xref: /openbmc/linux/arch/ia64/hp/common/sba_iommu.c (revision 97e6ea6d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 **  IA64 System Bus Adapter (SBA) I/O MMU manager
4 **
5 **	(c) Copyright 2002-2005 Alex Williamson
6 **	(c) Copyright 2002-2003 Grant Grundler
7 **	(c) Copyright 2002-2005 Hewlett-Packard Company
8 **
9 **	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
10 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
11 **
12 **
13 **
14 ** This module initializes the IOC (I/O Controller) found on HP
15 ** McKinley machines and their successors.
16 **
17 */
18 
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/acpi.h>
31 #include <linux/efi.h>
32 #include <linux/nodemask.h>
33 #include <linux/bitops.h>         /* hweight64() */
34 #include <linux/crash_dump.h>
35 #include <linux/iommu-helper.h>
36 #include <linux/dma-map-ops.h>
37 #include <linux/prefetch.h>
38 #include <linux/swiotlb.h>
39 
40 #include <asm/delay.h>		/* ia64_get_itc() */
41 #include <asm/io.h>
42 #include <asm/page.h>		/* PAGE_OFFSET */
43 #include <asm/dma.h>
44 
45 #include <asm/acpi-ext.h>
46 
47 #define PFX "IOC: "
48 
49 /*
50 ** Enabling timing search of the pdir resource map.  Output in /proc.
51 ** Disabled by default to optimize performance.
52 */
53 #undef PDIR_SEARCH_TIMING
54 
55 /*
56 ** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
57 ** not defined, all DMA will be 32bit and go through the TLB.
58 ** There's potentially a conflict in the bio merge code with us
59 ** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
60 ** appears to give more performance than bio-level virtual merging, we'll
61 ** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
62 ** completely restrict DMA to the IOMMU.
63 */
64 #define ALLOW_IOV_BYPASS
65 
66 /*
67 ** This option specifically allows/disallows bypassing scatterlists with
68 ** multiple entries.  Coalescing these entries can allow better DMA streaming
69 ** and in some cases shows better performance than entirely bypassing the
70 ** IOMMU.  Performance increase on the order of 1-2% sequential output/input
71 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
72 */
73 #undef ALLOW_IOV_BYPASS_SG
74 
75 /*
76 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
77 ** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
78 ** disconnect on 4k boundaries and prevent such issues.  If the device is
79 ** particularly aggressive, this option will keep the entire pdir valid such
80 ** that prefetching will hit a valid address.  This could severely impact
81 ** error containment, and is therefore off by default.  The page that is
82 ** used for spill-over is poisoned, so that should help debugging somewhat.
83 */
84 #undef FULL_VALID_PDIR
85 
86 #define ENABLE_MARK_CLEAN
87 
88 /*
89 ** The number of debug flags is a clue - this code is fragile.  NOTE: since
90 ** tightening the use of res_lock the resource bitmap and actual pdir are no
91 ** longer guaranteed to stay in sync.  The sanity checking code isn't going to
92 ** like that.
93 */
94 #undef DEBUG_SBA_INIT
95 #undef DEBUG_SBA_RUN
96 #undef DEBUG_SBA_RUN_SG
97 #undef DEBUG_SBA_RESOURCE
98 #undef ASSERT_PDIR_SANITY
99 #undef DEBUG_LARGE_SG_ENTRIES
100 #undef DEBUG_BYPASS
101 
102 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
103 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
104 #endif
105 
106 #define SBA_INLINE	__inline__
107 /* #define SBA_INLINE */
108 
109 #ifdef DEBUG_SBA_INIT
110 #define DBG_INIT(x...)	printk(x)
111 #else
112 #define DBG_INIT(x...)
113 #endif
114 
115 #ifdef DEBUG_SBA_RUN
116 #define DBG_RUN(x...)	printk(x)
117 #else
118 #define DBG_RUN(x...)
119 #endif
120 
121 #ifdef DEBUG_SBA_RUN_SG
122 #define DBG_RUN_SG(x...)	printk(x)
123 #else
124 #define DBG_RUN_SG(x...)
125 #endif
126 
127 
128 #ifdef DEBUG_SBA_RESOURCE
129 #define DBG_RES(x...)	printk(x)
130 #else
131 #define DBG_RES(x...)
132 #endif
133 
134 #ifdef DEBUG_BYPASS
135 #define DBG_BYPASS(x...)	printk(x)
136 #else
137 #define DBG_BYPASS(x...)
138 #endif
139 
140 #ifdef ASSERT_PDIR_SANITY
141 #define ASSERT(expr) \
142         if(!(expr)) { \
143                 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
144                 panic(#expr); \
145         }
146 #else
147 #define ASSERT(expr)
148 #endif
149 
150 /*
151 ** The number of pdir entries to "free" before issuing
152 ** a read to PCOM register to flush out PCOM writes.
153 ** Interacts with allocation granularity (ie 4 or 8 entries
154 ** allocated and free'd/purged at a time might make this
155 ** less interesting).
156 */
157 #define DELAYED_RESOURCE_CNT	64
158 
159 #define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
160 
161 #define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
162 #define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
163 #define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
164 #define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
165 #define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
166 
167 #define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
168 
169 #define IOC_FUNC_ID	0x000
170 #define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
171 #define IOC_IBASE	0x300	/* IO TLB */
172 #define IOC_IMASK	0x308
173 #define IOC_PCOM	0x310
174 #define IOC_TCNFG	0x318
175 #define IOC_PDIR_BASE	0x320
176 
177 #define IOC_ROPE0_CFG	0x500
178 #define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
179 
180 
181 /* AGP GART driver looks for this */
182 #define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
183 
184 /*
185 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
186 **
187 ** Some IOCs (sx1000) can run at the above pages sizes, but are
188 ** really only supported using the IOC at a 4k page size.
189 **
190 ** iovp_size could only be greater than PAGE_SIZE if we are
191 ** confident the drivers really only touch the next physical
192 ** page iff that driver instance owns it.
193 */
194 static unsigned long iovp_size;
195 static unsigned long iovp_shift;
196 static unsigned long iovp_mask;
197 
198 struct ioc {
199 	void __iomem	*ioc_hpa;	/* I/O MMU base address */
200 	char		*res_map;	/* resource map, bit == pdir entry */
201 	u64		*pdir_base;	/* physical base address */
202 	unsigned long	ibase;		/* pdir IOV Space base */
203 	unsigned long	imask;		/* pdir IOV Space mask */
204 
205 	unsigned long	*res_hint;	/* next avail IOVP - circular search */
206 	unsigned long	dma_mask;
207 	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
208 					/* clearing pdir to prevent races with allocations. */
209 	unsigned int	res_bitshift;	/* from the RIGHT! */
210 	unsigned int	res_size;	/* size of resource map in bytes */
211 #ifdef CONFIG_NUMA
212 	unsigned int	node;		/* node where this IOC lives */
213 #endif
214 #if DELAYED_RESOURCE_CNT > 0
215 	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
216 					/* than res_lock for bigger systems. */
217 	int		saved_cnt;
218 	struct sba_dma_pair {
219 		dma_addr_t	iova;
220 		size_t		size;
221 	} saved[DELAYED_RESOURCE_CNT];
222 #endif
223 
224 #ifdef PDIR_SEARCH_TIMING
225 #define SBA_SEARCH_SAMPLE	0x100
226 	unsigned long avg_search[SBA_SEARCH_SAMPLE];
227 	unsigned long avg_idx;	/* current index into avg_search */
228 #endif
229 
230 	/* Stuff we don't need in performance path */
231 	struct ioc	*next;		/* list of IOC's in system */
232 	acpi_handle	handle;		/* for multiple IOC's */
233 	const char 	*name;
234 	unsigned int	func_id;
235 	unsigned int	rev;		/* HW revision of chip */
236 	u32		iov_size;
237 	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
238 	struct pci_dev	*sac_only_dev;
239 };
240 
241 static struct ioc *ioc_list, *ioc_found;
242 static int reserve_sba_gart = 1;
243 
244 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
245 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
246 
247 #define sba_sg_address(sg)	sg_virt((sg))
248 
249 #ifdef FULL_VALID_PDIR
250 static u64 prefetch_spill_page;
251 #endif
252 
253 #define GET_IOC(dev)	((dev_is_pci(dev))						\
254 			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
255 
256 /*
257 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
258 ** (or rather not merge) DMAs into manageable chunks.
259 ** On parisc, this is more of the software/tuning constraint
260 ** rather than the HW. I/O MMU allocation algorithms can be
261 ** faster with smaller sizes (to some degree).
