 #ifdef ASSERT_PDIR_SANITY
304 
305 /**
306  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
307  * @ioc: IO MMU structure which owns the pdir we are interested in.
308  * @msg: text to print ont the output line.
309  * @pide: pdir index.
310  *
311  * Print one entry of the IO MMU PDIR in human readable form.
312  */
313 static void
314 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
315 {
316 	/* start printing from lowest pde in rval */
317 	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
318 	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
319 	uint rcnt;
320 
321 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
322 		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
323 
324 	rcnt = 0;
325 	while (rcnt < BITS_PER_LONG) {
326 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
327 		       (rcnt == (pide & (BITS_PER_LONG - 1)))
328 		       ? "    -->" : "       ",
329 		       rcnt, ptr, (unsigned long long) *ptr );
330 		rcnt++;
331 		ptr++;
332 	}
333 	printk(KERN_DEBUG "%s", msg);
334 }
335 
336 
337 /**
338  * sba_check_pdir - debugging only - consistency checker
339  * @ioc: IO MMU structure which owns the pdir we are interested in.
340  * @msg: text to print ont the output line.
341  *
342  * Verify the resource map and pdir state is consistent
343  */
344 static int
345 sba_check_pdir(struct ioc *ioc, char *msg)
346 {
347 	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
348 	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
349 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
350 	uint pide = 0;
351 
352 	while (rptr < rptr_end) {
353 		u64 rval;
354 		int rcnt; /* number of bits we might check */
355 
356 		rval = *rptr;
357 		rcnt = 64;
358 
359 		while (rcnt) {
360 			/* Get last byte and highest bit from that */
361 			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
362 			if ((rval & 0x1) ^ pde)
363 			{
364 				/*
365 				** BUMMER!  -- res_map != pdir --
366 				** Dump rval and matching pdir entries
367 				*/
368 				sba_dump_pdir_entry(ioc, msg, pide);
369 				return(1);
370 			}
371 			rcnt--;
372 			rval >>= 1;	/* try the next bit */
373 			pptr++;
374 			pide++;
375 		}
376 		rptr++;	/* look at next word of res_map */
377 	}
378 	/* It'd be nice if we always got here :^) */
379 	return 0;
380 }
381 
382 
383 /**
384  * sba_dump_sg - debugging only - print Scatter-Gather list
385  * @ioc: IO MMU structure which owns the pdir we are interested in.
386  * @startsg: head of the SG list
387  * @nents: number of entries in SG list
388  *
389  * print the SG list so we can verify it's correct by hand.
390  */
391 static void
392 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
393 {
394 	while (nents-- > 0) {
395 		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
396 		       startsg->dma_address, startsg->dma_length,
397 		       sba_sg_address(startsg));
398 		startsg = sg_next(startsg);
399 	}
400 }
401 
402 static void
403 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
404 {
405 	struct scatterlist *the_sg = startsg;
406 	int the_nents = nents;
407 
408 	while (the_nents-- > 0) {
409 		if (sba_sg_address(the_sg) == 0x0UL)
410 			sba_dump_sg(NULL, startsg, nents);
411 		the_sg = sg_next(the_sg);
412 	}
413 }
414 
415 #endif /* ASSERT_PDIR_SANITY */
416 
417 
418 
419 
420 /**************************************************************
421 *
422 *   I/O Pdir Resource Management
423 *
424 *   Bits set in the resource map are in use.
425 *   Each bit can represent a number of pages.
426 *   LSbs represent lower addresses (IOVA's).
427 *
428 ***************************************************************/
429 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
430 
431 /* Convert from IOVP to IOVA and vice versa. */
432 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
433 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
434 
435 #define PDIR_ENTRY_SIZE	sizeof(u64)
436 
437 #define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
438 
439 #define RESMAP_MASK(n)    ~(~0UL << (n))
440 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
441 
442 
443 /**
444  * For most cases the normal get_order is sufficient, however it limits us
445  * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
446  * It only incurs about 1 clock cycle to use this one with the static variable
447  * and makes the code more intuitive.
448  */
449 static SBA_INLINE int
450 get_iovp_order (unsigned long size)
451 {
452 	long double d = size - 1;
453 	long order;
454 
455 	order = ia64_getf_exp(d);
456 	order = order - iovp_shift - 0xffff + 1;
457 	if (order < 0)
458 		order = 0;
459 	return order;
460 }
461 
462 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
463 				 unsigned int bitshiftcnt)
464 {
465 	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
466 		+ bitshiftcnt;
467 }
468 
469 /**
470  * sba_search_bitmap - find free space in IO PDIR resource bitmap
471  * @ioc: IO MMU structure which owns the pdir we are interested in.
472  * @bits_wanted: number of entries we need.
473  * @use_hint: use res_hint to indicate where to start looking
474  *
475  * Find consecutive free bits in resource bitmap.
476  * Each bit represents one entry in the IO Pdir.
477  * Cool perf optimization: search for log2(size) bits at a time.
478  */
479 static SBA_INLINE unsigned long
480 sba_search_bitmap(struct ioc *ioc, struct device *dev,
481 		  unsigned long bits_wanted, int use_hint)
482 {
483 	unsigned long *res_ptr;
484 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
485 	unsigned long flags, pide = ~0UL, tpide;
486 	unsigned long boundary_size;
487 	unsigned long shift;
488 	int ret;
489 
490 	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
491 	ASSERT(res_ptr < res_end);
492 
493 	boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1;
494 	boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift;
495 
496 	BUG_ON(ioc->ibase & ~iovp_mask);
497 	shift = ioc->ibase >> iovp_shift;
498 
499 	spin_lock_irqsave(&ioc->res_lock, flags);
500 
501 	/* Allow caller to force a search through the entire resource space */
502 	if (likely(use_hint)) {
503 		res_ptr = ioc->res_hint;
504 	} else {
505 		res_ptr = (ulong *)ioc->res_map;
506 		ioc->res_bitshift = 0;
507 	}
508 
509 	/*
510 	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
511 	 * if a TLB entry is purged while in use.  sba_mark_invalid()
512 	 * purges IOTLB entries in power-of-two sizes, so we also
513 	 * allocate IOVA space in power-of-two sizes.
514 	 */
515 	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
516 
517 	if (likely(bits_wanted == 1)) {
518 		unsigned int bitshiftcnt;
519 		for(; res_ptr < res_end ; res_ptr++) {
520 			if (likely(*res_ptr != ~0UL)) {
521 				bitshiftcnt = ffz(*res_ptr);
522 				*res_ptr |= (1UL << bitshiftcnt);
523 				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
524 				ioc->res_bitshift = bitshiftcnt + bits_wanted;
525 				goto found_it;
526 			}
527 		}
528 		goto not_found;
529 
530 	}
531 
532 	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
533 		/*
534 		** Search the resource bit map on well-aligned values.
535 		** "o" is the alignment.
536 		** We need the alignment to invalidate I/O TLB using
537 		** SBA HW features in the unmap path.
