1 /* 2 ** IA64 System Bus Adapter (SBA) I/O MMU manager 3 ** 4 ** (c) Copyright 2002-2005 Alex Williamson 5 ** (c) Copyright 2002-2003 Grant Grundler 6 ** (c) Copyright 2002-2005 Hewlett-Packard Company 7 ** 8 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code) 9 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code) 10 ** 11 ** This program is free software; you can redistribute it and/or modify 12 ** it under the terms of the GNU General Public License as published by 13 ** the Free Software Foundation; either version 2 of the License, or 14 ** (at your option) any later version. 15 ** 16 ** 17 ** This module initializes the IOC (I/O Controller) found on HP 18 ** McKinley machines and their successors. 19 ** 20 */ 21 22 #include <linux/types.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/spinlock.h> 26 #include <linux/slab.h> 27 #include <linux/init.h> 28 #include <linux/mm.h> 29 #include <linux/string.h> 30 #include <linux/pci.h> 31 #include <linux/proc_fs.h> 32 #include <linux/seq_file.h> 33 #include <linux/acpi.h> 34 #include <linux/efi.h> 35 #include <linux/nodemask.h> 36 #include <linux/bitops.h> /* hweight64() */ 37 #include <linux/crash_dump.h> 38 #include <linux/iommu-helper.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/prefetch.h> 41 42 #include <asm/delay.h> /* ia64_get_itc() */ 43 #include <asm/io.h> 44 #include <asm/page.h> /* PAGE_OFFSET */ 45 #include <asm/dma.h> 46 47 #include <asm/acpi-ext.h> 48 49 extern int swiotlb_late_init_with_default_size (size_t size); 50 51 #define PFX "IOC: " 52 53 /* 54 ** Enabling timing search of the pdir resource map. Output in /proc. 55 ** Disabled by default to optimize performance. 56 */ 57 #undef PDIR_SEARCH_TIMING 58 59 /* 60 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If 61 ** not defined, all DMA will be 32bit and go through the TLB. 62 ** There's potentially a conflict in the bio merge code with us 63 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing 64 ** appears to give more performance than bio-level virtual merging, we'll 65 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to 66 ** completely restrict DMA to the IOMMU. 67 */ 68 #define ALLOW_IOV_BYPASS 69 70 /* 71 ** This option specifically allows/disallows bypassing scatterlists with 72 ** multiple entries. Coalescing these entries can allow better DMA streaming 73 ** and in some cases shows better performance than entirely bypassing the 74 ** IOMMU. Performance increase on the order of 1-2% sequential output/input 75 ** using bonnie++ on a RAID0 MD device (sym2 & mpt). 76 */ 77 #undef ALLOW_IOV_BYPASS_SG 78 79 /* 80 ** If a device prefetches beyond the end of a valid pdir entry, it will cause 81 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should 82 ** disconnect on 4k boundaries and prevent such issues. If the device is 83 ** particularly aggressive, this option will keep the entire pdir valid such 84 ** that prefetching will hit a valid address. This could severely impact 85 ** error containment, and is therefore off by default. The page that is 86 ** used for spill-over is poisoned, so that should help debugging somewhat. 87 */ 88 #undef FULL_VALID_PDIR 89 90 #define ENABLE_MARK_CLEAN 91 92 /* 93 ** The number of debug flags is a clue - this code is fragile. NOTE: since 94 ** tightening the use of res_lock the resource bitmap and actual pdir are no 95 ** longer guaranteed to stay in sync. The sanity checking code isn't going to 96 ** like that. 97 */ 98 #undef DEBUG_SBA_INIT 99 #undef DEBUG_SBA_RUN 100 #undef DEBUG_SBA_RUN_SG 101 #undef DEBUG_SBA_RESOURCE 102 #undef ASSERT_PDIR_SANITY 103 #undef DEBUG_LARGE_SG_ENTRIES 104 #undef DEBUG_BYPASS 105 106 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY) 107 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive 108 #endif 109 110 #define SBA_INLINE __inline__ 111 /* #define SBA_INLINE */ 112 113 #ifdef DEBUG_SBA_INIT 114 #define DBG_INIT(x...) printk(x) 115 #else 116 #define DBG_INIT(x...) 117 #endif 118 119 #ifdef DEBUG_SBA_RUN 120 #define DBG_RUN(x...) printk(x) 121 #else 122 #define DBG_RUN(x...) 123 #endif 124 125 #ifdef DEBUG_SBA_RUN_SG 126 #define DBG_RUN_SG(x...) printk(x) 127 #else 128 #define DBG_RUN_SG(x...) 129 #endif 130 131 132 #ifdef DEBUG_SBA_RESOURCE 133 #define DBG_RES(x...) printk(x) 134 #else 135 #define DBG_RES(x...) 136 #endif 137 138 #ifdef DEBUG_BYPASS 139 #define DBG_BYPASS(x...) printk(x) 140 #else 141 #define DBG_BYPASS(x...) 142 #endif 143 144 #ifdef ASSERT_PDIR_SANITY 145 #define ASSERT(expr) \ 146 if(!(expr)) { \ 147 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \ 148 panic(#expr); \ 149 } 150 #else 151 #define ASSERT(expr) 152 #endif 153 154 /* 155 ** The number of pdir entries to "free" before issuing 156 ** a read to PCOM register to flush out PCOM writes. 157 ** Interacts with allocation granularity (ie 4 or 8 entries 158 ** allocated and free'd/purged at a time might make this 159 ** less interesting). 160 */ 161 #define DELAYED_RESOURCE_CNT 64 162 163 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec 164 165 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP) 166 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP) 167 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP) 168 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP) 169 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP) 170 171 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */ 172 173 #define IOC_FUNC_ID 0x000 174 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */ 175 #define IOC_IBASE 0x300 /* IO TLB */ 176 #define IOC_IMASK 0x308 177 #define IOC_PCOM 0x310 178 #define IOC_TCNFG 0x318 179 #define IOC_PDIR_BASE 0x320 180 181 #define IOC_ROPE0_CFG 0x500 182 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */ 183 184 185 /* AGP GART driver looks for this */ 186 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL 187 188 /* 189 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register) 190 ** 191 ** Some IOCs (sx1000) can run at the above pages sizes, but are 192 ** really only supported using the IOC at a 4k page size. 193 ** 194 ** iovp_size could only be greater than PAGE_SIZE if we are 195 ** confident the drivers really only touch the next physical 196 ** page iff that driver instance owns it. 197 */ 198 static unsigned long iovp_size; 199 static unsigned long iovp_shift; 200 static unsigned long iovp_mask; 201 202 struct ioc { 203 void __iomem *ioc_hpa; /* I/O MMU base address */ 204 char *res_map; /* resource map, bit == pdir entry */ 205 u64 *pdir_base; /* physical base address */ 206 unsigned long ibase; /* pdir IOV Space base */ 207 unsigned long imask; /* pdir IOV Space mask */ 208 209 unsigned long *res_hint; /* next avail IOVP - circular search */ 210 unsigned long dma_mask; 211 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */ 212 /* clearing pdir to prevent races with allocations. */ 213 unsigned int res_bitshift; /* from the RIGHT! */ 214 unsigned int res_size; /* size of resource map in bytes */ 215 #ifdef CONFIG_NUMA 216 unsigned int node; /* node where this IOC lives */ 217 #endif 218 #if DELAYED_RESOURCE_CNT > 0 219 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */ 220 /* than res_lock for bigger systems. */ 221 int saved_cnt; 222 struct sba_dma_pair { 223 dma_addr_t iova; 224 size_t size; 225 } saved[DELAYED_RESOURCE_CNT]; 226 #endif 227 228 #ifdef PDIR_SEARCH_TIMING 229 #define SBA_SEARCH_SAMPLE 0x100 230 unsigned long avg_search[SBA_SEARCH_SAMPLE]; 231 unsigned long avg_idx; /* current index into avg_search */ 232 #endif 233 234 /* Stuff we don't need in performance path */ 235 struct ioc *next; /* list of IOC's in system */ 236 acpi_handle handle; /* for multiple IOC's */ 237 const char *name; 238 unsigned int func_id; 239 unsigned int rev; /* HW revision of chip */ 240 u32 iov_size; 241 unsigned int pdir_size; /* in bytes, determined by IOV Space size */ 242 struct pci_dev *sac_only_dev; 243 }; 244 245 static struct ioc *ioc_list; 246 static int reserve_sba_gart = 1; 247 248 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t); 249 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t); 250 251 #define sba_sg_address(sg) sg_virt((sg)) 252 253 #ifdef FULL_VALID_PDIR 254 static u64 prefetch_spill_page; 255 #endif 256 257 #ifdef CONFIG_PCI 258 # define GET_IOC(dev) ((dev_is_pci(dev)) \ 259 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL) 260 #else 261 # define GET_IOC(dev) NULL 262 #endif 263 264 /* 265 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up 266 ** (or rather not merge) DMAs into manageable chunks. 