262 */
263 #define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
264 
265 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
266 
267 /************************************
268 ** SBA register read and write support
269 **
270 ** BE WARNED: register writes are posted.
271 **  (ie follow writes which must reach HW with a read)
272 **
273 */
274 #define READ_REG(addr)       __raw_readq(addr)
275 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
276 
277 #ifdef DEBUG_SBA_INIT
278 
279 /**
280  * sba_dump_tlb - debugging only - print IOMMU operating parameters
281  * @hpa: base address of the IOMMU
282  *
283  * Print the size/location of the IO MMU PDIR.
284  */
285 static void
286 sba_dump_tlb(char *hpa)
287 {
288 	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
289 	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
290 	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
291 	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
292 	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
293 	DBG_INIT("\n");
294 }
295 #endif
296 
297 
298 #ifdef ASSERT_PDIR_SANITY
299 
300 /**
301  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
302  * @ioc: IO MMU structure which owns the pdir we are interested in.
303  * @msg: text to print ont the output line.
304  * @pide: pdir index.
305  *
306  * Print one entry of the IO MMU PDIR in human readable form.
307  */
308 static void
309 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
310 {
311 	/* start printing from lowest pde in rval */
312 	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
313 	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
314 	uint rcnt;
315 
316 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
317 		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
318 
319 	rcnt = 0;
320 	while (rcnt < BITS_PER_LONG) {
321 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
322 		       (rcnt == (pide & (BITS_PER_LONG - 1)))
323 		       ? "    -->" : "       ",
324 		       rcnt, ptr, (unsigned long long) *ptr );
325 		rcnt++;
326 		ptr++;
327 	}
328 	printk(KERN_DEBUG "%s", msg);
329 }
330 
331 
332 /**
333  * sba_check_pdir - debugging only - consistency checker
334  * @ioc: IO MMU structure which owns the pdir we are interested in.
335  * @msg: text to print ont the output line.
336  *
337  * Verify the resource map and pdir state is consistent
338  */
339 static int
340 sba_check_pdir(struct ioc *ioc, char *msg)
341 {
342 	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
343 	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
344 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
345 	uint pide = 0;
346 
347 	while (rptr < rptr_end) {
348 		u64 rval;
349 		int rcnt; /* number of bits we might check */
350 
351 		rval = *rptr;
352 		rcnt = 64;
353 
354 		while (rcnt) {
355 			/* Get last byte and highest bit from that */
356 			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
357 			if ((rval & 0x1) ^ pde)
358 			{
359 				/*
360 				** BUMMER!  -- res_map != pdir --
361 				** Dump rval and matching pdir entries
362 				*/
363 				sba_dump_pdir_entry(ioc, msg, pide);
364 				return(1);
365 			}
366 			rcnt--;
367 			rval >>= 1;	/* try the next bit */
368 			pptr++;
369 			pide++;
370 		}
371 		rptr++;	/* look at next word of res_map */
372 	}
373 	/* It'd be nice if we always got here :^) */
374 	return 0;
375 }
376 
377 
378 /**
379  * sba_dump_sg - debugging only - print Scatter-Gather list
380  * @ioc: IO MMU structure which owns the pdir we are interested in.
381  * @startsg: head of the SG list
382  * @nents: number of entries in SG list
383  *
384  * print the SG list so we can verify it's correct by hand.
385  */
386 static void
387 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
388 {
389 	while (nents-- > 0) {
390 		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
391 		       startsg->dma_address, startsg->dma_length,
392 		       sba_sg_address(startsg));
393 		startsg = sg_next(startsg);
394 	}
395 }
396 
397 static void
398 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
399 {
400 	struct scatterlist *the_sg = startsg;
401 	int the_nents = nents;
402 
403 	while (the_nents-- > 0) {
404 		if (sba_sg_address(the_sg) == 0x0UL)
405 			sba_dump_sg(NULL, startsg, nents);
406 		the_sg = sg_next(the_sg);
407 	}
408 }
409 
410 #endif /* ASSERT_PDIR_SANITY */
411 
412 
413 
414 
415 /**************************************************************
416 *
417 *   I/O Pdir Resource Management
418 *
419 *   Bits set in the resource map are in use.
420 *   Each bit can represent a number of pages.
421 *   LSbs represent lower addresses (IOVA's).
422 *
423 ***************************************************************/
424 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
425 
426 /* Convert from IOVP to IOVA and vice versa. */
427 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
428 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
429 
430 #define PDIR_ENTRY_SIZE	sizeof(u64)
431 
432 #define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
433 
434 #define RESMAP_MASK(n)    ~(~0UL << (n))
435 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
436 
437 
438 /**
439  * For most cases the normal get_order is sufficient, however it limits us
440  * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
441  * It only incurs about 1 clock cycle to use this one with the static variable
442  * and makes the code more intuitive.
443  */
444 static SBA_INLINE int
445 get_iovp_order (unsigned long size)
446 {
447 	long double d = size - 1;
448 	long order;
449 
450 	order = ia64_getf_exp(d);
451 	order = order - iovp_shift - 0xffff + 1;
452 	if (order < 0)
453 		order = 0;
454 	return order;
455 }
456 
457 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
458 				 unsigned int bitshiftcnt)
459 {
460 	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
461 		+ bitshiftcnt;
462 }
463 
464 /**
465  * sba_search_bitmap - find free space in IO PDIR resource bitmap
466  * @ioc: IO MMU structure which owns the pdir we are interested in.
467  * @bits_wanted: number of entries we need.
468  * @use_hint: use res_hint to indicate where to start looking
469  *
470  * Find consecutive free bits in resource bitmap.
471  * Each bit represents one entry in the IO Pdir.
472  * Cool perf optimization: search for log2(size) bits at a time.
473  */
474 static SBA_INLINE unsigned long
475 sba_search_bitmap(struct ioc *ioc, struct device *dev,
476 		  unsigned long bits_wanted, int use_hint)
477 {
478 	unsigned long *res_ptr;
479 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
480 	unsigned long flags, pide = ~0UL, tpide;
481 	unsigned long boundary_size;
482 	unsigned long shift;
483 	int ret;
484 
485 	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
486 	ASSERT(res_ptr < res_end);
487 
488 	boundary_size = dma_get_seg_boundary_nr_pages(dev, iovp_shift);
489 
490 	BUG_ON(ioc->ibase & ~iovp_mask);
491 	shift = ioc->ibase >> iovp_shift;
492 
493 	spin_lock_irqsave(&ioc->res_lock, flags);
494 
495 	/* Allow caller to force a search through the entire resource space */
496 	if (likely(use_hint)) {
497 		res_ptr = ioc->res_hint;
498 	} else {
499 		res_ptr = (ulong *)ioc->res_map;
500 		ioc->res_bitshift = 0;
501 	}
502 
503 	/*
504 	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
505 	 * if a TLB entry is purged while in use.  sba_mark_invalid()
506 	 * purges IOTLB entries in power-of-two sizes, so we also
507 	 * allocate IOVA space in power-of-two sizes.
508 	 */
509 	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
510 
511 	if (likely(bits_wanted == 1)) {
512 		unsigned int bitshiftcnt;
513 		for(; res_ptr < res_end ; res_ptr++) {
514 			if (likely(*res_ptr != ~0UL)) {
515 				bitshiftcnt = ffz(*res_ptr);
516 				*res_ptr |= (1UL << bitshiftcnt);
517 				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
518 				ioc->res_bitshift = bitshiftcnt + bits_wanted;
519 				goto found_it;
520 			}
521 		}
522 		goto not_found;
523 
524 	}
525 
526 	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
527 		/*
528 		** Search the resource bit map on well-aligned values.
529 		** "o" is the alignment.
530 		** We need the alignment to invalidate I/O TLB using
531 		** SBA HW features in the unmap path.