538 		*/
539 		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
540 		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
541 		unsigned long mask, base_mask;
542 
543 		base_mask = RESMAP_MASK(bits_wanted);
544 		mask = base_mask << bitshiftcnt;
545 
546 		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
547 		for(; res_ptr < res_end ; res_ptr++)
548 		{
549 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
550 			ASSERT(0 != mask);
551 			for (; mask ; mask <<= o, bitshiftcnt += o) {
552 				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
553 				ret = iommu_is_span_boundary(tpide, bits_wanted,
554 							     shift,
555 							     boundary_size);
556 				if ((0 == ((*res_ptr) & mask)) && !ret) {
557 					*res_ptr |= mask;     /* mark resources busy! */
558 					pide = tpide;
559 					ioc->res_bitshift = bitshiftcnt + bits_wanted;
560 					goto found_it;
561 				}
562 			}
563 
564 			bitshiftcnt = 0;
565 			mask = base_mask;
566 
567 		}
568 
569 	} else {
570 		int qwords, bits, i;
571 		unsigned long *end;
572 
573 		qwords = bits_wanted >> 6; /* /64 */
574 		bits = bits_wanted - (qwords * BITS_PER_LONG);
575 
576 		end = res_end - qwords;
577 
578 		for (; res_ptr < end; res_ptr++) {
579 			tpide = ptr_to_pide(ioc, res_ptr, 0);
580 			ret = iommu_is_span_boundary(tpide, bits_wanted,
581 						     shift, boundary_size);
582 			if (ret)
583 				goto next_ptr;
584 			for (i = 0 ; i < qwords ; i++) {
585 				if (res_ptr[i] != 0)
586 					goto next_ptr;
587 			}
588 			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
589 				continue;
590 
591 			/* Found it, mark it */
592 			for (i = 0 ; i < qwords ; i++)
593 				res_ptr[i] = ~0UL;
594 			res_ptr[i] |= RESMAP_MASK(bits);
595 
596 			pide = tpide;
597 			res_ptr += qwords;
598 			ioc->res_bitshift = bits;
599 			goto found_it;
600 next_ptr:
601 			;
602 		}
603 	}
604 
605 not_found:
606 	prefetch(ioc->res_map);
607 	ioc->res_hint = (unsigned long *) ioc->res_map;
608 	ioc->res_bitshift = 0;
609 	spin_unlock_irqrestore(&ioc->res_lock, flags);
610 	return (pide);
611 
612 found_it:
613 	ioc->res_hint = res_ptr;
614 	spin_unlock_irqrestore(&ioc->res_lock, flags);
615 	return (pide);
616 }
617 
618 
619 /**
620  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
621  * @ioc: IO MMU structure which owns the pdir we are interested in.
622  * @size: number of bytes to create a mapping for
623  *
624  * Given a size, find consecutive unmarked and then mark those bits in the
625  * resource bit map.
626  */
627 static int
628 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
629 {
630 	unsigned int pages_needed = size >> iovp_shift;
631 #ifdef PDIR_SEARCH_TIMING
632 	unsigned long itc_start;
633 #endif
634 	unsigned long pide;
635 
636 	ASSERT(pages_needed);
637 	ASSERT(0 == (size & ~iovp_mask));
638 
639 #ifdef PDIR_SEARCH_TIMING
640 	itc_start = ia64_get_itc();
641 #endif
642 	/*
643 	** "seek and ye shall find"...praying never hurts either...
644 	*/
645 	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
646 	if (unlikely(pide >= (ioc->res_size << 3))) {
647 		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
648 		if (unlikely(pide >= (ioc->res_size << 3))) {
649 #if DELAYED_RESOURCE_CNT > 0
650 			unsigned long flags;
651 
652 			/*
653 			** With delayed resource freeing, we can give this one more shot.  We're
654 			** getting close to being in trouble here, so do what we can to make this
655 			** one count.
656 			*/
657 			spin_lock_irqsave(&ioc->saved_lock, flags);
658 			if (ioc->saved_cnt > 0) {
659 				struct sba_dma_pair *d;
660 				int cnt = ioc->saved_cnt;
661 
662 				d = &(ioc->saved[ioc->saved_cnt - 1]);
663 
664 				spin_lock(&ioc->res_lock);
665 				while (cnt--) {
666 					sba_mark_invalid(ioc, d->iova, d->size);
667 					sba_free_range(ioc, d->iova, d->size);
668 					d--;
669 				}
670 				ioc->saved_cnt = 0;
671 				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
672 				spin_unlock(&ioc->res_lock);
673 			}
674 			spin_unlock_irqrestore(&ioc->saved_lock, flags);
675 
676 			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
677 			if (unlikely(pide >= (ioc->res_size << 3))) {
678 				printk(KERN_WARNING "%s: I/O MMU @ %p is"
679 				       "out of mapping resources, %u %u %lx\n",
680 				       __func__, ioc->ioc_hpa, ioc->res_size,
681 				       pages_needed, dma_get_seg_boundary(dev));
682 				return -1;
683 			}
684 #else
685 			printk(KERN_WARNING "%s: I/O MMU @ %p is"
686 			       "out of mapping resources, %u %u %lx\n",
687 			       __func__, ioc->ioc_hpa, ioc->res_size,
688 			       pages_needed, dma_get_seg_boundary(dev));
689 			return -1;
690 #endif
691 		}
692 	}
693 
694 #ifdef PDIR_SEARCH_TIMING
695 	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
696 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
697 #endif
698 
699 	prefetchw(&(ioc->pdir_base[pide]));
700 
701 #ifdef ASSERT_PDIR_SANITY
702 	/* verify the first enable bit is clear */
703 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
704 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
705 	}
706 #endif
707 
708 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
709 		__func__, size, pages_needed, pide,
710 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
711 		ioc->res_bitshift );
712 
713 	return (pide);
714 }
715 
716 
717 /**
718  * sba_free_range - unmark bits in IO PDIR resource bitmap
719  * @ioc: IO MMU structure which owns the pdir we are interested in.
720  * @iova: IO virtual address which was previously allocated.
721  * @size: number of bytes to create a mapping for
722  *
723  * clear bits in the ioc's resource map
724  */
725 static SBA_INLINE void
726 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
727 {
728 	unsigned long iovp = SBA_IOVP(ioc, iova);
729 	unsigned int pide = PDIR_INDEX(iovp);
730 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
731 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
732 	int bits_not_wanted = size >> iovp_shift;
733 	unsigned long m;
734 
735 	/* Round up to power-of-two size: see AR2305 note above */
736 	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
737 	for (; bits_not_wanted > 0 ; res_ptr++) {
738 
739 		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
740 
741 			/* these mappings start 64bit aligned */
742 			*res_ptr = 0UL;
743 			bits_not_wanted -= BITS_PER_LONG;
744 			pide += BITS_PER_LONG;
745 
746 		} else {
747 
748 			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
749 			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
750 			bits_not_wanted = 0;
751 
752 			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
753 			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
754 
755 			ASSERT(m != 0);
756 			ASSERT(bits_not_wanted);
757 			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
758 			*res_ptr &= ~m;
759 		}
760 	}
761 }
762 
763 
764 /**************************************************************
765 *
766 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
767 *
768 ***************************************************************/
769 
770 /**
771  * sba_io_pdir_entry - fill in one IO PDIR entry
772  * @pdir_ptr:  pointer to IO PDIR entry
773  * @vba: Virtual CPU address of buffer to map
774  *
775  * SBA Mapping Routine
776  *
777  * Given a virtual address (vba, arg1) sba_io_pdir_entry()
778  * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
779  * Each IO Pdir entry consists of 8 bytes as shown below
780  * (LSB == bit 0):
781  *
782  *  63                    40                                 11    7        0
783  * +-+---------------------+----------------------------------+----+--------+
784  * |V|        U            |            PPN[39:12]            | U  |   FF   |
785  * +-+---------------------+----------------------------------+----+--------+
786  *
787  *  V  == Valid Bit
788  *  U  == Unused
789  * PPN == Physical Page Number
790  *
791  * The physical address fields are filled with the results of virt_to_phys()
792  * on the vba.