267 ** On parisc, this is more of the software/tuning constraint 268 ** rather than the HW. I/O MMU allocation algorithms can be 269 ** faster with smaller sizes (to some degree). 270 */ 271 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size) 272 273 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1)) 274 275 /************************************ 276 ** SBA register read and write support 277 ** 278 ** BE WARNED: register writes are posted. 279 ** (ie follow writes which must reach HW with a read) 280 ** 281 */ 282 #define READ_REG(addr) __raw_readq(addr) 283 #define WRITE_REG(val, addr) __raw_writeq(val, addr) 284 285 #ifdef DEBUG_SBA_INIT 286 287 /** 288 * sba_dump_tlb - debugging only - print IOMMU operating parameters 289 * @hpa: base address of the IOMMU 290 * 291 * Print the size/location of the IO MMU PDIR. 292 */ 293 static void 294 sba_dump_tlb(char *hpa) 295 { 296 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa); 297 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE)); 298 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK)); 299 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG)); 300 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE)); 301 DBG_INIT("\n"); 302 } 303 #endif 304 305 306 #ifdef ASSERT_PDIR_SANITY 307 308 /** 309 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry 310 * @ioc: IO MMU structure which owns the pdir we are interested in. 311 * @msg: text to print ont the output line. 312 * @pide: pdir index. 313 * 314 * Print one entry of the IO MMU PDIR in human readable form. 315 */ 316 static void 317 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide) 318 { 319 /* start printing from lowest pde in rval */ 320 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)]; 321 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)]; 322 uint rcnt; 323 324 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n", 325 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr); 326 327 rcnt = 0; 328 while (rcnt < BITS_PER_LONG) { 329 printk(KERN_DEBUG "%s %2d %p %016Lx\n", 330 (rcnt == (pide & (BITS_PER_LONG - 1))) 331 ? " -->" : " ", 332 rcnt, ptr, (unsigned long long) *ptr ); 333 rcnt++; 334 ptr++; 335 } 336 printk(KERN_DEBUG "%s", msg); 337 } 338 339 340 /** 341 * sba_check_pdir - debugging only - consistency checker 342 * @ioc: IO MMU structure which owns the pdir we are interested in. 343 * @msg: text to print ont the output line. 344 * 345 * Verify the resource map and pdir state is consistent 346 */ 347 static int 348 sba_check_pdir(struct ioc *ioc, char *msg) 349 { 350 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]); 351 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */ 352 u64 *pptr = ioc->pdir_base; /* pdir ptr */ 353 uint pide = 0; 354 355 while (rptr < rptr_end) { 356 u64 rval; 357 int rcnt; /* number of bits we might check */ 358 359 rval = *rptr; 360 rcnt = 64; 361 362 while (rcnt) { 363 /* Get last byte and highest bit from that */ 364 u32 pde = ((u32)((*pptr >> (63)) & 0x1)); 365 if ((rval & 0x1) ^ pde) 366 { 367 /* 368 ** BUMMER! -- res_map != pdir -- 369 ** Dump rval and matching pdir entries 370 */ 371 sba_dump_pdir_entry(ioc, msg, pide); 372 return(1); 373 } 374 rcnt--; 375 rval >>= 1; /* try the next bit */ 376 pptr++; 377 pide++; 378 } 379 rptr++; /* look at next word of res_map */ 380 } 381 /* It'd be nice if we always got here :^) */ 382 return 0; 383 } 384 385 386 /** 387 * sba_dump_sg - debugging only - print Scatter-Gather list 388 * @ioc: IO MMU structure which owns the pdir we are interested in. 389 * @startsg: head of the SG list 390 * @nents: number of entries in SG list 391 * 392 * print the SG list so we can verify it's correct by hand. 393 */ 394 static void 395 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 396 { 397 while (nents-- > 0) { 398 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents, 399 startsg->dma_address, startsg->dma_length, 400 sba_sg_address(startsg)); 401 startsg = sg_next(startsg); 402 } 403 } 404 405 static void 406 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 407 { 408 struct scatterlist *the_sg = startsg; 409 int the_nents = nents; 410 411 while (the_nents-- > 0) { 412 if (sba_sg_address(the_sg) == 0x0UL) 413 sba_dump_sg(NULL, startsg, nents); 414 the_sg = sg_next(the_sg); 415 } 416 } 417 418 #endif /* ASSERT_PDIR_SANITY */ 419 420 421 422 423 /************************************************************** 424 * 425 * I/O Pdir Resource Management 426 * 427 * Bits set in the resource map are in use. 428 * Each bit can represent a number of pages. 429 * LSbs represent lower addresses (IOVA's). 430 * 431 ***************************************************************/ 432 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */ 433 434 /* Convert from IOVP to IOVA and vice versa. */ 435 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset)) 436 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase)) 437 438 #define PDIR_ENTRY_SIZE sizeof(u64) 439 440 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift) 441 442 #define RESMAP_MASK(n) ~(~0UL << (n)) 443 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1) 444 445 446 /** 447 * For most cases the normal get_order is sufficient, however it limits us 448 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity. 449 * It only incurs about 1 clock cycle to use this one with the static variable 450 * and makes the code more intuitive. 451 */ 452 static SBA_INLINE int 453 get_iovp_order (unsigned long size) 454 { 455 long double d = size - 1; 456 long order; 457 458 order = ia64_getf_exp(d); 459 order = order - iovp_shift - 0xffff + 1; 460 if (order < 0) 461 order = 0; 462 return order; 463 } 464 465 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr, 466 unsigned int bitshiftcnt) 467 { 468 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3) 469 + bitshiftcnt; 470 } 471 472 /** 473 * sba_search_bitmap - find free space in IO PDIR resource bitmap 474 * @ioc: IO MMU structure which owns the pdir we are interested in. 475 * @bits_wanted: number of entries we need. 476 * @use_hint: use res_hint to indicate where to start looking 477 * 478 * Find consecutive free bits in resource bitmap. 479 * Each bit represents one entry in the IO Pdir. 480 * Cool perf optimization: search for log2(size) bits at a time. 481 */ 482 static SBA_INLINE unsigned long 483 sba_search_bitmap(struct ioc *ioc, struct device *dev, 484 unsigned long bits_wanted, int use_hint) 485 { 486 unsigned long *res_ptr; 487 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]); 488 unsigned long flags, pide = ~0UL, tpide; 489 unsigned long boundary_size; 490 unsigned long shift; 491 int ret; 492 493 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0); 494 ASSERT(res_ptr < res_end); 495 496 boundary_size = (unsigned long long)dma_get_seg_boundary(dev) + 1; 497 boundary_size = ALIGN(boundary_size, 1ULL << iovp_shift) >> iovp_shift; 498 499 BUG_ON(ioc->ibase & ~iovp_mask); 500 shift = ioc->ibase >> iovp_shift; 501 502 spin_lock_irqsave(&ioc->res_lock, flags); 503 504 /* Allow caller to force a search through the entire resource space */ 505 if (likely(use_hint)) { 506 res_ptr = ioc->res_hint; 507 } else { 508 res_ptr = (ulong *)ioc->res_map; 509 ioc->res_bitshift = 0; 510 } 511 512 /* 513 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts 514 * if a TLB entry is purged while in use. sba_mark_invalid() 515 * purges IOTLB entries in power-of-two sizes, so we also 516 * allocate IOVA space in power-of-two sizes. 517 */ 518 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift); 519 520 if (likely(bits_wanted == 1)) { 521 unsigned int bitshiftcnt; 522 for(; res_ptr < res_end ; res_ptr++) { 523 if (likely(*res_ptr != ~0UL)) { 524 bitshiftcnt = ffz(*res_ptr); 525 *res_ptr |= (1UL << bitshiftcnt); 526 pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 527 ioc->res_bitshift = bitshiftcnt + bits_wanted; 528 goto found_it; 529 } 530 } 531 goto not_found; 532 533 } 534 535 if (likely(bits_wanted <= BITS_PER_LONG/2)) { 536 /* 537 ** Search the resource bit map on well-aligned values. 