532 		*/
533 		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
534 		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
535 		unsigned long mask, base_mask;
536 
537 		base_mask = RESMAP_MASK(bits_wanted);
538 		mask = base_mask << bitshiftcnt;
539 
540 		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
541 		for(; res_ptr < res_end ; res_ptr++)
542 		{
543 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
544 			ASSERT(0 != mask);
545 			for (; mask ; mask <<= o, bitshiftcnt += o) {
546 				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
547 				ret = iommu_is_span_boundary(tpide, bits_wanted,
548 							     shift,
549 							     boundary_size);
550 				if ((0 == ((*res_ptr) & mask)) && !ret) {
551 					*res_ptr |= mask;     /* mark resources busy! */
552 					pide = tpide;
553 					ioc->res_bitshift = bitshiftcnt + bits_wanted;
554 					goto found_it;
555 				}
556 			}
557 
558 			bitshiftcnt = 0;
559 			mask = base_mask;
560 
561 		}
562 
563 	} else {
564 		int qwords, bits, i;
565 		unsigned long *end;
566 
567 		qwords = bits_wanted >> 6; /* /64 */
568 		bits = bits_wanted - (qwords * BITS_PER_LONG);
569 
570 		end = res_end - qwords;
571 
572 		for (; res_ptr < end; res_ptr++) {
573 			tpide = ptr_to_pide(ioc, res_ptr, 0);
574 			ret = iommu_is_span_boundary(tpide, bits_wanted,
575 						     shift, boundary_size);
576 			if (ret)
577 				goto next_ptr;
578 			for (i = 0 ; i < qwords ; i++) {
579 				if (res_ptr[i] != 0)
580 					goto next_ptr;
581 			}
582 			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
583 				continue;
584 
585 			/* Found it, mark it */
586 			for (i = 0 ; i < qwords ; i++)
587 				res_ptr[i] = ~0UL;
588 			res_ptr[i] |= RESMAP_MASK(bits);
589 
590 			pide = tpide;
591 			res_ptr += qwords;
592 			ioc->res_bitshift = bits;
593 			goto found_it;
594 next_ptr:
595 			;
596 		}
597 	}
598 
599 not_found:
600 	prefetch(ioc->res_map);
601 	ioc->res_hint = (unsigned long *) ioc->res_map;
602 	ioc->res_bitshift = 0;
603 	spin_unlock_irqrestore(&ioc->res_lock, flags);
604 	return (pide);
605 
606 found_it:
607 	ioc->res_hint = res_ptr;
608 	spin_unlock_irqrestore(&ioc->res_lock, flags);
609 	return (pide);
610 }
611 
612 
613 /**
614  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
615  * @ioc: IO MMU structure which owns the pdir we are interested in.
616  * @size: number of bytes to create a mapping for
617  *
618  * Given a size, find consecutive unmarked and then mark those bits in the
619  * resource bit map.
620  */
621 static int
622 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
623 {
624 	unsigned int pages_needed = size >> iovp_shift;
625 #ifdef PDIR_SEARCH_TIMING
626 	unsigned long itc_start;
627 #endif
628 	unsigned long pide;
629 
630 	ASSERT(pages_needed);
631 	ASSERT(0 == (size & ~iovp_mask));
632 
633 #ifdef PDIR_SEARCH_TIMING
634 	itc_start = ia64_get_itc();
635 #endif
636 	/*
637 	** "seek and ye shall find"...praying never hurts either...
638 	*/
639 	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
640 	if (unlikely(pide >= (ioc->res_size << 3))) {
641 		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
642 		if (unlikely(pide >= (ioc->res_size << 3))) {
643 #if DELAYED_RESOURCE_CNT > 0
644 			unsigned long flags;
645 
646 			/*
647 			** With delayed resource freeing, we can give this one more shot.  We're
648 			** getting close to being in trouble here, so do what we can to make this
649 			** one count.
650 			*/
651 			spin_lock_irqsave(&ioc->saved_lock, flags);
652 			if (ioc->saved_cnt > 0) {
653 				struct sba_dma_pair *d;
654 				int cnt = ioc->saved_cnt;
655 
656 				d = &(ioc->saved[ioc->saved_cnt - 1]);
657 
658 				spin_lock(&ioc->res_lock);
659 				while (cnt--) {
660 					sba_mark_invalid(ioc, d->iova, d->size);
661 					sba_free_range(ioc, d->iova, d->size);
662 					d--;
663 				}
664 				ioc->saved_cnt = 0;
665 				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
666 				spin_unlock(&ioc->res_lock);
667 			}
668 			spin_unlock_irqrestore(&ioc->saved_lock, flags);
669 
670 			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
671 			if (unlikely(pide >= (ioc->res_size << 3))) {
672 				printk(KERN_WARNING "%s: I/O MMU @ %p is"
673 				       "out of mapping resources, %u %u %lx\n",
674 				       __func__, ioc->ioc_hpa, ioc->res_size,
675 				       pages_needed, dma_get_seg_boundary(dev));
676 				return -1;
677 			}
678 #else
679 			printk(KERN_WARNING "%s: I/O MMU @ %p is"
680 			       "out of mapping resources, %u %u %lx\n",
681 			       __func__, ioc->ioc_hpa, ioc->res_size,
682 			       pages_needed, dma_get_seg_boundary(dev));
683 			return -1;
684 #endif
685 		}
686 	}
687 
688 #ifdef PDIR_SEARCH_TIMING
689 	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
690 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
691 #endif
692 
693 	prefetchw(&(ioc->pdir_base[pide]));
694 
695 #ifdef ASSERT_PDIR_SANITY
696 	/* verify the first enable bit is clear */
697 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
698 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
699 	}
700 #endif
701 
702 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
703 		__func__, size, pages_needed, pide,
704 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
705 		ioc->res_bitshift );
706 
707 	return (pide);
708 }
709 
710 
711 /**
712  * sba_free_range - unmark bits in IO PDIR resource bitmap
713  * @ioc: IO MMU structure which owns the pdir we are interested in.
714  * @iova: IO virtual address which was previously allocated.
715  * @size: number of bytes to create a mapping for
716  *
717  * clear bits in the ioc's resource map
718  */
719 static SBA_INLINE void
720 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
721 {
722 	unsigned long iovp = SBA_IOVP(ioc, iova);
723 	unsigned int pide = PDIR_INDEX(iovp);
724 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
725 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
726 	int bits_not_wanted = size >> iovp_shift;
727 	unsigned long m;
728 
729 	/* Round up to power-of-two size: see AR2305 note above */
730 	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
731 	for (; bits_not_wanted > 0 ; res_ptr++) {
732 
733 		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
734 
735 			/* these mappings start 64bit aligned */
736 			*res_ptr = 0UL;
737 			bits_not_wanted -= BITS_PER_LONG;
738 			pide += BITS_PER_LONG;
739 
740 		} else {
741 
742 			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
743 			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
744 			bits_not_wanted = 0;
745 
746 			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
747 			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
748 
749 			ASSERT(m != 0);
750 			ASSERT(bits_not_wanted);
751 			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
752 			*res_ptr &= ~m;
753 		}
754 	}
755 }
756 
757 
758 /**************************************************************
759 *
760 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
761 *
762 ***************************************************************/
763 
764 /**
765  * sba_io_pdir_entry - fill in one IO PDIR entry
766  * @pdir_ptr:  pointer to IO PDIR entry
767  * @vba: Virtual CPU address of buffer to map
768  *
769  * SBA Mapping Routine
770  *
771  * Given a virtual address (vba, arg1) sba_io_pdir_entry()
772  * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
773  * Each IO Pdir entry consists of 8 bytes as shown below
774  * (LSB == bit 0):
775  *
776  *  63                    40                                 11    7        0
777  * +-+---------------------+----------------------------------+----+--------+
778  * |V|        U            |            PPN[39:12]            | U  |   FF   |
779  * +-+---------------------+----------------------------------+----+--------+
780  *
781  *  V  == Valid Bit
782  *  U  == Unused
783  * PPN == Physical Page Number
784  *
785  * The physical address fields are filled with the results of virt_to_phys()
786  * on the vba.
787  */
788 
789 #if 1
790 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
791 						      | 0x8000000000000000ULL)
792 #else
793 void SBA_INLINE
794 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
795 {
796 	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
797 }
798 #endif
799 
800 #ifdef ENABLE_MARK_CLEAN
801 /**
802  * Since DMA is i-cache coherent, any (complete) pages that were written via
803  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
804  * flush them when they get mapped into an executable vm-area.
805  */
806 static void
807 mark_clean (void *addr, size_t size)
808 {
809 	unsigned long pg_addr, end;
810 
811 	pg_addr = PAGE_ALIGN((unsigned long) addr);
812 	end = (unsigned long) addr + size;
813 	while (pg_addr + PAGE_SIZE <= end) {
814 		struct page *page = virt_to_page((void *)pg_addr);
815 		set_bit(PG_arch_1, &page->flags);
816 		pg_addr += PAGE_SIZE;
817 	}
818 }
819 #endif
820 
821 /**
822  * sba_mark_invalid - invalidate one or more IO PDIR entries
823  * @ioc: IO MMU structure which owns the pdir we are interested in.