793  */
794 
795 #if 1
796 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
797 						      | 0x8000000000000000ULL)
798 #else
799 void SBA_INLINE
800 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
801 {
802 	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
803 }
804 #endif
805 
806 #ifdef ENABLE_MARK_CLEAN
807 /**
808  * Since DMA is i-cache coherent, any (complete) pages that were written via
809  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
810  * flush them when they get mapped into an executable vm-area.
811  */
812 static void
813 mark_clean (void *addr, size_t size)
814 {
815 	unsigned long pg_addr, end;
816 
817 	pg_addr = PAGE_ALIGN((unsigned long) addr);
818 	end = (unsigned long) addr + size;
819 	while (pg_addr + PAGE_SIZE <= end) {
820 		struct page *page = virt_to_page((void *)pg_addr);
821 		set_bit(PG_arch_1, &page->flags);
822 		pg_addr += PAGE_SIZE;
823 	}
824 }
825 #endif
826 
827 /**
828  * sba_mark_invalid - invalidate one or more IO PDIR entries
829  * @ioc: IO MMU structure which owns the pdir we are interested in.
830  * @iova:  IO Virtual Address mapped earlier
831  * @byte_cnt:  number of bytes this mapping covers.
832  *
833  * Marking the IO PDIR entry(ies) as Invalid and invalidate
834  * corresponding IO TLB entry. The PCOM (Purge Command Register)
835  * is to purge stale entries in the IO TLB when unmapping entries.
836  *
837  * The PCOM register supports purging of multiple pages, with a minium
838  * of 1 page and a maximum of 2GB. Hardware requires the address be
839  * aligned to the size of the range being purged. The size of the range
840  * must be a power of 2. The "Cool perf optimization" in the
841  * allocation routine helps keep that true.
842  */
843 static SBA_INLINE void
844 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
845 {
846 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
847 
848 	int off = PDIR_INDEX(iovp);
849 
850 	/* Must be non-zero and rounded up */
851 	ASSERT(byte_cnt > 0);
852 	ASSERT(0 == (byte_cnt & ~iovp_mask));
853 
854 #ifdef ASSERT_PDIR_SANITY
855 	/* Assert first pdir entry is set */
856 	if (!(ioc->pdir_base[off] >> 60)) {
857 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
858 	}
859 #endif
860 
861 	if (byte_cnt <= iovp_size)
862 	{
863 		ASSERT(off < ioc->pdir_size);
864 
865 		iovp |= iovp_shift;     /* set "size" field for PCOM */
866 
867 #ifndef FULL_VALID_PDIR
868 		/*
869 		** clear I/O PDIR entry "valid" bit
870 		** Do NOT clear the rest - save it for debugging.
871 		** We should only clear bits that have previously
872 		** been enabled.
873 		*/
874 		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
875 #else
876 		/*
877   		** If we want to maintain the PDIR as valid, put in
878 		** the spill page so devices prefetching won't
879 		** cause a hard fail.
880 		*/
881 		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
882 #endif
883 	} else {
884 		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
885 
886 		iovp |= t;
887 		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
888 
889 		do {
890 			/* verify this pdir entry is enabled */
891 			ASSERT(ioc->pdir_base[off]  >> 63);
892 #ifndef FULL_VALID_PDIR
893 			/* clear I/O Pdir entry "valid" bit first */
894 			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
895 #else
896 			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
897 #endif
898 			off++;
899 			byte_cnt -= iovp_size;
900 		} while (byte_cnt > 0);
901 	}
902 
903 	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
904 }
905 
906 /**
907  * sba_map_page - map one buffer and return IOVA for DMA
908  * @dev: instance of PCI owned by the driver that's asking.
909  * @page: page to map
910  * @poff: offset into page
911  * @size: number of bytes to map
912  * @dir: dma direction
913  * @attrs: optional dma attributes
914  *
915  * See Documentation/DMA-API-HOWTO.txt
916  */
917 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
918 			       unsigned long poff, size_t size,
919 			       enum dma_data_direction dir,
920 			       unsigned long attrs)
921 {
922 	struct ioc *ioc;
923 	void *addr = page_address(page) + poff;
924 	dma_addr_t iovp;
925 	dma_addr_t offset;
926 	u64 *pdir_start;
927 	int pide;
928 #ifdef ASSERT_PDIR_SANITY
929 	unsigned long flags;
930 #endif
931 #ifdef ALLOW_IOV_BYPASS
932 	unsigned long pci_addr = virt_to_phys(addr);
933 #endif
934 
935 #ifdef ALLOW_IOV_BYPASS
936 	ASSERT(to_pci_dev(dev)->dma_mask);
937 	/*
938  	** Check if the PCI device can DMA to ptr... if so, just return ptr
939  	*/
940 	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
941 		/*
942  		** Device is bit capable of DMA'ing to the buffer...
943 		** just return the PCI address of ptr
944  		*/
945 		DBG_BYPASS("sba_map_page() bypass mask/addr: "
946 			   "0x%lx/0x%lx\n",
947 		           to_pci_dev(dev)->dma_mask, pci_addr);
948 		return pci_addr;
949 	}
950 #endif
951 	ioc = GET_IOC(dev);
952 	ASSERT(ioc);
953 
954 	prefetch(ioc->res_hint);
955 
956 	ASSERT(size > 0);
957 	ASSERT(size <= DMA_CHUNK_SIZE);
958 
959 	/* save offset bits */
960 	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
961 
962 	/* round up to nearest iovp_size */
963 	size = (size + offset + ~iovp_mask) & iovp_mask;
964 
965 #ifdef ASSERT_PDIR_SANITY
966 	spin_lock_irqsave(&ioc->res_lock, flags);
967 	if (sba_check_pdir(ioc,"Check before sba_map_page()"))
968 		panic("Sanity check failed");
969 	spin_unlock_irqrestore(&ioc->res_lock, flags);
970 #endif
971 
972 	pide = sba_alloc_range(ioc, dev, size);
973 	if (pide < 0)
974 		return DMA_MAPPING_ERROR;
975 
976 	iovp = (dma_addr_t) pide << iovp_shift;
977 
978 	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
979 
980 	pdir_start = &(ioc->pdir_base[pide]);
981 
982 	while (size > 0) {
983 		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
984 		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
985 
986 		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
987 
988 		addr += iovp_size;
989 		size -= iovp_size;
990 		pdir_start++;
991 	}
992 	/* force pdir update */
993 	wmb();
994 
995 	/* form complete address */
996 #ifdef ASSERT_PDIR_SANITY
997 	spin_lock_irqsave(&ioc->res_lock, flags);
998 	sba_check_pdir(ioc,"Check after sba_map_page()");
999 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1000 #endif
1001 	return SBA_IOVA(ioc, iovp, offset);
1002 }
1003 
1004 #ifdef ENABLE_MARK_CLEAN
1005 static SBA_INLINE void
1006 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1007 {
1008 	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1009 	int	off = PDIR_INDEX(iovp);
1010 	void	*addr;
1011 
1012 	if (size <= iovp_size) {
1013 		addr = phys_to_virt(ioc->pdir_base[off] &
1014 		                    ~0xE000000000000FFFULL);
1015 		mark_clean(addr, size);
1016 	} else {
1017 		do {
1018 			addr = phys_to_virt(ioc->pdir_base[off] &
1019 			                    ~0xE000000000000FFFULL);
1020 			mark_clean(addr, min(size, iovp_size));
1021 			off++;
1022 			size -= iovp_size;
1023 		} while (size > 0);
1024 	}
1025 }
1026 #endif
1027 
1028 /**
1029  * sba_unmap_page - unmap one IOVA and free resources
1030  * @dev: instance of PCI owned by the driver that's asking.