538 ** "o" is the alignment. 539 ** We need the alignment to invalidate I/O TLB using 540 ** SBA HW features in the unmap path. 541 */ 542 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift); 543 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o); 544 unsigned long mask, base_mask; 545 546 base_mask = RESMAP_MASK(bits_wanted); 547 mask = base_mask << bitshiftcnt; 548 549 DBG_RES("%s() o %ld %p", __func__, o, res_ptr); 550 for(; res_ptr < res_end ; res_ptr++) 551 { 552 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr); 553 ASSERT(0 != mask); 554 for (; mask ; mask <<= o, bitshiftcnt += o) { 555 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 556 ret = iommu_is_span_boundary(tpide, bits_wanted, 557 shift, 558 boundary_size); 559 if ((0 == ((*res_ptr) & mask)) && !ret) { 560 *res_ptr |= mask; /* mark resources busy! */ 561 pide = tpide; 562 ioc->res_bitshift = bitshiftcnt + bits_wanted; 563 goto found_it; 564 } 565 } 566 567 bitshiftcnt = 0; 568 mask = base_mask; 569 570 } 571 572 } else { 573 int qwords, bits, i; 574 unsigned long *end; 575 576 qwords = bits_wanted >> 6; /* /64 */ 577 bits = bits_wanted - (qwords * BITS_PER_LONG); 578 579 end = res_end - qwords; 580 581 for (; res_ptr < end; res_ptr++) { 582 tpide = ptr_to_pide(ioc, res_ptr, 0); 583 ret = iommu_is_span_boundary(tpide, bits_wanted, 584 shift, boundary_size); 585 if (ret) 586 goto next_ptr; 587 for (i = 0 ; i < qwords ; i++) { 588 if (res_ptr[i] != 0) 589 goto next_ptr; 590 } 591 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits)) 592 continue; 593 594 /* Found it, mark it */ 595 for (i = 0 ; i < qwords ; i++) 596 res_ptr[i] = ~0UL; 597 res_ptr[i] |= RESMAP_MASK(bits); 598 599 pide = tpide; 600 res_ptr += qwords; 601 ioc->res_bitshift = bits; 602 goto found_it; 603 next_ptr: 604 ; 605 } 606 } 607 608 not_found: 609 prefetch(ioc->res_map); 610 ioc->res_hint = (unsigned long *) ioc->res_map; 611 ioc->res_bitshift = 0; 612 spin_unlock_irqrestore(&ioc->res_lock, flags); 613 return (pide); 614 615 found_it: 616 ioc->res_hint = res_ptr; 617 spin_unlock_irqrestore(&ioc->res_lock, flags); 618 return (pide); 619 } 620 621 622 /** 623 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap 624 * @ioc: IO MMU structure which owns the pdir we are interested in. 625 * @size: number of bytes to create a mapping for 626 * 627 * Given a size, find consecutive unmarked and then mark those bits in the 628 * resource bit map. 629 */ 630 static int 631 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 632 { 633 unsigned int pages_needed = size >> iovp_shift; 634 #ifdef PDIR_SEARCH_TIMING 635 unsigned long itc_start; 636 #endif 637 unsigned long pide; 638 639 ASSERT(pages_needed); 640 ASSERT(0 == (size & ~iovp_mask)); 641 642 #ifdef PDIR_SEARCH_TIMING 643 itc_start = ia64_get_itc(); 644 #endif 645 /* 646 ** "seek and ye shall find"...praying never hurts either... 647 */ 648 pide = sba_search_bitmap(ioc, dev, pages_needed, 1); 649 if (unlikely(pide >= (ioc->res_size << 3))) { 650 pide = sba_search_bitmap(ioc, dev, pages_needed, 0); 651 if (unlikely(pide >= (ioc->res_size << 3))) { 652 #if DELAYED_RESOURCE_CNT > 0 653 unsigned long flags; 654 655 /* 656 ** With delayed resource freeing, we can give this one more shot. We're 657 ** getting close to being in trouble here, so do what we can to make this 658 ** one count. 659 */ 660 spin_lock_irqsave(&ioc->saved_lock, flags); 661 if (ioc->saved_cnt > 0) { 662 struct sba_dma_pair *d; 663 int cnt = ioc->saved_cnt; 664 665 d = &(ioc->saved[ioc->saved_cnt - 1]); 666 667 spin_lock(&ioc->res_lock); 668 while (cnt--) { 669 sba_mark_invalid(ioc, d->iova, d->size); 670 sba_free_range(ioc, d->iova, d->size); 671 d--; 672 } 673 ioc->saved_cnt = 0; 674 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 675 spin_unlock(&ioc->res_lock); 676 } 677 spin_unlock_irqrestore(&ioc->saved_lock, flags); 678 679 pide = sba_search_bitmap(ioc, dev, pages_needed, 0); 680 if (unlikely(pide >= (ioc->res_size << 3))) { 681 printk(KERN_WARNING "%s: I/O MMU @ %p is" 682 "out of mapping resources, %u %u %lx\n", 683 __func__, ioc->ioc_hpa, ioc->res_size, 684 pages_needed, dma_get_seg_boundary(dev)); 685 return -1; 686 } 687 #else 688 printk(KERN_WARNING "%s: I/O MMU @ %p is" 689 "out of mapping resources, %u %u %lx\n", 690 __func__, ioc->ioc_hpa, ioc->res_size, 691 pages_needed, dma_get_seg_boundary(dev)); 692 return -1; 693 #endif 694 } 695 } 696 697 #ifdef PDIR_SEARCH_TIMING 698 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed; 699 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1; 700 #endif 701 702 prefetchw(&(ioc->pdir_base[pide])); 703 704 #ifdef ASSERT_PDIR_SANITY 705 /* verify the first enable bit is clear */ 706 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) { 707 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide); 708 } 709 #endif 710 711 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n", 712 __func__, size, pages_needed, pide, 713 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map), 714 ioc->res_bitshift ); 715 716 return (pide); 717 } 718 719 720 /** 721 * sba_free_range - unmark bits in IO PDIR resource bitmap 722 * @ioc: IO MMU structure which owns the pdir we are interested in. 723 * @iova: IO virtual address which was previously allocated. 724 * @size: number of bytes to create a mapping for 725 * 726 * clear bits in the ioc's resource map 727 */ 728 static SBA_INLINE void 729 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size) 730 { 731 unsigned long iovp = SBA_IOVP(ioc, iova); 732 unsigned int pide = PDIR_INDEX(iovp); 733 unsigned int ridx = pide >> 3; /* convert bit to byte address */ 734 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]); 735 int bits_not_wanted = size >> iovp_shift; 736 unsigned long m; 737 738 /* Round up to power-of-two size: see AR2305 note above */ 739 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift); 740 for (; bits_not_wanted > 0 ; res_ptr++) { 741 742 if (unlikely(bits_not_wanted > BITS_PER_LONG)) { 743 744 /* these mappings start 64bit aligned */ 745 *res_ptr = 0UL; 746 bits_not_wanted -= BITS_PER_LONG; 747 pide += BITS_PER_LONG; 748 749 } else { 750 751 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */ 752 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1)); 753 bits_not_wanted = 0; 754 755 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size, 756 bits_not_wanted, m, pide, res_ptr, *res_ptr); 757 758 ASSERT(m != 0); 759 ASSERT(bits_not_wanted); 760 ASSERT((*res_ptr & m) == m); /* verify same bits are set */ 761 *res_ptr &= ~m; 762 } 763 } 764 } 765 766 767 /************************************************************** 768 * 769 * "Dynamic DMA Mapping" support (aka "Coherent I/O") 770 * 771 ***************************************************************/ 772 773 /** 774 * sba_io_pdir_entry - fill in one IO PDIR entry 775 * @pdir_ptr: pointer to IO PDIR entry 776 * @vba: Virtual CPU address of buffer to map 777 * 778 * SBA Mapping Routine 779 * 780 * Given a virtual address (vba, arg1) sba_io_pdir_entry() 781 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0). 782 * Each IO Pdir entry consists of 8 bytes as shown below 783 * (LSB == bit 0): 784 * 785 * 63 40 11 7 0 786 * +-+---------------------+----------------------------------+----+--------+ 787 * |V| U | PPN[39:12] | U | FF | 788 * +-+---------------------+----------------------------------+----+--------+ 789 * 790 * V == Valid Bit 791 * U == Unused 792 * PPN == Physical Page Number 793 * 794 * The physical address fields are filled with the results of virt_to_phys() 795 * on the vba. 796 */ 797 798 #if 1 799 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \ 800 | 0x8000000000000000ULL) 801 #else 802 void SBA_INLINE 803 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba) 804 { 805 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL); 806 } 807 #endif 808 809 #ifdef ENABLE_MARK_CLEAN 810 /** 811 * Since DMA is i-cache coherent, any (complete) pages that were written via 812 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 813 * flush them when they get mapped into an executable vm-area. 814 */ 815 static void 816 mark_clean (void *addr, size_t size) 817 { 818 unsigned long pg_addr, end; 819 820 pg_addr = PAGE_ALIGN((unsigned long) addr); 821 end = (unsigned long) addr + size; 822 while (pg_addr + PAGE_SIZE <= end) { 823 struct page *page = virt_to_page((void *)pg_addr); 824 set_bit(PG_arch_1, &page->flags); 825 pg_addr += PAGE_SIZE; 826 } 827 } 828 #endif 829 830 /** 831 * sba_mark_invalid - invalidate one or more IO PDIR entries 832 * @ioc: IO MMU structure which owns the pdir we are interested in. 833 * @iova: IO Virtual Address mapped earlier 834 * @byte_cnt: number of bytes this mapping covers. 