824  * @iova:  IO Virtual Address mapped earlier
825  * @byte_cnt:  number of bytes this mapping covers.
826  *
827  * Marking the IO PDIR entry(ies) as Invalid and invalidate
828  * corresponding IO TLB entry. The PCOM (Purge Command Register)
829  * is to purge stale entries in the IO TLB when unmapping entries.
830  *
831  * The PCOM register supports purging of multiple pages, with a minium
832  * of 1 page and a maximum of 2GB. Hardware requires the address be
833  * aligned to the size of the range being purged. The size of the range
834  * must be a power of 2. The "Cool perf optimization" in the
835  * allocation routine helps keep that true.
836  */
837 static SBA_INLINE void
838 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
839 {
840 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
841 
842 	int off = PDIR_INDEX(iovp);
843 
844 	/* Must be non-zero and rounded up */
845 	ASSERT(byte_cnt > 0);
846 	ASSERT(0 == (byte_cnt & ~iovp_mask));
847 
848 #ifdef ASSERT_PDIR_SANITY
849 	/* Assert first pdir entry is set */
850 	if (!(ioc->pdir_base[off] >> 60)) {
851 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
852 	}
853 #endif
854 
855 	if (byte_cnt <= iovp_size)
856 	{
857 		ASSERT(off < ioc->pdir_size);
858 
859 		iovp |= iovp_shift;     /* set "size" field for PCOM */
860 
861 #ifndef FULL_VALID_PDIR
862 		/*
863 		** clear I/O PDIR entry "valid" bit
864 		** Do NOT clear the rest - save it for debugging.
865 		** We should only clear bits that have previously
866 		** been enabled.
867 		*/
868 		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
869 #else
870 		/*
871   		** If we want to maintain the PDIR as valid, put in
872 		** the spill page so devices prefetching won't
873 		** cause a hard fail.
874 		*/
875 		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
876 #endif
877 	} else {
878 		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
879 
880 		iovp |= t;
881 		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
882 
883 		do {
884 			/* verify this pdir entry is enabled */
885 			ASSERT(ioc->pdir_base[off]  >> 63);
886 #ifndef FULL_VALID_PDIR
887 			/* clear I/O Pdir entry "valid" bit first */
888 			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
889 #else
890 			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
891 #endif
892 			off++;
893 			byte_cnt -= iovp_size;
894 		} while (byte_cnt > 0);
895 	}
896 
897 	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
898 }
899 
900 /**
901  * sba_map_page - map one buffer and return IOVA for DMA
902  * @dev: instance of PCI owned by the driver that's asking.
903  * @page: page to map
904  * @poff: offset into page
905  * @size: number of bytes to map
906  * @dir: dma direction
907  * @attrs: optional dma attributes
908  *
909  * See Documentation/core-api/dma-api-howto.rst
910  */
911 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
912 			       unsigned long poff, size_t size,
913 			       enum dma_data_direction dir,
914 			       unsigned long attrs)
915 {
916 	struct ioc *ioc;
917 	void *addr = page_address(page) + poff;
918 	dma_addr_t iovp;
919 	dma_addr_t offset;
920 	u64 *pdir_start;
921 	int pide;
922 #ifdef ASSERT_PDIR_SANITY
923 	unsigned long flags;
924 #endif
925 #ifdef ALLOW_IOV_BYPASS
926 	unsigned long pci_addr = virt_to_phys(addr);
927 #endif
928 
929 #ifdef ALLOW_IOV_BYPASS
930 	ASSERT(to_pci_dev(dev)->dma_mask);
931 	/*
932  	** Check if the PCI device can DMA to ptr... if so, just return ptr
933  	*/
934 	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
935 		/*
936  		** Device is bit capable of DMA'ing to the buffer...
937 		** just return the PCI address of ptr
938  		*/
939 		DBG_BYPASS("sba_map_page() bypass mask/addr: "
940 			   "0x%lx/0x%lx\n",
941 		           to_pci_dev(dev)->dma_mask, pci_addr);
942 		return pci_addr;
943 	}
944 #endif
945 	ioc = GET_IOC(dev);
946 	ASSERT(ioc);
947 
948 	prefetch(ioc->res_hint);
949 
950 	ASSERT(size > 0);
951 	ASSERT(size <= DMA_CHUNK_SIZE);
952 
953 	/* save offset bits */
954 	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
955 
956 	/* round up to nearest iovp_size */
957 	size = (size + offset + ~iovp_mask) & iovp_mask;
958 
959 #ifdef ASSERT_PDIR_SANITY
960 	spin_lock_irqsave(&ioc->res_lock, flags);
961 	if (sba_check_pdir(ioc,"Check before sba_map_page()"))
962 		panic("Sanity check failed");
963 	spin_unlock_irqrestore(&ioc->res_lock, flags);
964 #endif
965 
966 	pide = sba_alloc_range(ioc, dev, size);
967 	if (pide < 0)
968 		return DMA_MAPPING_ERROR;
969 
970 	iovp = (dma_addr_t) pide << iovp_shift;
971 
972 	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
973 
974 	pdir_start = &(ioc->pdir_base[pide]);
975 
976 	while (size > 0) {
977 		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
978 		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
979 
980 		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
981 
982 		addr += iovp_size;
983 		size -= iovp_size;
984 		pdir_start++;
985 	}
986 	/* force pdir update */
987 	wmb();
988 
989 	/* form complete address */
990 #ifdef ASSERT_PDIR_SANITY
991 	spin_lock_irqsave(&ioc->res_lock, flags);
992 	sba_check_pdir(ioc,"Check after sba_map_page()");
993 	spin_unlock_irqrestore(&ioc->res_lock, flags);
994 #endif
995 	return SBA_IOVA(ioc, iovp, offset);
996 }
997 
998 #ifdef ENABLE_MARK_CLEAN
999 static SBA_INLINE void
1000 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1001 {
1002 	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1003 	int	off = PDIR_INDEX(iovp);
1004 	void	*addr;
1005 
1006 	if (size <= iovp_size) {
1007 		addr = phys_to_virt(ioc->pdir_base[off] &
1008 		                    ~0xE000000000000FFFULL);
1009 		mark_clean(addr, size);
1010 	} else {
1011 		do {
1012 			addr = phys_to_virt(ioc->pdir_base[off] &
1013 			                    ~0xE000000000000FFFULL);
1014 			mark_clean(addr, min(size, iovp_size));
1015 			off++;
1016 			size -= iovp_size;
1017 		} while (size > 0);
1018 	}
1019 }
1020 #endif
1021 
1022 /**
1023  * sba_unmap_page - unmap one IOVA and free resources
1024  * @dev: instance of PCI owned by the driver that's asking.
1025  * @iova:  IOVA of driver buffer previously mapped.
1026  * @size:  number of bytes mapped in driver buffer.
1027  * @dir:  R/W or both.
1028  * @attrs: optional dma attributes
1029  *
1030  * See Documentation/core-api/dma-api-howto.rst
1031  */
1032 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1033 			   enum dma_data_direction dir, unsigned long attrs)
1034 {
1035 	struct ioc *ioc;
1036 #if DELAYED_RESOURCE_CNT > 0
1037 	struct sba_dma_pair *d;
1038 #endif
1039 	unsigned long flags;
1040 	dma_addr_t offset;
1041 
1042 	ioc = GET_IOC(dev);
1043 	ASSERT(ioc);
1044 
1045 #ifdef ALLOW_IOV_BYPASS
1046 	if (likely((iova & ioc->imask) != ioc->ibase)) {
1047 		/*
1048 		** Address does not fall w/in IOVA, must be bypassing
1049 		*/
1050 		DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
1051 			   iova);
1052 
1053 #ifdef ENABLE_MARK_CLEAN
1054 		if (dir == DMA_FROM_DEVICE) {
1055 			mark_clean(phys_to_virt(iova), size);
1056 		}
1057 #endif
1058 		return;
1059 	}
1060 #endif
1061 	offset = iova & ~iovp_mask;
1062 
1063 	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1064 
1065 	iova ^= offset;        /* clear offset bits */
1066 	size += offset;
1067 	size = ROUNDUP(size, iovp_size);
1068 
1069 #ifdef ENABLE_MARK_CLEAN
1070 	if (dir == DMA_FROM_DEVICE)
1071 		sba_mark_clean(ioc, iova, size);
1072 #endif
1073 
1074 #if DELAYED_RESOURCE_CNT > 0
1075 	spin_lock_irqsave(&ioc->saved_lock, flags);
1076 	d = &(ioc->saved[ioc->saved_cnt]);
1077 	d->iova = iova;
1078 	d->size = size;
1079 	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1080 		int cnt = ioc->saved_cnt;
1081 		spin_lock(&ioc->res_lock);
1082 		while (cnt--) {
1083 			sba_mark_invalid(ioc, d->iova, d->size);
1084 			sba_free_range(ioc, d->iova, d->size);
1085 			d--;
1086 		}
1087 		ioc->saved_cnt = 0;
1088 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1089 		spin_unlock(&ioc->res_lock);
1090 	}
1091 	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1092 #else /* DELAYED_RESOURCE_CNT == 0 */
1093 	spin_lock_irqsave(&ioc->res_lock, flags);
1094 	sba_mark_invalid(ioc, iova, size);
1095 	sba_free_range(ioc, iova, size);
1096 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1097 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1098 #endif /* DELAYED_RESOURCE_CNT == 0 */
1099 }
1100 
1101 /**
1102  * sba_alloc_coherent - allocate/map shared mem for DMA
1103  * @dev: instance of PCI owned by the driver that's asking.