1031  * @iova:  IOVA of driver buffer previously mapped.
1032  * @size:  number of bytes mapped in driver buffer.
1033  * @dir:  R/W or both.
1034  * @attrs: optional dma attributes
1035  *
1036  * See Documentation/DMA-API-HOWTO.txt
1037  */
1038 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1039 			   enum dma_data_direction dir, unsigned long attrs)
1040 {
1041 	struct ioc *ioc;
1042 #if DELAYED_RESOURCE_CNT > 0
1043 	struct sba_dma_pair *d;
1044 #endif
1045 	unsigned long flags;
1046 	dma_addr_t offset;
1047 
1048 	ioc = GET_IOC(dev);
1049 	ASSERT(ioc);
1050 
1051 #ifdef ALLOW_IOV_BYPASS
1052 	if (likely((iova & ioc->imask) != ioc->ibase)) {
1053 		/*
1054 		** Address does not fall w/in IOVA, must be bypassing
1055 		*/
1056 		DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
1057 			   iova);
1058 
1059 #ifdef ENABLE_MARK_CLEAN
1060 		if (dir == DMA_FROM_DEVICE) {
1061 			mark_clean(phys_to_virt(iova), size);
1062 		}
1063 #endif
1064 		return;
1065 	}
1066 #endif
1067 	offset = iova & ~iovp_mask;
1068 
1069 	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1070 
1071 	iova ^= offset;        /* clear offset bits */
1072 	size += offset;
1073 	size = ROUNDUP(size, iovp_size);
1074 
1075 #ifdef ENABLE_MARK_CLEAN
1076 	if (dir == DMA_FROM_DEVICE)
1077 		sba_mark_clean(ioc, iova, size);
1078 #endif
1079 
1080 #if DELAYED_RESOURCE_CNT > 0
1081 	spin_lock_irqsave(&ioc->saved_lock, flags);
1082 	d = &(ioc->saved[ioc->saved_cnt]);
1083 	d->iova = iova;
1084 	d->size = size;
1085 	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1086 		int cnt = ioc->saved_cnt;
1087 		spin_lock(&ioc->res_lock);
1088 		while (cnt--) {
1089 			sba_mark_invalid(ioc, d->iova, d->size);
1090 			sba_free_range(ioc, d->iova, d->size);
1091 			d--;
1092 		}
1093 		ioc->saved_cnt = 0;
1094 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1095 		spin_unlock(&ioc->res_lock);
1096 	}
1097 	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1098 #else /* DELAYED_RESOURCE_CNT == 0 */
1099 	spin_lock_irqsave(&ioc->res_lock, flags);
1100 	sba_mark_invalid(ioc, iova, size);
1101 	sba_free_range(ioc, iova, size);
1102 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1103 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1104 #endif /* DELAYED_RESOURCE_CNT == 0 */
1105 }
1106 
1107 /**
1108  * sba_alloc_coherent - allocate/map shared mem for DMA
1109  * @dev: instance of PCI owned by the driver that's asking.
1110  * @size:  number of bytes mapped in driver buffer.
1111  * @dma_handle:  IOVA of new buffer.
1112  *
1113  * See Documentation/DMA-API-HOWTO.txt
1114  */
1115 static void *
1116 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1117 		   gfp_t flags, unsigned long attrs)
1118 {
1119 	struct page *page;
1120 	struct ioc *ioc;
1121 	int node = -1;
1122 	void *addr;
1123 
1124 	ioc = GET_IOC(dev);
1125 	ASSERT(ioc);
1126 #ifdef CONFIG_NUMA
1127 	node = ioc->node;
1128 #endif
1129 
1130 	page = alloc_pages_node(node, flags, get_order(size));
1131 	if (unlikely(!page))
1132 		return NULL;
1133 
1134 	addr = page_address(page);
1135 	memset(addr, 0, size);
1136 	*dma_handle = page_to_phys(page);
1137 
1138 #ifdef ALLOW_IOV_BYPASS
1139 	ASSERT(dev->coherent_dma_mask);
1140 	/*
1141  	** Check if the PCI device can DMA to ptr... if so, just return ptr
1142  	*/
1143 	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1144 		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1145 		           dev->coherent_dma_mask, *dma_handle);
1146 
1147 		return addr;
1148 	}
1149 #endif
1150 
1151 	/*
1152 	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1153 	 * device to map single to get an iova mapping.
1154 	 */
1155 	*dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
1156 			DMA_BIDIRECTIONAL, 0);
1157 	if (dma_mapping_error(dev, *dma_handle))
1158 		return NULL;
1159 	return addr;
1160 }
1161 
1162 
1163 /**
1164  * sba_free_coherent - free/unmap shared mem for DMA
1165  * @dev: instance of PCI owned by the driver that's asking.
1166  * @size:  number of bytes mapped in driver buffer.
1167  * @vaddr:  virtual address IOVA of "consistent" buffer.
1168  * @dma_handler:  IO virtual address of "consistent" buffer.
1169  *
1170  * See Documentation/DMA-API-HOWTO.txt
1171  */
1172 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1173 			      dma_addr_t dma_handle, unsigned long attrs)
1174 {
1175 	sba_unmap_page(dev, dma_handle, size, 0, 0);
1176 	free_pages((unsigned long) vaddr, get_order(size));
1177 }
1178 
1179 
1180 /*
1181 ** Since 0 is a valid pdir_base index value, can't use that
1182 ** to determine if a value is valid or not. Use a flag to indicate
1183 ** the SG list entry contains a valid pdir index.
1184 */
1185 #define PIDE_FLAG 0x1UL
1186 
1187 #ifdef DEBUG_LARGE_SG_ENTRIES
1188 int dump_run_sg = 0;
1189 #endif
1190 
1191 
1192 /**
1193  * sba_fill_pdir - write allocated SG entries into IO PDIR
1194  * @ioc: IO MMU structure which owns the pdir we are interested in.
1195  * @startsg:  list of IOVA/size pairs
1196  * @nents: number of entries in startsg list
1197  *
1198  * Take preprocessed SG list and write corresponding entries
1199  * in the IO PDIR.
1200  */
1201 
1202 static SBA_INLINE int
1203 sba_fill_pdir(
1204 	struct ioc *ioc,
1205 	struct scatterlist *startsg,
1206 	int nents)
1207 {
1208 	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1209 	int n_mappings = 0;
1210 	u64 *pdirp = NULL;
1211 	unsigned long dma_offset = 0;
1212 
1213 	while (nents-- > 0) {
1214 		int     cnt = startsg->dma_length;
1215 		startsg->dma_length = 0;
1216 
1217 #ifdef DEBUG_LARGE_SG_ENTRIES
1218 		if (dump_run_sg)
1219 			printk(" %2d : %08lx/%05x %p\n",
1220 				nents, startsg->dma_address, cnt,
1221 				sba_sg_address(startsg));
1222 #else
1223 		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1224 				nents, startsg->dma_address, cnt,
1225 				sba_sg_address(startsg));
1226 #endif
1227 		/*
1228 		** Look for the start of a new DMA stream
1229 		*/
1230 		if (startsg->dma_address & PIDE_FLAG) {
1231 			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1232 			dma_offset = (unsigned long) pide & ~iovp_mask;
1233 			startsg->dma_address = 0;
1234 			if (n_mappings)
1235 				dma_sg = sg_next(dma_sg);
1236 			dma_sg->dma_address = pide | ioc->ibase;
1237 			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1238 			n_mappings++;
1239 		}
1240 
1241 		/*
1242 		** Look for a VCONTIG chunk
1243 		*/
1244 		if (cnt) {
1245 			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1246 			ASSERT(pdirp);
1247 
1248 			/* Since multiple Vcontig blocks could make up
1249 			** one DMA stream, *add* cnt to dma_len.