835 * 836 * Marking the IO PDIR entry(ies) as Invalid and invalidate 837 * corresponding IO TLB entry. The PCOM (Purge Command Register) 838 * is to purge stale entries in the IO TLB when unmapping entries. 839 * 840 * The PCOM register supports purging of multiple pages, with a minium 841 * of 1 page and a maximum of 2GB. Hardware requires the address be 842 * aligned to the size of the range being purged. The size of the range 843 * must be a power of 2. The "Cool perf optimization" in the 844 * allocation routine helps keep that true. 845 */ 846 static SBA_INLINE void 847 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 848 { 849 u32 iovp = (u32) SBA_IOVP(ioc,iova); 850 851 int off = PDIR_INDEX(iovp); 852 853 /* Must be non-zero and rounded up */ 854 ASSERT(byte_cnt > 0); 855 ASSERT(0 == (byte_cnt & ~iovp_mask)); 856 857 #ifdef ASSERT_PDIR_SANITY 858 /* Assert first pdir entry is set */ 859 if (!(ioc->pdir_base[off] >> 60)) { 860 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp)); 861 } 862 #endif 863 864 if (byte_cnt <= iovp_size) 865 { 866 ASSERT(off < ioc->pdir_size); 867 868 iovp |= iovp_shift; /* set "size" field for PCOM */ 869 870 #ifndef FULL_VALID_PDIR 871 /* 872 ** clear I/O PDIR entry "valid" bit 873 ** Do NOT clear the rest - save it for debugging. 874 ** We should only clear bits that have previously 875 ** been enabled. 876 */ 877 ioc->pdir_base[off] &= ~(0x80000000000000FFULL); 878 #else 879 /* 880 ** If we want to maintain the PDIR as valid, put in 881 ** the spill page so devices prefetching won't 882 ** cause a hard fail. 883 */ 884 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); 885 #endif 886 } else { 887 u32 t = get_iovp_order(byte_cnt) + iovp_shift; 888 889 iovp |= t; 890 ASSERT(t <= 31); /* 2GB! Max value of "size" field */ 891 892 do { 893 /* verify this pdir entry is enabled */ 894 ASSERT(ioc->pdir_base[off] >> 63); 895 #ifndef FULL_VALID_PDIR 896 /* clear I/O Pdir entry "valid" bit first */ 897 ioc->pdir_base[off] &= ~(0x80000000000000FFULL); 898 #else 899 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); 900 #endif 901 off++; 902 byte_cnt -= iovp_size; 903 } while (byte_cnt > 0); 904 } 905 906 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM); 907 } 908 909 /** 910 * sba_map_single_attrs - map one buffer and return IOVA for DMA 911 * @dev: instance of PCI owned by the driver that's asking. 912 * @addr: driver buffer to map. 913 * @size: number of bytes to map in driver buffer. 914 * @dir: R/W or both. 915 * @attrs: optional dma attributes 916 * 917 * See Documentation/DMA-API-HOWTO.txt 918 */ 919 static dma_addr_t sba_map_page(struct device *dev, struct page *page, 920 unsigned long poff, size_t size, 921 enum dma_data_direction dir, 922 struct dma_attrs *attrs) 923 { 924 struct ioc *ioc; 925 void *addr = page_address(page) + poff; 926 dma_addr_t iovp; 927 dma_addr_t offset; 928 u64 *pdir_start; 929 int pide; 930 #ifdef ASSERT_PDIR_SANITY 931 unsigned long flags; 932 #endif 933 #ifdef ALLOW_IOV_BYPASS 934 unsigned long pci_addr = virt_to_phys(addr); 935 #endif 936 937 #ifdef ALLOW_IOV_BYPASS 938 ASSERT(to_pci_dev(dev)->dma_mask); 939 /* 940 ** Check if the PCI device can DMA to ptr... if so, just return ptr 941 */ 942 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) { 943 /* 944 ** Device is bit capable of DMA'ing to the buffer... 945 ** just return the PCI address of ptr 946 */ 947 DBG_BYPASS("sba_map_single_attrs() bypass mask/addr: " 948 "0x%lx/0x%lx\n", 949 to_pci_dev(dev)->dma_mask, pci_addr); 950 return pci_addr; 951 } 952 #endif 953 ioc = GET_IOC(dev); 954 ASSERT(ioc); 955 956 prefetch(ioc->res_hint); 957 958 ASSERT(size > 0); 959 ASSERT(size <= DMA_CHUNK_SIZE); 960 961 /* save offset bits */ 962 offset = ((dma_addr_t) (long) addr) & ~iovp_mask; 963 964 /* round up to nearest iovp_size */ 965 size = (size + offset + ~iovp_mask) & iovp_mask; 966 967 #ifdef ASSERT_PDIR_SANITY 968 spin_lock_irqsave(&ioc->res_lock, flags); 969 if (sba_check_pdir(ioc,"Check before sba_map_single_attrs()")) 970 panic("Sanity check failed"); 971 spin_unlock_irqrestore(&ioc->res_lock, flags); 972 #endif 973 974 pide = sba_alloc_range(ioc, dev, size); 975 if (pide < 0) 976 return 0; 977 978 iovp = (dma_addr_t) pide << iovp_shift; 979 980 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset); 981 982 pdir_start = &(ioc->pdir_base[pide]); 983 984 while (size > 0) { 985 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */ 986 sba_io_pdir_entry(pdir_start, (unsigned long) addr); 987 988 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start); 989 990 addr += iovp_size; 991 size -= iovp_size; 992 pdir_start++; 993 } 994 /* force pdir update */ 995 wmb(); 996 997 /* form complete address */ 998 #ifdef ASSERT_PDIR_SANITY 999 spin_lock_irqsave(&ioc->res_lock, flags); 1000 sba_check_pdir(ioc,"Check after sba_map_single_attrs()"); 1001 spin_unlock_irqrestore(&ioc->res_lock, flags); 1002 #endif 1003 return SBA_IOVA(ioc, iovp, offset); 1004 } 1005 1006 static dma_addr_t sba_map_single_attrs(struct device *dev, void *addr, 1007 size_t size, enum dma_data_direction dir, 1008 struct dma_attrs *attrs) 1009 { 1010 return sba_map_page(dev, virt_to_page(addr), 1011 (unsigned long)addr & ~PAGE_MASK, size, dir, attrs); 1012 } 1013 1014 #ifdef ENABLE_MARK_CLEAN 1015 static SBA_INLINE void 1016 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size) 1017 { 1018 u32 iovp = (u32) SBA_IOVP(ioc,iova); 1019 int off = PDIR_INDEX(iovp); 1020 void *addr; 1021 1022 if (size <= iovp_size) { 1023 addr = phys_to_virt(ioc->pdir_base[off] & 1024 ~0xE000000000000FFFULL); 1025 mark_clean(addr, size); 1026 } else { 1027 do { 1028 addr = phys_to_virt(ioc->pdir_base[off] & 1029 ~0xE000000000000FFFULL); 1030 mark_clean(addr, min(size, iovp_size)); 1031 off++; 1032 size -= iovp_size; 1033 } while (size > 0); 1034 } 1035 } 1036 #endif 1037 1038 /** 1039 * sba_unmap_single_attrs - unmap one IOVA and free resources 1040 * @dev: instance of PCI owned by the driver that's asking. 1041 * @iova: IOVA of driver buffer previously mapped. 1042 * @size: number of bytes mapped in driver buffer. 1043 * @dir: R/W or both. 1044 * @attrs: optional dma attributes 1045 * 1046 * See Documentation/DMA-API-HOWTO.txt 1047 */ 1048 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size, 1049 enum dma_data_direction dir, struct dma_attrs *attrs) 1050 { 1051 struct ioc *ioc; 1052 #if DELAYED_RESOURCE_CNT > 0 1053 struct sba_dma_pair *d; 1054 #endif 1055 unsigned long flags; 1056 dma_addr_t offset; 1057 1058 ioc = GET_IOC(dev); 1059 ASSERT(ioc); 1060 1061 #ifdef ALLOW_IOV_BYPASS 1062 if (likely((iova & ioc->imask) != ioc->ibase)) { 1063 /* 1064 ** Address does not fall w/in IOVA, must be bypassing 1065 */ 1066 DBG_BYPASS("sba_unmap_single_attrs() bypass addr: 0x%lx\n", 1067 iova); 1068 1069 #ifdef ENABLE_MARK_CLEAN 1070 if (dir == DMA_FROM_DEVICE) { 1071 mark_clean(phys_to_virt(iova), size); 1072 } 1073 #endif 1074 return; 1075 } 1076 #endif 1077 offset = iova & ~iovp_mask; 1078 1079 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size); 1080 1081 iova ^= offset; /* clear offset bits */ 1082 size += offset; 1083 size = ROUNDUP(size, iovp_size); 1084 1085 #ifdef ENABLE_MARK_CLEAN 1086 if (dir == DMA_FROM_DEVICE) 1087 sba_mark_clean(ioc, iova, size); 1088 #endif 1089 1090 #if DELAYED_RESOURCE_CNT > 0 1091 spin_lock_irqsave(&ioc->saved_lock, flags); 1092 d = &(ioc->saved[ioc->saved_cnt]); 1093 d->iova = iova; 1094 d->size = size; 1095 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) { 1096 int cnt = ioc->saved_cnt; 1097 spin_lock(&ioc->res_lock); 1098 while (cnt--) { 1099 sba_mark_invalid(ioc, d->iova, d->size); 1100 sba_free_range(ioc, d->iova, d->size); 1101 d--; 1102 } 1103 ioc->saved_cnt = 0; 1104 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 1105 spin_unlock(&ioc->res_lock); 1106 } 1107 spin_unlock_irqrestore(&ioc->saved_lock, flags); 1108 #else /* DELAYED_RESOURCE_CNT == 0 */ 1109 spin_lock_irqsave(&ioc->res_lock, flags); 1110 sba_mark_invalid(ioc, iova, size); 1111 sba_free_range(ioc, iova, size); 1112 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 1113 spin_unlock_irqrestore(&ioc->res_lock, flags); 1114 #endif /* DELAYED_RESOURCE_CNT == 0 */ 1115 } 1116 1117 void sba_unmap_single_attrs(struct device *dev, dma_addr_t iova, size_t size, 1118 enum dma_data_direction dir, struct dma_attrs *attrs) 1119 { 1120 sba_unmap_page(dev, iova, size, dir, attrs); 1121 } 1122 1123 /** 1124 * sba_alloc_coherent - allocate/map shared mem for DMA 1125 * @dev: instance of PCI owned by the driver that's asking. 