1104  * @size:  number of bytes mapped in driver buffer.
1105  * @dma_handle:  IOVA of new buffer.
1106  *
1107  * See Documentation/core-api/dma-api-howto.rst
1108  */
1109 static void *
1110 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1111 		   gfp_t flags, unsigned long attrs)
1112 {
1113 	struct page *page;
1114 	struct ioc *ioc;
1115 	int node = -1;
1116 	void *addr;
1117 
1118 	ioc = GET_IOC(dev);
1119 	ASSERT(ioc);
1120 #ifdef CONFIG_NUMA
1121 	node = ioc->node;
1122 #endif
1123 
1124 	page = alloc_pages_node(node, flags, get_order(size));
1125 	if (unlikely(!page))
1126 		return NULL;
1127 
1128 	addr = page_address(page);
1129 	memset(addr, 0, size);
1130 	*dma_handle = page_to_phys(page);
1131 
1132 #ifdef ALLOW_IOV_BYPASS
1133 	ASSERT(dev->coherent_dma_mask);
1134 	/*
1135  	** Check if the PCI device can DMA to ptr... if so, just return ptr
1136  	*/
1137 	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1138 		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1139 		           dev->coherent_dma_mask, *dma_handle);
1140 
1141 		return addr;
1142 	}
1143 #endif
1144 
1145 	/*
1146 	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1147 	 * device to map single to get an iova mapping.
1148 	 */
1149 	*dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
1150 			DMA_BIDIRECTIONAL, 0);
1151 	if (dma_mapping_error(dev, *dma_handle))
1152 		return NULL;
1153 	return addr;
1154 }
1155 
1156 
1157 /**
1158  * sba_free_coherent - free/unmap shared mem for DMA
1159  * @dev: instance of PCI owned by the driver that's asking.
1160  * @size:  number of bytes mapped in driver buffer.
1161  * @vaddr:  virtual address IOVA of "consistent" buffer.
1162  * @dma_handler:  IO virtual address of "consistent" buffer.
1163  *
1164  * See Documentation/core-api/dma-api-howto.rst
1165  */
1166 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1167 			      dma_addr_t dma_handle, unsigned long attrs)
1168 {
1169 	sba_unmap_page(dev, dma_handle, size, 0, 0);
1170 	free_pages((unsigned long) vaddr, get_order(size));
1171 }
1172 
1173 
1174 /*
1175 ** Since 0 is a valid pdir_base index value, can't use that
1176 ** to determine if a value is valid or not. Use a flag to indicate
1177 ** the SG list entry contains a valid pdir index.
1178 */
1179 #define PIDE_FLAG 0x1UL
1180 
1181 #ifdef DEBUG_LARGE_SG_ENTRIES
1182 int dump_run_sg = 0;
1183 #endif
1184 
1185 
1186 /**
1187  * sba_fill_pdir - write allocated SG entries into IO PDIR
1188  * @ioc: IO MMU structure which owns the pdir we are interested in.
1189  * @startsg:  list of IOVA/size pairs
1190  * @nents: number of entries in startsg list
1191  *
1192  * Take preprocessed SG list and write corresponding entries
1193  * in the IO PDIR.
1194  */
1195 
1196 static SBA_INLINE int
1197 sba_fill_pdir(
1198 	struct ioc *ioc,
1199 	struct scatterlist *startsg,
1200 	int nents)
1201 {
1202 	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1203 	int n_mappings = 0;
1204 	u64 *pdirp = NULL;
1205 	unsigned long dma_offset = 0;
1206 
1207 	while (nents-- > 0) {
1208 		int     cnt = startsg->dma_length;
1209 		startsg->dma_length = 0;
1210 
1211 #ifdef DEBUG_LARGE_SG_ENTRIES
1212 		if (dump_run_sg)
1213 			printk(" %2d : %08lx/%05x %p\n",
1214 				nents, startsg->dma_address, cnt,
1215 				sba_sg_address(startsg));
1216 #else
1217 		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1218 				nents, startsg->dma_address, cnt,
1219 				sba_sg_address(startsg));
1220 #endif
1221 		/*
1222 		** Look for the start of a new DMA stream
1223 		*/
1224 		if (startsg->dma_address & PIDE_FLAG) {
1225 			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1226 			dma_offset = (unsigned long) pide & ~iovp_mask;
1227 			startsg->dma_address = 0;
1228 			if (n_mappings)
1229 				dma_sg = sg_next(dma_sg);
1230 			dma_sg->dma_address = pide | ioc->ibase;
1231 			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1232 			n_mappings++;
1233 		}
1234 
1235 		/*
1236 		** Look for a VCONTIG chunk
1237 		*/
1238 		if (cnt) {
1239 			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1240 			ASSERT(pdirp);
1241 
1242 			/* Since multiple Vcontig blocks could make up
1243 			** one DMA stream, *add* cnt to dma_len.
1244 			*/
1245 			dma_sg->dma_length += cnt;
1246 			cnt += dma_offset;
1247 			dma_offset=0;	/* only want offset on first chunk */
1248 			cnt = ROUNDUP(cnt, iovp_size);
1249 			do {
1250 				sba_io_pdir_entry(pdirp, vaddr);
1251 				vaddr += iovp_size;
1252 				cnt -= iovp_size;
1253 				pdirp++;
1254 			} while (cnt > 0);
1255 		}
1256 		startsg = sg_next(startsg);
1257 	}
1258 	/* force pdir update */
1259 	wmb();
1260 
1261 #ifdef DEBUG_LARGE_SG_ENTRIES
1262 	dump_run_sg = 0;
1263 #endif
1264 	return(n_mappings);
1265 }
1266 
1267 
1268 /*
1269 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1270 ** "start of next" are both on an IOV page boundary.
1271 **
1272 ** (shift left is a quick trick to mask off upper bits)
1273 */
1274 #define DMA_CONTIG(__X, __Y) \
1275 	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1276 
1277 
1278 /**
1279  * sba_coalesce_chunks - preprocess the SG list
1280  * @ioc: IO MMU structure which owns the pdir we are interested in.
1281  * @startsg:  list of IOVA/size pairs
1282  * @nents: number of entries in startsg list
1283  *
1284  * First pass is to walk the SG list and determine where the breaks are
1285  * in the DMA stream. Allocates PDIR entries but does not fill them.
1286  * Returns the number of DMA chunks.
1287  *
1288  * Doing the fill separate from the coalescing/allocation keeps the
1289  * code simpler. Future enhancement could make one pass through
1290  * the sglist do both.
1291  */
1292 static SBA_INLINE int
1293 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1294 	struct scatterlist *startsg,
1295 	int nents)
1296 {
1297 	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1298 	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1299 	unsigned long vcontig_end;
1300 	struct scatterlist *dma_sg;        /* next DMA stream head */
1301 	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1302 	int n_mappings = 0;
1303 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1304 	int idx;
1305 
1306 	while (nents > 0) {
1307 		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1308 
1309 		/*
1310 		** Prepare for first/next DMA stream
1311 		*/
1312 		dma_sg = vcontig_sg = startsg;
1313 		dma_len = vcontig_len = vcontig_end = startsg->length;
1314 		vcontig_end +=  vaddr;
1315 		dma_offset = vaddr & ~iovp_mask;
1316 
1317 		/* PARANOID: clear entries */
1318 		startsg->dma_address = startsg->dma_length = 0;
1319 
1320 		/*
1321 		** This loop terminates one iteration "early" since
1322 		** it's always looking one "ahead".