1250 			*/
1251 			dma_sg->dma_length += cnt;
1252 			cnt += dma_offset;
1253 			dma_offset=0;	/* only want offset on first chunk */
1254 			cnt = ROUNDUP(cnt, iovp_size);
1255 			do {
1256 				sba_io_pdir_entry(pdirp, vaddr);
1257 				vaddr += iovp_size;
1258 				cnt -= iovp_size;
1259 				pdirp++;
1260 			} while (cnt > 0);
1261 		}
1262 		startsg = sg_next(startsg);
1263 	}
1264 	/* force pdir update */
1265 	wmb();
1266 
1267 #ifdef DEBUG_LARGE_SG_ENTRIES
1268 	dump_run_sg = 0;
1269 #endif
1270 	return(n_mappings);
1271 }
1272 
1273 
1274 /*
1275 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1276 ** "start of next" are both on an IOV page boundary.
1277 **
1278 ** (shift left is a quick trick to mask off upper bits)
1279 */
1280 #define DMA_CONTIG(__X, __Y) \
1281 	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1282 
1283 
1284 /**
1285  * sba_coalesce_chunks - preprocess the SG list
1286  * @ioc: IO MMU structure which owns the pdir we are interested in.
1287  * @startsg:  list of IOVA/size pairs
1288  * @nents: number of entries in startsg list
1289  *
1290  * First pass is to walk the SG list and determine where the breaks are
1291  * in the DMA stream. Allocates PDIR entries but does not fill them.
1292  * Returns the number of DMA chunks.
1293  *
1294  * Doing the fill separate from the coalescing/allocation keeps the
1295  * code simpler. Future enhancement could make one pass through
1296  * the sglist do both.
1297  */
1298 static SBA_INLINE int
1299 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1300 	struct scatterlist *startsg,
1301 	int nents)
1302 {
1303 	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1304 	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1305 	unsigned long vcontig_end;
1306 	struct scatterlist *dma_sg;        /* next DMA stream head */
1307 	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1308 	int n_mappings = 0;
1309 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1310 	int idx;
1311 
1312 	while (nents > 0) {
1313 		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1314 
1315 		/*
1316 		** Prepare for first/next DMA stream
1317 		*/
1318 		dma_sg = vcontig_sg = startsg;
1319 		dma_len = vcontig_len = vcontig_end = startsg->length;
1320 		vcontig_end +=  vaddr;
1321 		dma_offset = vaddr & ~iovp_mask;
1322 
1323 		/* PARANOID: clear entries */
1324 		startsg->dma_address = startsg->dma_length = 0;
1325 
1326 		/*
1327 		** This loop terminates one iteration "early" since
1328 		** it's always looking one "ahead".
1329 		*/
1330 		while (--nents > 0) {
1331 			unsigned long vaddr;	/* tmp */
1332 
1333 			startsg = sg_next(startsg);
1334 
1335 			/* PARANOID */
1336 			startsg->dma_address = startsg->dma_length = 0;
1337 
1338 			/* catch brokenness in SCSI layer */
1339 			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1340 
1341 			/*
1342 			** First make sure current dma stream won't
1343 			** exceed DMA_CHUNK_SIZE if we coalesce the
1344 			** next entry.
1345 			*/
1346 			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1347 			    > DMA_CHUNK_SIZE)
1348 				break;
1349 
1350 			if (dma_len + startsg->length > max_seg_size)
1351 				break;
1352 
1353 			/*
1354 			** Then look for virtually contiguous blocks.
1355 			**
1356 			** append the next transaction?
1357 			*/
1358 			vaddr = (unsigned long) sba_sg_address(startsg);
1359 			if  (vcontig_end == vaddr)
1360 			{
1361 				vcontig_len += startsg->length;
1362 				vcontig_end += startsg->length;
1363 				dma_len     += startsg->length;
1364 				continue;
1365 			}
1366 
1367 #ifdef DEBUG_LARGE_SG_ENTRIES
1368 			dump_run_sg = (vcontig_len > iovp_size);
1369 #endif
1370 
1371 			/*
1372 			** Not virtually contiguous.
1373 			** Terminate prev chunk.
1374 			** Start a new chunk.
1375 			**
1376 			** Once we start a new VCONTIG chunk, dma_offset
1377 			** can't change. And we need the offset from the first
1378 			** chunk - not the last one. Ergo Successive chunks
1379 			** must start on page boundaries and dove tail
1380 			** with it's predecessor.
1381 			*/
1382 			vcontig_sg->dma_length = vcontig_len;
1383 
1384 			vcontig_sg = startsg;
1385 			vcontig_len = startsg->length;
1386 
1387 			/*
1388 			** 3) do the entries end/start on page boundaries?
1389 			**    Don't update vcontig_end until we've checked.
1390 			*/
1391 			if (DMA_CONTIG(vcontig_end, vaddr))
1392 			{
1393 				vcontig_end = vcontig_len + vaddr;
1394 				dma_len += vcontig_len;
1395 				continue;
1396 			} else {
1397 				break;
1398 			}
1399 		}
1400 
1401 		/*
1402 		** End of DMA Stream
1403 		** Terminate last VCONTIG block.
1404 		** Allocate space for DMA stream.
1405 		*/
1406 		vcontig_sg->dma_length = vcontig_len;
1407 		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1408 		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1409 		idx = sba_alloc_range(ioc, dev, dma_len);
1410 		if (idx < 0) {
1411 			dma_sg->dma_length = 0;
1412 			return -1;
1413 		}
1414 		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1415 						   | dma_offset);
1416 		n_mappings++;
1417 	}
1418 
1419 	return n_mappings;
1420 }
1421 
1422 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1423 			       int nents, enum dma_data_direction dir,
1424 			       unsigned long attrs);
1425 /**
1426  * sba_map_sg - map Scatter/Gather list
1427  * @dev: instance of PCI owned by the driver that's asking.
1428  * @sglist:  array of buffer/length pairs
1429  * @nents:  number of entries in list
1430  * @dir:  R/W or both.