1126 * @size: number of bytes mapped in driver buffer. 1127 * @dma_handle: IOVA of new buffer. 1128 * 1129 * See Documentation/DMA-API-HOWTO.txt 1130 */ 1131 static void * 1132 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 1133 gfp_t flags, struct dma_attrs *attrs) 1134 { 1135 struct ioc *ioc; 1136 void *addr; 1137 1138 ioc = GET_IOC(dev); 1139 ASSERT(ioc); 1140 1141 #ifdef CONFIG_NUMA 1142 { 1143 int node = ioc->node; 1144 struct page *page; 1145 1146 if (node == NUMA_NO_NODE) 1147 node = numa_node_id(); 1148 1149 page = alloc_pages_exact_node(node, flags, get_order(size)); 1150 if (unlikely(!page)) 1151 return NULL; 1152 1153 addr = page_address(page); 1154 } 1155 #else 1156 addr = (void *) __get_free_pages(flags, get_order(size)); 1157 #endif 1158 if (unlikely(!addr)) 1159 return NULL; 1160 1161 memset(addr, 0, size); 1162 *dma_handle = virt_to_phys(addr); 1163 1164 #ifdef ALLOW_IOV_BYPASS 1165 ASSERT(dev->coherent_dma_mask); 1166 /* 1167 ** Check if the PCI device can DMA to ptr... if so, just return ptr 1168 */ 1169 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) { 1170 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n", 1171 dev->coherent_dma_mask, *dma_handle); 1172 1173 return addr; 1174 } 1175 #endif 1176 1177 /* 1178 * If device can't bypass or bypass is disabled, pass the 32bit fake 1179 * device to map single to get an iova mapping. 1180 */ 1181 *dma_handle = sba_map_single_attrs(&ioc->sac_only_dev->dev, addr, 1182 size, 0, NULL); 1183 1184 return addr; 1185 } 1186 1187 1188 /** 1189 * sba_free_coherent - free/unmap shared mem for DMA 1190 * @dev: instance of PCI owned by the driver that's asking. 1191 * @size: number of bytes mapped in driver buffer. 1192 * @vaddr: virtual address IOVA of "consistent" buffer. 1193 * @dma_handler: IO virtual address of "consistent" buffer. 1194 * 1195 * See Documentation/DMA-API-HOWTO.txt 1196 */ 1197 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr, 1198 dma_addr_t dma_handle, struct dma_attrs *attrs) 1199 { 1200 sba_unmap_single_attrs(dev, dma_handle, size, 0, NULL); 1201 free_pages((unsigned long) vaddr, get_order(size)); 1202 } 1203 1204 1205 /* 1206 ** Since 0 is a valid pdir_base index value, can't use that 1207 ** to determine if a value is valid or not. Use a flag to indicate 1208 ** the SG list entry contains a valid pdir index. 1209 */ 1210 #define PIDE_FLAG 0x1UL 1211 1212 #ifdef DEBUG_LARGE_SG_ENTRIES 1213 int dump_run_sg = 0; 1214 #endif 1215 1216 1217 /** 1218 * sba_fill_pdir - write allocated SG entries into IO PDIR 1219 * @ioc: IO MMU structure which owns the pdir we are interested in. 1220 * @startsg: list of IOVA/size pairs 1221 * @nents: number of entries in startsg list 1222 * 1223 * Take preprocessed SG list and write corresponding entries 1224 * in the IO PDIR. 1225 */ 1226 1227 static SBA_INLINE int 1228 sba_fill_pdir( 1229 struct ioc *ioc, 1230 struct scatterlist *startsg, 1231 int nents) 1232 { 1233 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */ 1234 int n_mappings = 0; 1235 u64 *pdirp = NULL; 1236 unsigned long dma_offset = 0; 1237 1238 while (nents-- > 0) { 1239 int cnt = startsg->dma_length; 1240 startsg->dma_length = 0; 1241 1242 #ifdef DEBUG_LARGE_SG_ENTRIES 1243 if (dump_run_sg) 1244 printk(" %2d : %08lx/%05x %p\n", 1245 nents, startsg->dma_address, cnt, 1246 sba_sg_address(startsg)); 1247 #else 1248 DBG_RUN_SG(" %d : %08lx/%05x %p\n", 1249 nents, startsg->dma_address, cnt, 1250 sba_sg_address(startsg)); 1251 #endif 1252 /* 1253 ** Look for the start of a new DMA stream 1254 */ 1255 if (startsg->dma_address & PIDE_FLAG) { 1256 u32 pide = startsg->dma_address & ~PIDE_FLAG; 1257 dma_offset = (unsigned long) pide & ~iovp_mask; 1258 startsg->dma_address = 0; 1259 if (n_mappings) 1260 dma_sg = sg_next(dma_sg); 1261 dma_sg->dma_address = pide | ioc->ibase; 1262 pdirp = &(ioc->pdir_base[pide >> iovp_shift]); 1263 n_mappings++; 1264 } 1265 1266 /* 1267 ** Look for a VCONTIG chunk 1268 */ 1269 if (cnt) { 1270 unsigned long vaddr = (unsigned long) sba_sg_address(startsg); 1271 ASSERT(pdirp); 1272 1273 /* Since multiple Vcontig blocks could make up 1274 ** one DMA stream, *add* cnt to dma_len. 1275 */ 1276 dma_sg->dma_length += cnt; 1277 cnt += dma_offset; 1278 dma_offset=0; /* only want offset on first chunk */ 1279 cnt = ROUNDUP(cnt, iovp_size); 1280 do { 1281 sba_io_pdir_entry(pdirp, vaddr); 1282 vaddr += iovp_size; 1283 cnt -= iovp_size; 1284 pdirp++; 1285 } while (cnt > 0); 1286 } 1287 startsg = sg_next(startsg); 1288 } 1289 /* force pdir update */ 1290 wmb(); 1291 1292 #ifdef DEBUG_LARGE_SG_ENTRIES 1293 dump_run_sg = 0; 1294 #endif 1295 return(n_mappings); 1296 } 1297 1298 1299 /* 1300 ** Two address ranges are DMA contiguous *iff* "end of prev" and 1301 ** "start of next" are both on an IOV page boundary. 1302 ** 1303 ** (shift left is a quick trick to mask off upper bits) 1304 */ 1305 #define DMA_CONTIG(__X, __Y) \ 1306 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL) 1307 1308 1309 /** 1310 * sba_coalesce_chunks - preprocess the SG list 1311 * @ioc: IO MMU structure which owns the pdir we are interested in. 1312 * @startsg: list of IOVA/size pairs 1313 * @nents: number of entries in startsg list 1314 * 1315 * First pass is to walk the SG list and determine where the breaks are 1316 * in the DMA stream. Allocates PDIR entries but does not fill them. 1317 * Returns the number of DMA chunks. 1318 * 1319 * Doing the fill separate from the coalescing/allocation keeps the 1320 * code simpler. Future enhancement could make one pass through 1321 * the sglist do both. 1322 */ 1323 static SBA_INLINE int 1324 sba_coalesce_chunks(struct ioc *ioc, struct device *dev, 1325 struct scatterlist *startsg, 1326 int nents) 1327 { 1328 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */ 1329 unsigned long vcontig_len; /* len of VCONTIG chunk */ 1330 unsigned long vcontig_end; 1331 struct scatterlist *dma_sg; /* next DMA stream head */ 1332 unsigned long dma_offset, dma_len; /* start/len of DMA stream */ 1333 int n_mappings = 0; 1334 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1335 int idx; 1336 1337 while (nents > 0) { 1338 unsigned long vaddr = (unsigned long) sba_sg_address(startsg); 1339 1340 /* 1341 ** Prepare for first/next DMA stream 1342 */ 1343 dma_sg = vcontig_sg = startsg; 1344 dma_len = vcontig_len = vcontig_end = startsg->length; 1345 vcontig_end += vaddr; 1346 dma_offset = vaddr & ~iovp_mask; 1347 1348 /* PARANOID: clear entries */ 1349 startsg->dma_address = startsg->dma_length = 0; 1350 1351 /* 1352 ** This loop terminates one iteration "early" since 1353 ** it's always looking one "ahead". 1354 */ 1355 while (--nents > 0) { 1356 unsigned long vaddr; /* tmp */ 1357 1358 startsg = sg_next(startsg); 1359 1360 /* PARANOID */ 1361 startsg->dma_address = startsg->dma_length = 0; 1362 1363 /* catch brokenness in SCSI layer */ 1364 ASSERT(startsg->length <= DMA_CHUNK_SIZE); 1365 1366 /* 1367 ** First make sure current dma stream won't 1368 ** exceed DMA_CHUNK_SIZE if we coalesce the 1369 ** next entry. 