1323 		*/
1324 		while (--nents > 0) {
1325 			unsigned long vaddr;	/* tmp */
1326 
1327 			startsg = sg_next(startsg);
1328 
1329 			/* PARANOID */
1330 			startsg->dma_address = startsg->dma_length = 0;
1331 
1332 			/* catch brokenness in SCSI layer */
1333 			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1334 
1335 			/*
1336 			** First make sure current dma stream won't
1337 			** exceed DMA_CHUNK_SIZE if we coalesce the
1338 			** next entry.
1339 			*/
1340 			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1341 			    > DMA_CHUNK_SIZE)
1342 				break;
1343 
1344 			if (dma_len + startsg->length > max_seg_size)
1345 				break;
1346 
1347 			/*
1348 			** Then look for virtually contiguous blocks.
1349 			**
1350 			** append the next transaction?
1351 			*/
1352 			vaddr = (unsigned long) sba_sg_address(startsg);
1353 			if  (vcontig_end == vaddr)
1354 			{
1355 				vcontig_len += startsg->length;
1356 				vcontig_end += startsg->length;
1357 				dma_len     += startsg->length;
1358 				continue;
1359 			}
1360 
1361 #ifdef DEBUG_LARGE_SG_ENTRIES
1362 			dump_run_sg = (vcontig_len > iovp_size);
1363 #endif
1364 
1365 			/*
1366 			** Not virtually contiguous.
1367 			** Terminate prev chunk.
1368 			** Start a new chunk.
1369 			**
1370 			** Once we start a new VCONTIG chunk, dma_offset
1371 			** can't change. And we need the offset from the first
1372 			** chunk - not the last one. Ergo Successive chunks
1373 			** must start on page boundaries and dove tail
1374 			** with it's predecessor.
1375 			*/
1376 			vcontig_sg->dma_length = vcontig_len;
1377 
1378 			vcontig_sg = startsg;
1379 			vcontig_len = startsg->length;
1380 
1381 			/*
1382 			** 3) do the entries end/start on page boundaries?
1383 			**    Don't update vcontig_end until we've checked.
1384 			*/
1385 			if (DMA_CONTIG(vcontig_end, vaddr))
1386 			{
1387 				vcontig_end = vcontig_len + vaddr;
1388 				dma_len += vcontig_len;
1389 				continue;
1390 			} else {
1391 				break;
1392 			}
1393 		}
1394 
1395 		/*
1396 		** End of DMA Stream
1397 		** Terminate last VCONTIG block.
1398 		** Allocate space for DMA stream.
1399 		*/
1400 		vcontig_sg->dma_length = vcontig_len;
1401 		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1402 		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1403 		idx = sba_alloc_range(ioc, dev, dma_len);
1404 		if (idx < 0) {
1405 			dma_sg->dma_length = 0;
1406 			return -1;
1407 		}
1408 		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1409 						   | dma_offset);
1410 		n_mappings++;
1411 	}
1412 
1413 	return n_mappings;
1414 }
1415 
1416 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1417 			       int nents, enum dma_data_direction dir,
1418 			       unsigned long attrs);
1419 /**
1420  * sba_map_sg - map Scatter/Gather list
1421  * @dev: instance of PCI owned by the driver that's asking.
1422  * @sglist:  array of buffer/length pairs
1423  * @nents:  number of entries in list
1424  * @dir:  R/W or both.
1425  * @attrs: optional dma attributes
1426  *
1427  * See Documentation/core-api/dma-api-howto.rst
1428  */
1429 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1430 			    int nents, enum dma_data_direction dir,
1431 			    unsigned long attrs)
1432 {
1433 	struct ioc *ioc;
1434 	int coalesced, filled = 0;
1435 #ifdef ASSERT_PDIR_SANITY
1436 	unsigned long flags;
1437 #endif
1438 #ifdef ALLOW_IOV_BYPASS_SG
1439 	struct scatterlist *sg;
1440 #endif
1441 
1442 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1443 	ioc = GET_IOC(dev);
1444 	ASSERT(ioc);
1445 
1446 #ifdef ALLOW_IOV_BYPASS_SG
1447 	ASSERT(to_pci_dev(dev)->dma_mask);
1448 	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1449 		for_each_sg(sglist, sg, nents, filled) {
1450 			sg->dma_length = sg->length;
1451 			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1452 		}
1453 		return filled;
1454 	}
1455 #endif
1456 	/* Fast path single entry scatterlists. */
1457 	if (nents == 1) {
1458 		sglist->dma_length = sglist->length;
1459 		sglist->dma_address = sba_map_page(dev, sg_page(sglist),
1460 				sglist->offset, sglist->length, dir, attrs);
1461 		if (dma_mapping_error(dev, sglist->dma_address))
1462 			return -EIO;
1463 		return 1;
1464 	}
1465 
1466 #ifdef ASSERT_PDIR_SANITY
1467 	spin_lock_irqsave(&ioc->res_lock, flags);
1468 	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1469 	{
1470 		sba_dump_sg(ioc, sglist, nents);
1471 		panic("Check before sba_map_sg_attrs()");
1472 	}
1473 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1474 #endif
1475 
1476 	prefetch(ioc->res_hint);
1477 
1478 	/*
1479 	** First coalesce the chunks and allocate I/O pdir space
1480 	**
1481 	** If this is one DMA stream, we can properly map using the
1482 	** correct virtual address associated with each DMA page.
1483 	** w/o this association, we wouldn't have coherent DMA!
1484 	** Access to the virtual address is what forces a two pass algorithm.
1485 	*/
1486 	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1487 	if (coalesced < 0) {
1488 		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1489 		return -ENOMEM;
1490 	}
1491 
1492 	/*
1493 	** Program the I/O Pdir
1494 	**
1495 	** map the virtual addresses to the I/O Pdir
1496 	** o dma_address will contain the pdir index
1497 	** o dma_len will contain the number of bytes to map
1498 	** o address contains the virtual address.
1499 	*/
1500 	filled = sba_fill_pdir(ioc, sglist, nents);
1501 
1502 #ifdef ASSERT_PDIR_SANITY
1503 	spin_lock_irqsave(&ioc->res_lock, flags);
1504 	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1505 	{
1506 		sba_dump_sg(ioc, sglist, nents);
1507 		panic("Check after sba_map_sg_attrs()\n");
1508 	}
1509 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1510 #endif
1511 
1512 	ASSERT(coalesced == filled);
1513 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1514 
1515 	return filled;
1516 }
1517 
1518 /**
1519  * sba_unmap_sg_attrs - unmap Scatter/Gather list
1520  * @dev: instance of PCI owned by the driver that's asking.
1521  * @sglist:  array of buffer/length pairs
1522  * @nents:  number of entries in list
1523  * @dir:  R/W or both.
1524  * @attrs: optional dma attributes
1525  *
1526  * See Documentation/core-api/dma-api-howto.rst
1527  */
1528 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1529 			       int nents, enum dma_data_direction dir,
1530 			       unsigned long attrs)
1531 {
1532 #ifdef ASSERT_PDIR_SANITY
1533 	struct ioc *ioc;
1534 	unsigned long flags;
1535 #endif
1536 
1537 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1538 		   __func__, nents, sba_sg_address(sglist), sglist->length);
1539 
1540 #ifdef ASSERT_PDIR_SANITY
1541 	ioc = GET_IOC(dev);
1542 	ASSERT(ioc);
1543 
1544 	spin_lock_irqsave(&ioc->res_lock, flags);
1545 	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1546 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1547 #endif
1548 
1549 	while (nents && sglist->dma_length) {
1550 
1551 		sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
1552 			       dir, attrs);
1553 		sglist = sg_next(sglist);
1554 		nents--;
1555 	}
1556 
1557 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1558 
1559 #ifdef ASSERT_PDIR_SANITY
1560 	spin_lock_irqsave(&ioc->res_lock, flags);
1561 	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1562 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1563 #endif
1564 
1565 }
1566 
1567 /**************************************************************
1568 *
1569 *   Initialization and claim
1570 *
1571 ***************************************************************/
1572 
1573 static void
1574 ioc_iova_init(struct ioc *ioc)
1575 {
1576 	int tcnfg;
1577 	int agp_found = 0;
1578 	struct pci_dev *device = NULL;
1579 #ifdef FULL_VALID_PDIR
1580 	unsigned long index;
1581 #endif
1582 
1583 	/*
1584 	** Firmware programs the base and size of a "safe IOVA space"
1585 	** (one that doesn't overlap memory or LMMIO space) in the
1586 	** IBASE and IMASK registers.