1431  * @attrs: optional dma attributes
1432  *
1433  * See Documentation/DMA-API-HOWTO.txt
1434  */
1435 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1436 			    int nents, enum dma_data_direction dir,
1437 			    unsigned long attrs)
1438 {
1439 	struct ioc *ioc;
1440 	int coalesced, filled = 0;
1441 #ifdef ASSERT_PDIR_SANITY
1442 	unsigned long flags;
1443 #endif
1444 #ifdef ALLOW_IOV_BYPASS_SG
1445 	struct scatterlist *sg;
1446 #endif
1447 
1448 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1449 	ioc = GET_IOC(dev);
1450 	ASSERT(ioc);
1451 
1452 #ifdef ALLOW_IOV_BYPASS_SG
1453 	ASSERT(to_pci_dev(dev)->dma_mask);
1454 	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1455 		for_each_sg(sglist, sg, nents, filled) {
1456 			sg->dma_length = sg->length;
1457 			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1458 		}
1459 		return filled;
1460 	}
1461 #endif
1462 	/* Fast path single entry scatterlists. */
1463 	if (nents == 1) {
1464 		sglist->dma_length = sglist->length;
1465 		sglist->dma_address = sba_map_page(dev, sg_page(sglist),
1466 				sglist->offset, sglist->length, dir, attrs);
1467 		if (dma_mapping_error(dev, sglist->dma_address))
1468 			return 0;
1469 		return 1;
1470 	}
1471 
1472 #ifdef ASSERT_PDIR_SANITY
1473 	spin_lock_irqsave(&ioc->res_lock, flags);
1474 	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1475 	{
1476 		sba_dump_sg(ioc, sglist, nents);
1477 		panic("Check before sba_map_sg_attrs()");
1478 	}
1479 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1480 #endif
1481 
1482 	prefetch(ioc->res_hint);
1483 
1484 	/*
1485 	** First coalesce the chunks and allocate I/O pdir space
1486 	**
1487 	** If this is one DMA stream, we can properly map using the
1488 	** correct virtual address associated with each DMA page.
1489 	** w/o this association, we wouldn't have coherent DMA!
1490 	** Access to the virtual address is what forces a two pass algorithm.
1491 	*/
1492 	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1493 	if (coalesced < 0) {
1494 		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1495 		return 0;
1496 	}
1497 
1498 	/*
1499 	** Program the I/O Pdir
1500 	**
1501 	** map the virtual addresses to the I/O Pdir
1502 	** o dma_address will contain the pdir index
1503 	** o dma_len will contain the number of bytes to map
1504 	** o address contains the virtual address.
1505 	*/
1506 	filled = sba_fill_pdir(ioc, sglist, nents);
1507 
1508 #ifdef ASSERT_PDIR_SANITY
1509 	spin_lock_irqsave(&ioc->res_lock, flags);
1510 	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1511 	{
1512 		sba_dump_sg(ioc, sglist, nents);
1513 		panic("Check after sba_map_sg_attrs()\n");
1514 	}
1515 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1516 #endif
1517 
1518 	ASSERT(coalesced == filled);
1519 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1520 
1521 	return filled;
1522 }
1523 
1524 /**
1525  * sba_unmap_sg_attrs - unmap Scatter/Gather list
1526  * @dev: instance of PCI owned by the driver that's asking.
1527  * @sglist:  array of buffer/length pairs
1528  * @nents:  number of entries in list
1529  * @dir:  R/W or both.
1530  * @attrs: optional dma attributes
1531  *
1532  * See Documentation/DMA-API-HOWTO.txt
1533  */
1534 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1535 			       int nents, enum dma_data_direction dir,
1536 			       unsigned long attrs)
1537 {
1538 #ifdef ASSERT_PDIR_SANITY
1539 	struct ioc *ioc;
1540 	unsigned long flags;
1541 #endif
1542 
1543 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1544 		   __func__, nents, sba_sg_address(sglist), sglist->length);
1545 
1546 #ifdef ASSERT_PDIR_SANITY
1547 	ioc = GET_IOC(dev);
1548 	ASSERT(ioc);
1549 
1550 	spin_lock_irqsave(&ioc->res_lock, flags);
1551 	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1552 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1553 #endif
1554 
1555 	while (nents && sglist->dma_length) {
1556 
1557 		sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
1558 			       dir, attrs);
1559 		sglist = sg_next(sglist);
1560 		nents--;
1561 	}
1562 
1563 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1564 
1565 #ifdef ASSERT_PDIR_SANITY
1566 	spin_lock_irqsave(&ioc->res_lock, flags);
1567 	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1568 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1569 #endif
1570 
1571 }
1572 
1573 /**************************************************************
1574 *
1575 *   Initialization and claim
1576 *
1577 ***************************************************************/
1578 
1579 static void
1580 ioc_iova_init(struct ioc *ioc)
1581 {
1582 	int tcnfg;
1583 	int agp_found = 0;
1584 	struct pci_dev *device = NULL;
1585 #ifdef FULL_VALID_PDIR
1586 	unsigned long index;
1587 #endif
1588 
1589 	/*
1590 	** Firmware programs the base and size of a "safe IOVA space"
1591 	** (one that doesn't overlap memory or LMMIO space) in the
1592 	** IBASE and IMASK registers.
1593 	*/
1594 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1595 	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1596 
1597 	ioc->iov_size = ~ioc->imask + 1;
1598 
1599 	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1600 		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1601 		ioc->iov_size >> 20);
1602 
1603 	switch (iovp_size) {
1604 		case  4*1024: tcnfg = 0; break;
1605 		case  8*1024: tcnfg = 1; break;
1606 		case 16*1024: tcnfg = 2; break;
1607 		case 64*1024: tcnfg = 3; break;
1608 		default:
1609 			panic(PFX "Unsupported IOTLB page size %ldK",
1610 				iovp_size >> 10);
1611 			break;
1612 	}
1613 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1614 
1615 	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1616 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1617 						   get_order(ioc->pdir_size));
1618 	if (!ioc->pdir_base)
1619 		panic(PFX "Couldn't allocate I/O Page Table\n");
1620 
1621 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1622 
1623 	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1624 		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1625 
1626 	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1627 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1628 
1629 	/*
1630 	** If an AGP device is present, only use half of the IOV space
1631 	** for PCI DMA.  Unfortunately we can't know ahead of time
1632 	** whether GART support will actually be used, for now we
1633 	** can just key on an AGP device found in the system.
1634 	** We program the next pdir index after we stop w/ a key for
1635 	** the GART code to handshake on.
1636 	*/
1637 	for_each_pci_dev(device)
1638 		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1639 
1640 	if (agp_found && reserve_sba_gart) {
1641 		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1642 		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1643 		ioc->pdir_size /= 2;
1644 		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1645 	}
1646 #ifdef FULL_VALID_PDIR
1647 	/*
1648   	** Check to see if the spill page has been allocated, we don't need more than
1649 	** one across multiple SBAs.
1650 	*/
1651 	if (!prefetch_spill_page) {
1652 		char *spill_poison = "SBAIOMMU POISON";
1653 		int poison_size = 16;
1654 		void *poison_addr, *addr;
1655 
1656 		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1657 		if (!addr)
1658 			panic(PFX "Couldn't allocate PDIR spill page\n");
1659 
1660 		poison_addr = addr;
1661 		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1662 			memcpy(poison_addr, spill_poison, poison_size);
1663 
1664 		prefetch_spill_page = virt_to_phys(addr);
1665 
1666 		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1667 	}
1668 	/*
1669   	** Set all the PDIR entries valid w/ the spill page as the target
1670 	*/
1671 	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1672 		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1673 #endif
1674 
1675 	/* Clear I/O TLB of any possible entries */
1676 	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1677 	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1678 
1679 	/* Enable IOVA translation */
1680 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1681 	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1682 }
1683 
1684 static void __init
1685 ioc_resource_init(struct ioc *ioc)
1686 {
1687 	spin_lock_init(&ioc->res_lock);
1688 #if DELAYED_RESOURCE_CNT > 0
1689 	spin_lock_init(&ioc->saved_lock);
1690 #endif
1691 
1692 	/* resource map size dictated by pdir_size */
1693 	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1694 	ioc->res_size >>= 3;  /* convert bit count to byte count */
1695 	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1696 
1697 	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1698 						 get_order(ioc->res_size));
1699 	if (!ioc->res_map)
1700 		panic(PFX "Couldn't allocate resource map\n");
1701 
1702 	memset(ioc->res_map, 0, ioc->res_size);
1703 	/* next available IOVP - circular search */
1704 	ioc->res_hint = (unsigned long *) ioc->res_map;
1705 
1706 #ifdef ASSERT_PDIR_SANITY
1707 	/* Mark first bit busy - ie no IOVA 0 */
1708 	ioc->res_map[0] = 0x1;
1709 	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1710 #endif
1711 #ifdef FULL_VALID_PDIR
1712 	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1713 	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1714 	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1715 							      | prefetch_spill_page);
1716 #endif
1717 
1718 	DBG_INIT("%s() res_map %x %p\n", __func__,
1719 		 ioc->res_size, (void *) ioc->res_map);
1720 }
1721 
1722 static void __init
1723 ioc_sac_init(struct ioc *ioc)
1724 {
1725 	struct pci_dev *sac = NULL;
1726 	struct pci_controller *controller = NULL;
1727 
1728 	/*
1729 	 * pci_alloc_coherent() must return a DMA address which is
1730 	 * SAC (single address cycle) addressable, so allocate a
1731 	 * pseudo-device to enforce that.