1370 */ 1371 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask) 1372 > DMA_CHUNK_SIZE) 1373 break; 1374 1375 if (dma_len + startsg->length > max_seg_size) 1376 break; 1377 1378 /* 1379 ** Then look for virtually contiguous blocks. 1380 ** 1381 ** append the next transaction? 1382 */ 1383 vaddr = (unsigned long) sba_sg_address(startsg); 1384 if (vcontig_end == vaddr) 1385 { 1386 vcontig_len += startsg->length; 1387 vcontig_end += startsg->length; 1388 dma_len += startsg->length; 1389 continue; 1390 } 1391 1392 #ifdef DEBUG_LARGE_SG_ENTRIES 1393 dump_run_sg = (vcontig_len > iovp_size); 1394 #endif 1395 1396 /* 1397 ** Not virtually contiguous. 1398 ** Terminate prev chunk. 1399 ** Start a new chunk. 1400 ** 1401 ** Once we start a new VCONTIG chunk, dma_offset 1402 ** can't change. And we need the offset from the first 1403 ** chunk - not the last one. Ergo Successive chunks 1404 ** must start on page boundaries and dove tail 1405 ** with it's predecessor. 1406 */ 1407 vcontig_sg->dma_length = vcontig_len; 1408 1409 vcontig_sg = startsg; 1410 vcontig_len = startsg->length; 1411 1412 /* 1413 ** 3) do the entries end/start on page boundaries? 1414 ** Don't update vcontig_end until we've checked. 1415 */ 1416 if (DMA_CONTIG(vcontig_end, vaddr)) 1417 { 1418 vcontig_end = vcontig_len + vaddr; 1419 dma_len += vcontig_len; 1420 continue; 1421 } else { 1422 break; 1423 } 1424 } 1425 1426 /* 1427 ** End of DMA Stream 1428 ** Terminate last VCONTIG block. 1429 ** Allocate space for DMA stream. 1430 */ 1431 vcontig_sg->dma_length = vcontig_len; 1432 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask; 1433 ASSERT(dma_len <= DMA_CHUNK_SIZE); 1434 idx = sba_alloc_range(ioc, dev, dma_len); 1435 if (idx < 0) { 1436 dma_sg->dma_length = 0; 1437 return -1; 1438 } 1439 dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift) 1440 | dma_offset); 1441 n_mappings++; 1442 } 1443 1444 return n_mappings; 1445 } 1446 1447 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, 1448 int nents, enum dma_data_direction dir, 1449 struct dma_attrs *attrs); 1450 /** 1451 * sba_map_sg - map Scatter/Gather list 1452 * @dev: instance of PCI owned by the driver that's asking. 1453 * @sglist: array of buffer/length pairs 1454 * @nents: number of entries in list 1455 * @dir: R/W or both. 1456 * @attrs: optional dma attributes 1457 * 1458 * See Documentation/DMA-API-HOWTO.txt 1459 */ 1460 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist, 1461 int nents, enum dma_data_direction dir, 1462 struct dma_attrs *attrs) 1463 { 1464 struct ioc *ioc; 1465 int coalesced, filled = 0; 1466 #ifdef ASSERT_PDIR_SANITY 1467 unsigned long flags; 1468 #endif 1469 #ifdef ALLOW_IOV_BYPASS_SG 1470 struct scatterlist *sg; 1471 #endif 1472 1473 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 1474 ioc = GET_IOC(dev); 1475 ASSERT(ioc); 1476 1477 #ifdef ALLOW_IOV_BYPASS_SG 1478 ASSERT(to_pci_dev(dev)->dma_mask); 1479 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) { 1480 for_each_sg(sglist, sg, nents, filled) { 1481 sg->dma_length = sg->length; 1482 sg->dma_address = virt_to_phys(sba_sg_address(sg)); 1483 } 1484 return filled; 1485 } 1486 #endif 1487 /* Fast path single entry scatterlists. */ 1488 if (nents == 1) { 1489 sglist->dma_length = sglist->length; 1490 sglist->dma_address = sba_map_single_attrs(dev, sba_sg_address(sglist), sglist->length, dir, attrs); 1491 return 1; 1492 } 1493 1494 #ifdef ASSERT_PDIR_SANITY 1495 spin_lock_irqsave(&ioc->res_lock, flags); 1496 if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()")) 1497 { 1498 sba_dump_sg(ioc, sglist, nents); 1499 panic("Check before sba_map_sg_attrs()"); 1500 } 1501 spin_unlock_irqrestore(&ioc->res_lock, flags); 1502 #endif 1503 1504 prefetch(ioc->res_hint); 1505 1506 /* 1507 ** First coalesce the chunks and allocate I/O pdir space 1508 ** 1509 ** If this is one DMA stream, we can properly map using the 1510 ** correct virtual address associated with each DMA page. 1511 ** w/o this association, we wouldn't have coherent DMA! 1512 ** Access to the virtual address is what forces a two pass algorithm. 1513 */ 1514 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents); 1515 if (coalesced < 0) { 1516 sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs); 1517 return 0; 1518 } 1519 1520 /* 1521 ** Program the I/O Pdir 1522 ** 1523 ** map the virtual addresses to the I/O Pdir 1524 ** o dma_address will contain the pdir index 1525 ** o dma_len will contain the number of bytes to map 1526 ** o address contains the virtual address. 1527 */ 1528 filled = sba_fill_pdir(ioc, sglist, nents); 1529 1530 #ifdef ASSERT_PDIR_SANITY 1531 spin_lock_irqsave(&ioc->res_lock, flags); 1532 if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()")) 1533 { 1534 sba_dump_sg(ioc, sglist, nents); 1535 panic("Check after sba_map_sg_attrs()\n"); 1536 } 1537 spin_unlock_irqrestore(&ioc->res_lock, flags); 1538 #endif 1539 1540 ASSERT(coalesced == filled); 1541 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 1542 1543 return filled; 1544 } 1545 1546 /** 1547 * sba_unmap_sg_attrs - unmap Scatter/Gather list 1548 * @dev: instance of PCI owned by the driver that's asking. 1549 * @sglist: array of buffer/length pairs 1550 * @nents: number of entries in list 1551 * @dir: R/W or both. 1552 * @attrs: optional dma attributes 1553 * 1554 * See Documentation/DMA-API-HOWTO.txt 1555 */ 1556 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, 1557 int nents, enum dma_data_direction dir, 1558 struct dma_attrs *attrs) 1559 { 1560 #ifdef ASSERT_PDIR_SANITY 1561 struct ioc *ioc; 1562 unsigned long flags; 1563 #endif 1564 1565 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 1566 __func__, nents, sba_sg_address(sglist), sglist->length); 1567 1568 #ifdef ASSERT_PDIR_SANITY 1569 ioc = GET_IOC(dev); 1570 ASSERT(ioc); 1571 1572 spin_lock_irqsave(&ioc->res_lock, flags); 1573 sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()"); 1574 spin_unlock_irqrestore(&ioc->res_lock, flags); 1575 #endif 1576 1577 while (nents && sglist->dma_length) { 1578 1579 sba_unmap_single_attrs(dev, sglist->dma_address, 1580 sglist->dma_length, dir, attrs); 1581 sglist = sg_next(sglist); 1582 nents--; 1583 } 1584 1585 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1586 1587 #ifdef ASSERT_PDIR_SANITY 1588 spin_lock_irqsave(&ioc->res_lock, flags); 1589 sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()"); 1590 spin_unlock_irqrestore(&ioc->res_lock, flags); 1591 #endif 1592 1593 } 1594 1595 /************************************************************** 1596 * 1597 * Initialization and claim 1598 * 1599 ***************************************************************/ 1600 1601 static void 1602 ioc_iova_init(struct ioc *ioc) 1603 { 1604 int tcnfg; 1605 int agp_found = 0; 1606 struct pci_dev *device = NULL; 1607 #ifdef FULL_VALID_PDIR 1608 unsigned long index; 1609 #endif 1610 1611 /* 1612 ** Firmware programs the base and size of a "safe IOVA space" 1613 ** (one that doesn't overlap memory or LMMIO space) in the 1614 ** IBASE and IMASK registers. 1615 */ 1616 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL; 1617 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL; 1618 1619 ioc->iov_size = ~ioc->imask + 1; 1620 1621 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n", 1622 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask, 1623 ioc->iov_size >> 20); 1624 1625 switch (iovp_size) { 1626 case 4*1024: tcnfg = 0; break; 1627 case 8*1024: tcnfg = 1; break; 1628 case 16*1024: tcnfg = 2; break; 1629 case 64*1024: tcnfg = 3; break; 1630 default: 1631 panic(PFX "Unsupported IOTLB page size %ldK", 1632 iovp_size >> 10); 1633 break; 1634 } 1635 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG); 1636 1637 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE; 1638 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL, 1639 get_order(ioc->pdir_size)); 1640 if (!ioc->pdir_base) 1641 panic(PFX "Couldn't allocate I/O Page Table\n"); 1642 1643 memset(ioc->pdir_base, 0, ioc->pdir_size); 1644 1645 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__, 1646 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size); 1647 1648 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base); 1649 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE); 1650 1651 /* 1652 ** If an AGP device is present, only use half of the IOV space 1653 ** for PCI DMA. Unfortunately we can't know ahead of time 1654 ** whether GART support will actually be used, for now we 1655 ** can just key on an AGP device found in the system. 