1587 	*/
1588 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1589 	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1590 
1591 	ioc->iov_size = ~ioc->imask + 1;
1592 
1593 	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1594 		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1595 		ioc->iov_size >> 20);
1596 
1597 	switch (iovp_size) {
1598 		case  4*1024: tcnfg = 0; break;
1599 		case  8*1024: tcnfg = 1; break;
1600 		case 16*1024: tcnfg = 2; break;
1601 		case 64*1024: tcnfg = 3; break;
1602 		default:
1603 			panic(PFX "Unsupported IOTLB page size %ldK",
1604 				iovp_size >> 10);
1605 			break;
1606 	}
1607 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1608 
1609 	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1610 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1611 						   get_order(ioc->pdir_size));
1612 	if (!ioc->pdir_base)
1613 		panic(PFX "Couldn't allocate I/O Page Table\n");
1614 
1615 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1616 
1617 	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1618 		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1619 
1620 	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1621 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1622 
1623 	/*
1624 	** If an AGP device is present, only use half of the IOV space
1625 	** for PCI DMA.  Unfortunately we can't know ahead of time
1626 	** whether GART support will actually be used, for now we
1627 	** can just key on an AGP device found in the system.
1628 	** We program the next pdir index after we stop w/ a key for
1629 	** the GART code to handshake on.
1630 	*/
1631 	for_each_pci_dev(device)
1632 		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1633 
1634 	if (agp_found && reserve_sba_gart) {
1635 		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1636 		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1637 		ioc->pdir_size /= 2;
1638 		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1639 	}
1640 #ifdef FULL_VALID_PDIR
1641 	/*
1642   	** Check to see if the spill page has been allocated, we don't need more than
1643 	** one across multiple SBAs.
1644 	*/
1645 	if (!prefetch_spill_page) {
1646 		char *spill_poison = "SBAIOMMU POISON";
1647 		int poison_size = 16;
1648 		void *poison_addr, *addr;
1649 
1650 		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1651 		if (!addr)
1652 			panic(PFX "Couldn't allocate PDIR spill page\n");
1653 
1654 		poison_addr = addr;
1655 		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1656 			memcpy(poison_addr, spill_poison, poison_size);
1657 
1658 		prefetch_spill_page = virt_to_phys(addr);
1659 
1660 		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1661 	}
1662 	/*
1663   	** Set all the PDIR entries valid w/ the spill page as the target
1664 	*/
1665 	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1666 		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1667 #endif
1668 
1669 	/* Clear I/O TLB of any possible entries */
1670 	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1671 	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1672 
1673 	/* Enable IOVA translation */
1674 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1675 	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1676 }
1677 
1678 static void __init
1679 ioc_resource_init(struct ioc *ioc)
1680 {
1681 	spin_lock_init(&ioc->res_lock);
1682 #if DELAYED_RESOURCE_CNT > 0
1683 	spin_lock_init(&ioc->saved_lock);
1684 #endif
1685 
1686 	/* resource map size dictated by pdir_size */
1687 	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1688 	ioc->res_size >>= 3;  /* convert bit count to byte count */
1689 	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1690 
1691 	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1692 						 get_order(ioc->res_size));
1693 	if (!ioc->res_map)
1694 		panic(PFX "Couldn't allocate resource map\n");
1695 
1696 	memset(ioc->res_map, 0, ioc->res_size);
1697 	/* next available IOVP - circular search */
1698 	ioc->res_hint = (unsigned long *) ioc->res_map;
1699 
1700 #ifdef ASSERT_PDIR_SANITY
1701 	/* Mark first bit busy - ie no IOVA 0 */
1702 	ioc->res_map[0] = 0x1;
1703 	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1704 #endif
1705 #ifdef FULL_VALID_PDIR
1706 	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1707 	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1708 	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1709 							      | prefetch_spill_page);
1710 #endif
1711 
1712 	DBG_INIT("%s() res_map %x %p\n", __func__,
1713 		 ioc->res_size, (void *) ioc->res_map);
1714 }
1715 
1716 static void __init
1717 ioc_sac_init(struct ioc *ioc)
1718 {
1719 	struct pci_dev *sac = NULL;
1720 	struct pci_controller *controller = NULL;
1721 
1722 	/*
1723 	 * pci_alloc_coherent() must return a DMA address which is
1724 	 * SAC (single address cycle) addressable, so allocate a
1725 	 * pseudo-device to enforce that.
1726 	 */
1727 	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1728 	if (!sac)
1729 		panic(PFX "Couldn't allocate struct pci_dev");
1730 
1731 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1732 	if (!controller)
1733 		panic(PFX "Couldn't allocate struct pci_controller");
1734 
1735 	controller->iommu = ioc;
1736 	sac->sysdata = controller;
1737 	sac->dma_mask = 0xFFFFFFFFUL;
1738 	sac->dev.bus = &pci_bus_type;
1739 	ioc->sac_only_dev = sac;
1740 }
1741 
1742 static void __init
1743 ioc_zx1_init(struct ioc *ioc)
1744 {
1745 	unsigned long rope_config;
1746 	unsigned int i;
1747 
1748 	if (ioc->rev < 0x20)
1749 		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1750 
1751 	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1752 	ioc->dma_mask = (0x1UL << 39) - 1;
1753 
1754 	/*
1755 	** Clear ROPE(N)_CONFIG AO bit.
1756 	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1757 	** Overrides bit 1 in DMA Hint Sets.
1758 	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1759 	*/
1760 	for (i=0; i<(8*8); i+=8) {
1761 		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1762 		rope_config &= ~IOC_ROPE_AO;
1763 		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1764 	}
1765 }
1766 
1767 typedef void (initfunc)(struct ioc *);
1768 
1769 struct ioc_iommu {
1770 	u32 func_id;
1771 	char *name;
1772 	initfunc *init;
1773 };
1774 
1775 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1776 	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1777 	{ ZX2_IOC_ID, "zx2", NULL },
1778 	{ SX1000_IOC_ID, "sx1000", NULL },
1779 	{ SX2000_IOC_ID, "sx2000", NULL },
1780 };
1781 
1782 static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
1783 {
1784 	struct ioc_iommu *info;
1785 
1786 	ioc->next = ioc_list;
1787 	ioc_list = ioc;
1788 
1789 	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1790 
1791 	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1792 	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1793 	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1794 
1795 	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1796 		if (ioc->func_id == info->func_id) {
1797 			ioc->name = info->name;
1798 			if (info->init)
1799 				(info->init)(ioc);
1800 		}
1801 	}
1802 
1803 	iovp_size = (1 << iovp_shift);
1804 	iovp_mask = ~(iovp_size - 1);
1805 
1806 	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1807 		PAGE_SIZE >> 10, iovp_size >> 10);
1808 
1809 	if (!ioc->name) {
1810 		ioc->name = kmalloc(24, GFP_KERNEL);
1811 		if (ioc->name)
1812 			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1813 				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1814 		else
1815 			ioc->name = "Unknown";
1816 	}
1817 
1818 	ioc_iova_init(ioc);
1819 	ioc_resource_init(ioc);
1820 	ioc_sac_init(ioc);
1821 
1822 	printk(KERN_INFO PFX
1823 		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1824 		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1825 		hpa, ioc->iov_size >> 20, ioc->ibase);
1826 }
1827 
1828 
1829 
1830 /**************************************************************************
1831 **
1832 **   SBA initialization code (HW and SW)
1833 **
1834 **   o identify SBA chip itself
1835 **   o FIXME: initialize DMA hints for reasonable defaults
1836 **
1837 **************************************************************************/
1838 
1839 #ifdef CONFIG_PROC_FS
1840 static void *
1841 ioc_start(struct seq_file *s, loff_t *pos)
1842 {
1843 	struct ioc *ioc;
1844 	loff_t n = *pos;
1845 
1846 	for (ioc = ioc_list; ioc; ioc = ioc->next)
1847 		if (!n--)
1848 			return ioc;
1849 
1850 	return NULL;
1851 }
1852 
1853 static void *
1854 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1855 {
1856 	struct ioc *ioc = v;
1857 
1858 	++*pos;
1859 	return ioc->next;
1860 }
1861 
1862 static void
1863 ioc_stop(struct seq_file *s, void *v)
1864 {
1865 }
1866 
1867 static int
1868 ioc_show(struct seq_file *s, void *v)
1869 {
1870 	struct ioc *ioc = v;
1871 	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1872 	int i, used = 0;
1873 
1874 	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1875 		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1876 #ifdef CONFIG_NUMA
1877 	if (ioc->node != NUMA_NO_NODE)
1878 		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1879 #endif
1880 	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1881 	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1882 
1883 	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1884 		used += hweight64(*res_ptr);
1885 
1886 	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1887 	seq_printf(s, "PDIR used       : %d entries\n", used);
1888 
1889 #ifdef PDIR_SEARCH_TIMING
1890 	{
1891 		unsigned long i = 0, avg = 0, min, max;
1892 		min = max = ioc->avg_search[0];
1893 		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1894 			avg += ioc->avg_search[i];
1895 			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1896 			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1897 		}
1898 		avg /= SBA_SEARCH_SAMPLE;
1899 		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1900 		           min, avg, max);
1901 	}
1902 #endif
1903 #ifndef ALLOW_IOV_BYPASS
1904 	 seq_printf(s, "IOVA bypass disabled\n");
1905 #endif
1906 	return 0;
1907 }
1908 
1909 static const struct seq_operations ioc_seq_ops = {
1910 	.start = ioc_start,
1911 	.next  = ioc_next,
1912 	.stop  = ioc_stop,
1913 	.show  = ioc_show
1914 };
1915 
1916 static void __init
1917 ioc_proc_init(void)
1918 {
1919 	struct proc_dir_entry *dir;
1920 
1921 	dir = proc_mkdir("bus/mckinley", NULL);
1922 	if (!dir)
1923 		return;
1924 
1925 	proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1926 }
1927 #endif
1928 
1929 static void
1930 sba_connect_bus(struct pci_bus *bus)
1931 {
1932 	acpi_handle handle, parent;
1933 	acpi_status status;
1934 	struct ioc *ioc;
1935 
1936 	if (!PCI_CONTROLLER(bus))
1937 		panic(PFX "no sysdata on bus %d!\n", bus->number);
1938 
1939 	if (PCI_CONTROLLER(bus)->iommu)
1940 		return;
1941 
1942 	handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1943 	if (!handle)
1944 		return;
1945 
1946 	/*
1947 	 * The IOC scope encloses PCI root bridges in the ACPI
1948 	 * namespace, so work our way out until we find an IOC we
1949 	 * claimed previously.