1732 	 */
1733 	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1734 	if (!sac)
1735 		panic(PFX "Couldn't allocate struct pci_dev");
1736 
1737 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1738 	if (!controller)
1739 		panic(PFX "Couldn't allocate struct pci_controller");
1740 
1741 	controller->iommu = ioc;
1742 	sac->sysdata = controller;
1743 	sac->dma_mask = 0xFFFFFFFFUL;
1744 #ifdef CONFIG_PCI
1745 	sac->dev.bus = &pci_bus_type;
1746 #endif
1747 	ioc->sac_only_dev = sac;
1748 }
1749 
1750 static void __init
1751 ioc_zx1_init(struct ioc *ioc)
1752 {
1753 	unsigned long rope_config;
1754 	unsigned int i;
1755 
1756 	if (ioc->rev < 0x20)
1757 		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1758 
1759 	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1760 	ioc->dma_mask = (0x1UL << 39) - 1;
1761 
1762 	/*
1763 	** Clear ROPE(N)_CONFIG AO bit.
1764 	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1765 	** Overrides bit 1 in DMA Hint Sets.
1766 	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1767 	*/
1768 	for (i=0; i<(8*8); i+=8) {
1769 		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1770 		rope_config &= ~IOC_ROPE_AO;
1771 		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1772 	}
1773 }
1774 
1775 typedef void (initfunc)(struct ioc *);
1776 
1777 struct ioc_iommu {
1778 	u32 func_id;
1779 	char *name;
1780 	initfunc *init;
1781 };
1782 
1783 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1784 	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1785 	{ ZX2_IOC_ID, "zx2", NULL },
1786 	{ SX1000_IOC_ID, "sx1000", NULL },
1787 	{ SX2000_IOC_ID, "sx2000", NULL },
1788 };
1789 
1790 static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
1791 {
1792 	struct ioc_iommu *info;
1793 
1794 	ioc->next = ioc_list;
1795 	ioc_list = ioc;
1796 
1797 	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1798 
1799 	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1800 	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1801 	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1802 
1803 	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1804 		if (ioc->func_id == info->func_id) {
1805 			ioc->name = info->name;
1806 			if (info->init)
1807 				(info->init)(ioc);
1808 		}
1809 	}
1810 
1811 	iovp_size = (1 << iovp_shift);
1812 	iovp_mask = ~(iovp_size - 1);
1813 
1814 	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1815 		PAGE_SIZE >> 10, iovp_size >> 10);
1816 
1817 	if (!ioc->name) {
1818 		ioc->name = kmalloc(24, GFP_KERNEL);
1819 		if (ioc->name)
1820 			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1821 				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1822 		else
1823 			ioc->name = "Unknown";
1824 	}
1825 
1826 	ioc_iova_init(ioc);
1827 	ioc_resource_init(ioc);
1828 	ioc_sac_init(ioc);
1829 
1830 	printk(KERN_INFO PFX
1831 		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1832 		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1833 		hpa, ioc->iov_size >> 20, ioc->ibase);
1834 }
1835 
1836 
1837 
1838 /**************************************************************************
1839 **
1840 **   SBA initialization code (HW and SW)
1841 **
1842 **   o identify SBA chip itself
1843 **   o FIXME: initialize DMA hints for reasonable defaults
1844 **
1845 **************************************************************************/
1846 
1847 #ifdef CONFIG_PROC_FS
1848 static void *
1849 ioc_start(struct seq_file *s, loff_t *pos)
1850 {
1851 	struct ioc *ioc;
1852 	loff_t n = *pos;
1853 
1854 	for (ioc = ioc_list; ioc; ioc = ioc->next)
1855 		if (!n--)
1856 			return ioc;
1857 
1858 	return NULL;
1859 }
1860 
1861 static void *
1862 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1863 {
1864 	struct ioc *ioc = v;
1865 
1866 	++*pos;
1867 	return ioc->next;
1868 }
1869 
1870 static void
1871 ioc_stop(struct seq_file *s, void *v)
1872 {
1873 }
1874 
1875 static int
1876 ioc_show(struct seq_file *s, void *v)
1877 {
1878 	struct ioc *ioc = v;
1879 	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1880 	int i, used = 0;
1881 
1882 	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1883 		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1884 #ifdef CONFIG_NUMA
1885 	if (ioc->node != NUMA_NO_NODE)
1886 		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1887 #endif
1888 	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1889 	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1890 
1891 	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1892 		used += hweight64(*res_ptr);
1893 
1894 	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1895 	seq_printf(s, "PDIR used       : %d entries\n", used);
1896 
1897 #ifdef PDIR_SEARCH_TIMING
1898 	{
1899 		unsigned long i = 0, avg = 0, min, max;
1900 		min = max = ioc->avg_search[0];
1901 		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1902 			avg += ioc->avg_search[i];
1903 			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1904 			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1905 		}
1906 		avg /= SBA_SEARCH_SAMPLE;
1907 		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1908 		           min, avg, max);
1909 	}
1910 #endif
1911 #ifndef ALLOW_IOV_BYPASS
1912 	 seq_printf(s, "IOVA bypass disabled\n");
1913 #endif
1914 	return 0;
1915 }
1916 
1917 static const struct seq_operations ioc_seq_ops = {
1918 	.start = ioc_start,
1919 	.next  = ioc_next,
1920 	.stop  = ioc_stop,
1921 	.show  = ioc_show
1922 };
1923 
1924 static void __init
1925 ioc_proc_init(void)
1926 {
1927 	struct proc_dir_entry *dir;
1928 
1929 	dir = proc_mkdir("bus/mckinley", NULL);
1930 	if (!dir)
1931 		return;
1932 
1933 	proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1934 }
1935 #endif
1936 
1937 static void
1938 sba_connect_bus(struct pci_bus *bus)
1939 {
1940 	acpi_handle handle, parent;
1941 	acpi_status status;
1942 	struct ioc *ioc;
1943 
1944 	if (!PCI_CONTROLLER(bus))
1945 		panic(PFX "no sysdata on bus %d!\n", bus->number);
1946 
1947 	if (PCI_CONTROLLER(bus)->iommu)
1948 		return;
1949 
1950 	handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1951 	if (!handle)
1952 		return;
1953 
1954 	/*
1955 	 * The IOC scope encloses PCI root bridges in the ACPI
1956 	 * namespace, so work our way out until we find an IOC we
1957 	 * claimed previously.