1656 ** We program the next pdir index after we stop w/ a key for 1657 ** the GART code to handshake on. 1658 */ 1659 for_each_pci_dev(device) 1660 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP); 1661 1662 if (agp_found && reserve_sba_gart) { 1663 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n", 1664 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2); 1665 ioc->pdir_size /= 2; 1666 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE; 1667 } 1668 #ifdef FULL_VALID_PDIR 1669 /* 1670 ** Check to see if the spill page has been allocated, we don't need more than 1671 ** one across multiple SBAs. 1672 */ 1673 if (!prefetch_spill_page) { 1674 char *spill_poison = "SBAIOMMU POISON"; 1675 int poison_size = 16; 1676 void *poison_addr, *addr; 1677 1678 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size)); 1679 if (!addr) 1680 panic(PFX "Couldn't allocate PDIR spill page\n"); 1681 1682 poison_addr = addr; 1683 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size) 1684 memcpy(poison_addr, spill_poison, poison_size); 1685 1686 prefetch_spill_page = virt_to_phys(addr); 1687 1688 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page); 1689 } 1690 /* 1691 ** Set all the PDIR entries valid w/ the spill page as the target 1692 */ 1693 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++) 1694 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page); 1695 #endif 1696 1697 /* Clear I/O TLB of any possible entries */ 1698 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM); 1699 READ_REG(ioc->ioc_hpa + IOC_PCOM); 1700 1701 /* Enable IOVA translation */ 1702 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE); 1703 READ_REG(ioc->ioc_hpa + IOC_IBASE); 1704 } 1705 1706 static void __init 1707 ioc_resource_init(struct ioc *ioc) 1708 { 1709 spin_lock_init(&ioc->res_lock); 1710 #if DELAYED_RESOURCE_CNT > 0 1711 spin_lock_init(&ioc->saved_lock); 1712 #endif 1713 1714 /* resource map size dictated by pdir_size */ 1715 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */ 1716 ioc->res_size >>= 3; /* convert bit count to byte count */ 1717 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1718 1719 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL, 1720 get_order(ioc->res_size)); 1721 if (!ioc->res_map) 1722 panic(PFX "Couldn't allocate resource map\n"); 1723 1724 memset(ioc->res_map, 0, ioc->res_size); 1725 /* next available IOVP - circular search */ 1726 ioc->res_hint = (unsigned long *) ioc->res_map; 1727 1728 #ifdef ASSERT_PDIR_SANITY 1729 /* Mark first bit busy - ie no IOVA 0 */ 1730 ioc->res_map[0] = 0x1; 1731 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE; 1732 #endif 1733 #ifdef FULL_VALID_PDIR 1734 /* Mark the last resource used so we don't prefetch beyond IOVA space */ 1735 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */ 1736 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF 1737 | prefetch_spill_page); 1738 #endif 1739 1740 DBG_INIT("%s() res_map %x %p\n", __func__, 1741 ioc->res_size, (void *) ioc->res_map); 1742 } 1743 1744 static void __init 1745 ioc_sac_init(struct ioc *ioc) 1746 { 1747 struct pci_dev *sac = NULL; 1748 struct pci_controller *controller = NULL; 1749 1750 /* 1751 * pci_alloc_coherent() must return a DMA address which is 1752 * SAC (single address cycle) addressable, so allocate a 1753 * pseudo-device to enforce that. 1754 */ 1755 sac = kzalloc(sizeof(*sac), GFP_KERNEL); 1756 if (!sac) 1757 panic(PFX "Couldn't allocate struct pci_dev"); 1758 1759 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 1760 if (!controller) 1761 panic(PFX "Couldn't allocate struct pci_controller"); 1762 1763 controller->iommu = ioc; 1764 sac->sysdata = controller; 1765 sac->dma_mask = 0xFFFFFFFFUL; 1766 #ifdef CONFIG_PCI 1767 sac->dev.bus = &pci_bus_type; 1768 #endif 1769 ioc->sac_only_dev = sac; 1770 } 1771 1772 static void __init 1773 ioc_zx1_init(struct ioc *ioc) 1774 { 1775 unsigned long rope_config; 1776 unsigned int i; 1777 1778 if (ioc->rev < 0x20) 1779 panic(PFX "IOC 2.0 or later required for IOMMU support\n"); 1780 1781 /* 38 bit memory controller + extra bit for range displaced by MMIO */ 1782 ioc->dma_mask = (0x1UL << 39) - 1; 1783 1784 /* 1785 ** Clear ROPE(N)_CONFIG AO bit. 1786 ** Disables "NT Ordering" (~= !"Relaxed Ordering") 1787 ** Overrides bit 1 in DMA Hint Sets. 1788 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701. 1789 */ 1790 for (i=0; i<(8*8); i+=8) { 1791 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i); 1792 rope_config &= ~IOC_ROPE_AO; 1793 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i); 1794 } 1795 } 1796 1797 typedef void (initfunc)(struct ioc *); 1798 1799 struct ioc_iommu { 1800 u32 func_id; 1801 char *name; 1802 initfunc *init; 1803 }; 1804 1805 static struct ioc_iommu ioc_iommu_info[] __initdata = { 1806 { ZX1_IOC_ID, "zx1", ioc_zx1_init }, 1807 { ZX2_IOC_ID, "zx2", NULL }, 1808 { SX1000_IOC_ID, "sx1000", NULL }, 1809 { SX2000_IOC_ID, "sx2000", NULL }, 1810 }; 1811 1812 static struct ioc * 1813 ioc_init(unsigned long hpa, void *handle) 1814 { 1815 struct ioc *ioc; 1816 struct ioc_iommu *info; 1817 1818 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 1819 if (!ioc) 1820 return NULL; 1821 1822 ioc->next = ioc_list; 1823 ioc_list = ioc; 1824 1825 ioc->handle = handle; 1826 ioc->ioc_hpa = ioremap(hpa, 0x1000); 1827 1828 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID); 1829 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL; 1830 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */ 1831 1832 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) { 1833 if (ioc->func_id == info->func_id) { 1834 ioc->name = info->name; 1835 if (info->init) 1836 (info->init)(ioc); 1837 } 1838 } 1839 1840 iovp_size = (1 << iovp_shift); 1841 iovp_mask = ~(iovp_size - 1); 1842 1843 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__, 1844 PAGE_SIZE >> 10, iovp_size >> 10); 1845 1846 if (!ioc->name) { 1847 ioc->name = kmalloc(24, GFP_KERNEL); 1848 if (ioc->name) 1849 sprintf((char *) ioc->name, "Unknown (%04x:%04x)", 1850 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF); 1851 else 1852 ioc->name = "Unknown"; 1853 } 1854 1855 ioc_iova_init(ioc); 1856 ioc_resource_init(ioc); 1857 ioc_sac_init(ioc); 1858 1859 if ((long) ~iovp_mask > (long) ia64_max_iommu_merge_mask) 1860 ia64_max_iommu_merge_mask = ~iovp_mask; 1861 1862 printk(KERN_INFO PFX 1863 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n", 1864 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF, 1865 hpa, ioc->iov_size >> 20, ioc->ibase); 1866 1867 return ioc; 1868 } 1869 1870 1871 1872 /************************************************************************** 1873 ** 1874 ** SBA initialization code (HW and SW) 1875 ** 1876 ** o identify SBA chip itself 1877 ** o FIXME: initialize DMA hints for reasonable defaults 1878 ** 1879 **************************************************************************/ 1880 1881 #ifdef CONFIG_PROC_FS 1882 static void * 1883 ioc_start(struct seq_file *s, loff_t *pos) 1884 { 1885 struct ioc *ioc; 1886 loff_t n = *pos; 1887 1888 for (ioc = ioc_list; ioc; ioc = ioc->next) 1889 if (!n--) 1890 return ioc; 1891 1892 return NULL; 1893 } 1894 1895 static void * 1896 ioc_next(struct seq_file *s, void *v, loff_t *pos) 1897 { 1898 struct ioc *ioc = v; 1899 1900 ++*pos; 1901 return ioc->next; 1902 } 1903 1904 static void 1905 ioc_stop(struct seq_file *s, void *v) 1906 { 1907 } 1908 1909 static int 1910 ioc_show(struct seq_file *s, void *v) 1911 { 1912 struct ioc *ioc = v; 1913 unsigned long *res_ptr = (unsigned long *)ioc->res_map; 1914 int i, used = 0; 1915 1916 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n", 1917 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF)); 1918 #ifdef CONFIG_NUMA 1919 if (ioc->node != NUMA_NO_NODE) 1920 seq_printf(s, "NUMA node : %d\n", ioc->node); 1921 #endif 1922 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024)); 