1950 	 */
1951 	do {
1952 		for (ioc = ioc_list; ioc; ioc = ioc->next)
1953 			if (ioc->handle == handle) {
1954 				PCI_CONTROLLER(bus)->iommu = ioc;
1955 				return;
1956 			}
1957 
1958 		status = acpi_get_parent(handle, &parent);
1959 		handle = parent;
1960 	} while (ACPI_SUCCESS(status));
1961 
1962 	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1963 }
1964 
1965 static void __init
1966 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1967 {
1968 #ifdef CONFIG_NUMA
1969 	unsigned int node;
1970 
1971 	node = acpi_get_node(handle);
1972 	if (node != NUMA_NO_NODE && !node_online(node))
1973 		node = NUMA_NO_NODE;
1974 
1975 	ioc->node = node;
1976 #endif
1977 }
1978 
1979 static void __init acpi_sba_ioc_add(struct ioc *ioc)
1980 {
1981 	acpi_handle handle = ioc->handle;
1982 	acpi_status status;
1983 	u64 hpa, length;
1984 	struct acpi_device_info *adi;
1985 
1986 	ioc_found = ioc->next;
1987 	status = hp_acpi_csr_space(handle, &hpa, &length);
1988 	if (ACPI_FAILURE(status))
1989 		goto err;
1990 
1991 	status = acpi_get_object_info(handle, &adi);
1992 	if (ACPI_FAILURE(status))
1993 		goto err;
1994 
1995 	/*
1996 	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
1997 	 * root bridges, and its CSR space includes the IOC function.
1998 	 */
1999 	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2000 		hpa += ZX1_IOC_OFFSET;
2001 		/* zx1 based systems default to kernel page size iommu pages */
2002 		if (!iovp_shift)
2003 			iovp_shift = min(PAGE_SHIFT, 16);
2004 	}
2005 	kfree(adi);
2006 
2007 	/*
2008 	 * default anything not caught above or specified on cmdline to 4k
2009 	 * iommu page size
2010 	 */
2011 	if (!iovp_shift)
2012 		iovp_shift = 12;
2013 
2014 	ioc_init(hpa, ioc);
2015 	/* setup NUMA node association */
2016 	sba_map_ioc_to_node(ioc, handle);
2017 	return;
2018 
2019  err:
2020 	kfree(ioc);
2021 }
2022 
2023 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2024 	{"HWP0001", 0},
2025 	{"HWP0004", 0},
2026 	{"", 0},
2027 };
2028 
2029 static int acpi_sba_ioc_attach(struct acpi_device *device,
2030 			       const struct acpi_device_id *not_used)
2031 {
2032 	struct ioc *ioc;
2033 
2034 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2035 	if (!ioc)
2036 		return -ENOMEM;
2037 
2038 	ioc->next = ioc_found;
2039 	ioc_found = ioc;
2040 	ioc->handle = device->handle;
2041 	return 1;
2042 }
2043 
2044 
2045 static struct acpi_scan_handler acpi_sba_ioc_handler = {
2046 	.ids	= hp_ioc_iommu_device_ids,
2047 	.attach	= acpi_sba_ioc_attach,
2048 };
2049 
2050 static int __init acpi_sba_ioc_init_acpi(void)
2051 {
2052 	return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2053 }
2054 /* This has to run before acpi_scan_init(). */
2055 arch_initcall(acpi_sba_ioc_init_acpi);
2056 
2057 static int sba_dma_supported (struct device *dev, u64 mask)
2058 {
2059 	/* make sure it's at least 32bit capable */
2060 	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2061 }
2062 
2063 static const struct dma_map_ops sba_dma_ops = {
2064 	.alloc			= sba_alloc_coherent,
2065 	.free			= sba_free_coherent,
2066 	.map_page		= sba_map_page,
2067 	.unmap_page		= sba_unmap_page,
2068 	.map_sg			= sba_map_sg_attrs,
2069 	.unmap_sg		= sba_unmap_sg_attrs,
2070 	.dma_supported		= sba_dma_supported,
2071 	.mmap			= dma_common_mmap,
2072 	.get_sgtable		= dma_common_get_sgtable,
2073 	.alloc_pages		= dma_common_alloc_pages,
2074 	.free_pages		= dma_common_free_pages,
2075 };
2076 
2077 static int __init
2078 sba_init(void)
2079 {
2080 	/*
2081 	 * If we are booting a kdump kernel, the sba_iommu will cause devices
2082 	 * that were not shutdown properly to MCA as soon as they are turned
2083 	 * back on.  Our only option for a successful kdump kernel boot is to
2084 	 * use swiotlb.
2085 	 */
2086 	if (is_kdump_kernel())
2087 		return 0;
2088 
2089 	/*
2090 	 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2091 	 * routine, but that only happens if acpi_scan_init() has already run.
2092 	 */
2093 	while (ioc_found)
2094 		acpi_sba_ioc_add(ioc_found);
2095 
2096 	if (!ioc_list)
2097 		return 0;
2098 
2099 	{
2100 		struct pci_bus *b = NULL;
2101 		while ((b = pci_find_next_bus(b)) != NULL)
2102 			sba_connect_bus(b);
2103 	}
2104 
2105 	/* no need for swiotlb with the iommu */
2106 	swiotlb_exit();
2107 	dma_ops = &sba_dma_ops;
2108 
2109 #ifdef CONFIG_PROC_FS
2110 	ioc_proc_init();
2111 #endif
2112 	return 0;
2113 }
2114 
2115 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2116 
2117 static int __init
2118 nosbagart(char *str)
2119 {
2120 	reserve_sba_gart = 0;
2121 	return 1;
2122 }
2123 
2124 __setup("nosbagart", nosbagart);
2125 
2126 static int __init
2127 sba_page_override(char *str)
2128 {
2129 	unsigned long page_size;
2130 
2131 	page_size = memparse(str, &str);
2132 	switch (page_size) {
2133 		case 4096:
2134 		case 8192:
2135 		case 16384:
2136 		case 65536:
2137 			iovp_shift = ffs(page_size) - 1;
2138 			break;
2139 		default:
2140 			printk("%s: unknown/unsupported iommu page size %ld\n",
2141 			       __func__, page_size);
2142 	}
2143 
2144 	return 1;
2145 }
2146 
2147 __setup("sbapagesize=",sba_page_override);
2148