1958 	 */
1959 	do {
1960 		for (ioc = ioc_list; ioc; ioc = ioc->next)
1961 			if (ioc->handle == handle) {
1962 				PCI_CONTROLLER(bus)->iommu = ioc;
1963 				return;
1964 			}
1965 
1966 		status = acpi_get_parent(handle, &parent);
1967 		handle = parent;
1968 	} while (ACPI_SUCCESS(status));
1969 
1970 	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1971 }
1972 
1973 static void __init
1974 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1975 {
1976 #ifdef CONFIG_NUMA
1977 	unsigned int node;
1978 
1979 	node = acpi_get_node(handle);
1980 	if (node != NUMA_NO_NODE && !node_online(node))
1981 		node = NUMA_NO_NODE;
1982 
1983 	ioc->node = node;
1984 #endif
1985 }
1986 
1987 static void __init acpi_sba_ioc_add(struct ioc *ioc)
1988 {
1989 	acpi_handle handle = ioc->handle;
1990 	acpi_status status;
1991 	u64 hpa, length;
1992 	struct acpi_device_info *adi;
1993 
1994 	ioc_found = ioc->next;
1995 	status = hp_acpi_csr_space(handle, &hpa, &length);
1996 	if (ACPI_FAILURE(status))
1997 		goto err;
1998 
1999 	status = acpi_get_object_info(handle, &adi);
2000 	if (ACPI_FAILURE(status))
2001 		goto err;
2002 
2003 	/*
2004 	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
2005 	 * root bridges, and its CSR space includes the IOC function.
2006 	 */
2007 	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2008 		hpa += ZX1_IOC_OFFSET;
2009 		/* zx1 based systems default to kernel page size iommu pages */
2010 		if (!iovp_shift)
2011 			iovp_shift = min(PAGE_SHIFT, 16);
2012 	}
2013 	kfree(adi);
2014 
2015 	/*
2016 	 * default anything not caught above or specified on cmdline to 4k
2017 	 * iommu page size
2018 	 */
2019 	if (!iovp_shift)
2020 		iovp_shift = 12;
2021 
2022 	ioc_init(hpa, ioc);
2023 	/* setup NUMA node association */
2024 	sba_map_ioc_to_node(ioc, handle);
2025 	return;
2026 
2027  err:
2028 	kfree(ioc);
2029 }
2030 
2031 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2032 	{"HWP0001", 0},
2033 	{"HWP0004", 0},
2034 	{"", 0},
2035 };
2036 
2037 static int acpi_sba_ioc_attach(struct acpi_device *device,
2038 			       const struct acpi_device_id *not_used)
2039 {
2040 	struct ioc *ioc;
2041 
2042 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2043 	if (!ioc)
2044 		return -ENOMEM;
2045 
2046 	ioc->next = ioc_found;
2047 	ioc_found = ioc;
2048 	ioc->handle = device->handle;
2049 	return 1;
2050 }
2051 
2052 
2053 static struct acpi_scan_handler acpi_sba_ioc_handler = {
2054 	.ids	= hp_ioc_iommu_device_ids,
2055 	.attach	= acpi_sba_ioc_attach,
2056 };
2057 
2058 static int __init acpi_sba_ioc_init_acpi(void)
2059 {
2060 	return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2061 }
2062 /* This has to run before acpi_scan_init(). */
2063 arch_initcall(acpi_sba_ioc_init_acpi);
2064 
2065 static int __init
2066 sba_init(void)
2067 {
2068 	if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb"))
2069 		return 0;
2070 
2071 #if defined(CONFIG_IA64_GENERIC)
2072 	/* If we are booting a kdump kernel, the sba_iommu will
2073 	 * cause devices that were not shutdown properly to MCA
2074 	 * as soon as they are turned back on.  Our only option for
2075 	 * a successful kdump kernel boot is to use the swiotlb.
2076 	 */
2077 	if (is_kdump_kernel()) {
2078 		dma_ops = NULL;
2079 		if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2080 			panic("Unable to initialize software I/O TLB:"
2081 				  " Try machvec=dig boot option");
2082 		machvec_init("dig");
2083 		return 0;
2084 	}
2085 #endif
2086 
2087 	/*
2088 	 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2089 	 * routine, but that only happens if acpi_scan_init() has already run.
2090 	 */
2091 	while (ioc_found)
2092 		acpi_sba_ioc_add(ioc_found);
2093 
2094 	if (!ioc_list) {
2095 #ifdef CONFIG_IA64_GENERIC
2096 		/*
2097 		 * If we didn't find something sba_iommu can claim, we
2098 		 * need to setup the swiotlb and switch to the dig machvec.
2099 		 */
2100 		dma_ops = NULL;
2101 		if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0)
2102 			panic("Unable to find SBA IOMMU or initialize "
2103 			      "software I/O TLB: Try machvec=dig boot option");
2104 		machvec_init("dig");
2105 #else
2106 		panic("Unable to find SBA IOMMU: Try a generic or DIG kernel");
2107 #endif
2108 		return 0;
2109 	}
2110 
2111 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB)
2112 	/*
2113 	 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce
2114 	 * buffer setup to support devices with smaller DMA masks than
2115 	 * sba_iommu can handle.
2116 	 */
2117 	if (ia64_platform_is("hpzx1_swiotlb")) {
2118 		extern void hwsw_init(void);
2119 
2120 		hwsw_init();
2121 	}
2122 #endif
2123 
2124 #ifdef CONFIG_PCI
2125 	{
2126 		struct pci_bus *b = NULL;
2127 		while ((b = pci_find_next_bus(b)) != NULL)
2128 			sba_connect_bus(b);
2129 	}
2130 #endif
2131 
2132 #ifdef CONFIG_PROC_FS
2133 	ioc_proc_init();
2134 #endif
2135 	return 0;
2136 }
2137 
2138 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2139 
2140 static int __init
2141 nosbagart(char *str)
2142 {
2143 	reserve_sba_gart = 0;
2144 	return 1;
2145 }
2146 
2147 static int sba_dma_supported (struct device *dev, u64 mask)
2148 {
2149 	/* make sure it's at least 32bit capable */
2150 	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2151 }
2152 
2153 __setup("nosbagart", nosbagart);
2154 
2155 static int __init
2156 sba_page_override(char *str)
2157 {
2158 	unsigned long page_size;
2159 
2160 	page_size = memparse(str, &str);
2161 	switch (page_size) {
2162 		case 4096:
2163 		case 8192:
2164 		case 16384:
2165 		case 65536:
2166 			iovp_shift = ffs(page_size) - 1;
2167 			break;
2168 		default:
2169 			printk("%s: unknown/unsupported iommu page size %ld\n",
2170 			       __func__, page_size);
2171 	}
2172 
2173 	return 1;
2174 }
2175 
2176 __setup("sbapagesize=",sba_page_override);
2177 
2178 const struct dma_map_ops sba_dma_ops = {
2179 	.alloc			= sba_alloc_coherent,
2180 	.free			= sba_free_coherent,
2181 	.map_page		= sba_map_page,
2182 	.unmap_page		= sba_unmap_page,
2183 	.map_sg			= sba_map_sg_attrs,
2184 	.unmap_sg		= sba_unmap_sg_attrs,
2185 	.dma_supported		= sba_dma_supported,
2186 };
2187 
2188 void sba_dma_init(void)
2189 {
2190 	dma_ops = &sba_dma_ops;
2191 }
2192