1923 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024); 1924 1925 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr) 1926 used += hweight64(*res_ptr); 1927 1928 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3); 1929 seq_printf(s, "PDIR used : %d entries\n", used); 1930 1931 #ifdef PDIR_SEARCH_TIMING 1932 { 1933 unsigned long i = 0, avg = 0, min, max; 1934 min = max = ioc->avg_search[0]; 1935 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) { 1936 avg += ioc->avg_search[i]; 1937 if (ioc->avg_search[i] > max) max = ioc->avg_search[i]; 1938 if (ioc->avg_search[i] < min) min = ioc->avg_search[i]; 1939 } 1940 avg /= SBA_SEARCH_SAMPLE; 1941 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n", 1942 min, avg, max); 1943 } 1944 #endif 1945 #ifndef ALLOW_IOV_BYPASS 1946 seq_printf(s, "IOVA bypass disabled\n"); 1947 #endif 1948 return 0; 1949 } 1950 1951 static const struct seq_operations ioc_seq_ops = { 1952 .start = ioc_start, 1953 .next = ioc_next, 1954 .stop = ioc_stop, 1955 .show = ioc_show 1956 }; 1957 1958 static int 1959 ioc_open(struct inode *inode, struct file *file) 1960 { 1961 return seq_open(file, &ioc_seq_ops); 1962 } 1963 1964 static const struct file_operations ioc_fops = { 1965 .open = ioc_open, 1966 .read = seq_read, 1967 .llseek = seq_lseek, 1968 .release = seq_release 1969 }; 1970 1971 static void __init 1972 ioc_proc_init(void) 1973 { 1974 struct proc_dir_entry *dir; 1975 1976 dir = proc_mkdir("bus/mckinley", NULL); 1977 if (!dir) 1978 return; 1979 1980 proc_create(ioc_list->name, 0, dir, &ioc_fops); 1981 } 1982 #endif 1983 1984 static void 1985 sba_connect_bus(struct pci_bus *bus) 1986 { 1987 acpi_handle handle, parent; 1988 acpi_status status; 1989 struct ioc *ioc; 1990 1991 if (!PCI_CONTROLLER(bus)) 1992 panic(PFX "no sysdata on bus %d!\n", bus->number); 1993 1994 if (PCI_CONTROLLER(bus)->iommu) 1995 return; 1996 1997 handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion); 1998 if (!handle) 1999 return; 2000 2001 /* 2002 * The IOC scope encloses PCI root bridges in the ACPI 2003 * namespace, so work our way out until we find an IOC we 2004 * claimed previously. 2005 */ 2006 do { 2007 for (ioc = ioc_list; ioc; ioc = ioc->next) 2008 if (ioc->handle == handle) { 2009 PCI_CONTROLLER(bus)->iommu = ioc; 2010 return; 2011 } 2012 2013 status = acpi_get_parent(handle, &parent); 2014 handle = parent; 2015 } while (ACPI_SUCCESS(status)); 2016 2017 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number); 2018 } 2019 2020 static void __init 2021 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle) 2022 { 2023 #ifdef CONFIG_NUMA 2024 unsigned int node; 2025 2026 node = acpi_get_node(handle); 2027 if (node != NUMA_NO_NODE && !node_online(node)) 2028 node = NUMA_NO_NODE; 2029 2030 ioc->node = node; 2031 #endif 2032 } 2033 2034 static int 2035 acpi_sba_ioc_add(struct acpi_device *device, 2036 const struct acpi_device_id *not_used) 2037 { 2038 struct ioc *ioc; 2039 acpi_status status; 2040 u64 hpa, length; 2041 struct acpi_device_info *adi; 2042 2043 status = hp_acpi_csr_space(device->handle, &hpa, &length); 2044 if (ACPI_FAILURE(status)) 2045 return 1; 2046 2047 status = acpi_get_object_info(device->handle, &adi); 2048 if (ACPI_FAILURE(status)) 2049 return 1; 2050 2051 /* 2052 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI 2053 * root bridges, and its CSR space includes the IOC function. 2054 */ 2055 if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) { 2056 hpa += ZX1_IOC_OFFSET; 2057 /* zx1 based systems default to kernel page size iommu pages */ 2058 if (!iovp_shift) 2059 iovp_shift = min(PAGE_SHIFT, 16); 2060 } 2061 kfree(adi); 2062 2063 /* 2064 * default anything not caught above or specified on cmdline to 4k 2065 * iommu page size 2066 */ 2067 if (!iovp_shift) 2068 iovp_shift = 12; 2069 2070 ioc = ioc_init(hpa, device->handle); 2071 if (!ioc) 2072 return 1; 2073 2074 /* setup NUMA node association */ 2075 sba_map_ioc_to_node(ioc, device->handle); 2076 return 0; 2077 } 2078 2079 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = { 2080 {"HWP0001", 0}, 2081 {"HWP0004", 0}, 2082 {"", 0}, 2083 }; 2084 static struct acpi_scan_handler acpi_sba_ioc_handler = { 2085 .ids = hp_ioc_iommu_device_ids, 2086 .attach = acpi_sba_ioc_add, 2087 }; 2088 2089 static int __init acpi_sba_ioc_init_acpi(void) 2090 { 2091 return acpi_scan_add_handler(&acpi_sba_ioc_handler); 2092 } 2093 /* This has to run before acpi_scan_init(). */ 2094 arch_initcall(acpi_sba_ioc_init_acpi); 2095 2096 extern struct dma_map_ops swiotlb_dma_ops; 2097 2098 static int __init 2099 sba_init(void) 2100 { 2101 if (!ia64_platform_is("hpzx1") && !ia64_platform_is("hpzx1_swiotlb")) 2102 return 0; 2103 2104 #if defined(CONFIG_IA64_GENERIC) 2105 /* If we are booting a kdump kernel, the sba_iommu will 2106 * cause devices that were not shutdown properly to MCA 2107 * as soon as they are turned back on. Our only option for 2108 * a successful kdump kernel boot is to use the swiotlb. 2109 */ 2110 if (is_kdump_kernel()) { 2111 dma_ops = &swiotlb_dma_ops; 2112 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0) 2113 panic("Unable to initialize software I/O TLB:" 2114 " Try machvec=dig boot option"); 2115 machvec_init("dig"); 2116 return 0; 2117 } 2118 #endif 2119 2120 /* 2121 * ioc_list should be populated by the acpi_sba_ioc_handler's .attach() 2122 * routine, but that only happens if acpi_scan_init() has already run. 2123 */ 2124 if (!ioc_list) { 2125 #ifdef CONFIG_IA64_GENERIC 2126 /* 2127 * If we didn't find something sba_iommu can claim, we 2128 * need to setup the swiotlb and switch to the dig machvec. 2129 */ 2130 dma_ops = &swiotlb_dma_ops; 2131 if (swiotlb_late_init_with_default_size(64 * (1<<20)) != 0) 2132 panic("Unable to find SBA IOMMU or initialize " 2133 "software I/O TLB: Try machvec=dig boot option"); 2134 machvec_init("dig"); 2135 #else 2136 panic("Unable to find SBA IOMMU: Try a generic or DIG kernel"); 2137 #endif 2138 return 0; 2139 } 2140 2141 #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_HP_ZX1_SWIOTLB) 2142 /* 2143 * hpzx1_swiotlb needs to have a fairly small swiotlb bounce 2144 * buffer setup to support devices with smaller DMA masks than 2145 * sba_iommu can handle. 2146 */ 2147 if (ia64_platform_is("hpzx1_swiotlb")) { 2148 extern void hwsw_init(void); 2149 2150 hwsw_init(); 2151 } 2152 #endif 2153 2154 #ifdef CONFIG_PCI 2155 { 2156 struct pci_bus *b = NULL; 2157 while ((b = pci_find_next_bus(b)) != NULL) 2158 sba_connect_bus(b); 2159 } 2160 #endif 2161 2162 #ifdef CONFIG_PROC_FS 2163 ioc_proc_init(); 2164 #endif 2165 return 0; 2166 } 2167 2168 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */ 2169 2170 static int __init 2171 nosbagart(char *str) 2172 { 2173 reserve_sba_gart = 0; 2174 return 1; 2175 } 2176 2177 static int sba_dma_supported (struct device *dev, u64 mask) 2178 { 2179 /* make sure it's at least 32bit capable */ 2180 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL); 2181 } 2182 2183 static int sba_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 2184 { 2185 return 0; 2186 } 2187 2188 __setup("nosbagart", nosbagart); 2189 2190 static int __init 2191 sba_page_override(char *str) 2192 { 2193 unsigned long page_size; 2194 2195 page_size = memparse(str, &str); 2196 switch (page_size) { 2197 case 4096: 2198 case 8192: 2199 case 16384: 2200 case 65536: 2201 iovp_shift = ffs(page_size) - 1; 2202 break; 2203 default: 2204 printk("%s: unknown/unsupported iommu page size %ld\n", 2205 __func__, page_size); 2206 } 2207 2208 return 1; 2209 } 2210 2211 __setup("sbapagesize=",sba_page_override); 2212 2213 struct dma_map_ops sba_dma_ops = { 2214 .alloc = sba_alloc_coherent, 2215 .free = sba_free_coherent, 2216 .map_page = sba_map_page, 2217 .unmap_page = sba_unmap_page, 2218 .map_sg = sba_map_sg_attrs, 2219 .unmap_sg = sba_unmap_sg_attrs, 2220 .sync_single_for_cpu = machvec_dma_sync_single, 2221 .sync_sg_for_cpu = machvec_dma_sync_sg, 2222 .sync_single_for_device = machvec_dma_sync_single, 2223 .sync_sg_for_device = machvec_dma_sync_sg, 2224 .dma_supported = sba_dma_supported, 2225 .mapping_error = sba_dma_mapping_error, 2226 }; 2227 2228 void sba_dma_init(void) 2229 { 2230 dma_ops = &sba_dma_ops; 2231 } 2232