xref: /openbmc/linux/arch/ia64/hp/common/sba_iommu.c (revision 6fa24b41)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 **  IA64 System Bus Adapter (SBA) I/O MMU manager
4 **
5 **	(c) Copyright 2002-2005 Alex Williamson
6 **	(c) Copyright 2002-2003 Grant Grundler
7 **	(c) Copyright 2002-2005 Hewlett-Packard Company
8 **
9 **	Portions (c) 2000 Grant Grundler (from parisc I/O MMU code)
10 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
11 **
12 **
13 **
14 ** This module initializes the IOC (I/O Controller) found on HP
15 ** McKinley machines and their successors.
16 **
17 */
18 
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/acpi.h>
31 #include <linux/efi.h>
32 #include <linux/nodemask.h>
33 #include <linux/bitops.h>         /* hweight64() */
34 #include <linux/crash_dump.h>
35 #include <linux/iommu-helper.h>
36 #include <linux/dma-map-ops.h>
37 #include <linux/prefetch.h>
38 #include <linux/swiotlb.h>
39 
40 #include <asm/delay.h>		/* ia64_get_itc() */
41 #include <asm/io.h>
42 #include <asm/page.h>		/* PAGE_OFFSET */
43 #include <asm/dma.h>
44 
45 #include <asm/acpi-ext.h>
46 
47 #define PFX "IOC: "
48 
49 /*
50 ** Enabling timing search of the pdir resource map.  Output in /proc.
51 ** Disabled by default to optimize performance.
52 */
53 #undef PDIR_SEARCH_TIMING
54 
55 /*
56 ** This option allows cards capable of 64bit DMA to bypass the IOMMU.  If
57 ** not defined, all DMA will be 32bit and go through the TLB.
58 ** There's potentially a conflict in the bio merge code with us
59 ** advertising an iommu, but then bypassing it.  Since I/O MMU bypassing
60 ** appears to give more performance than bio-level virtual merging, we'll
61 ** do the former for now.  NOTE: BYPASS_SG also needs to be undef'd to
62 ** completely restrict DMA to the IOMMU.
63 */
64 #define ALLOW_IOV_BYPASS
65 
66 /*
67 ** This option specifically allows/disallows bypassing scatterlists with
68 ** multiple entries.  Coalescing these entries can allow better DMA streaming
69 ** and in some cases shows better performance than entirely bypassing the
70 ** IOMMU.  Performance increase on the order of 1-2% sequential output/input
71 ** using bonnie++ on a RAID0 MD device (sym2 & mpt).
72 */
73 #undef ALLOW_IOV_BYPASS_SG
74 
75 /*
76 ** If a device prefetches beyond the end of a valid pdir entry, it will cause
77 ** a hard failure, ie. MCA.  Version 3.0 and later of the zx1 LBA should
78 ** disconnect on 4k boundaries and prevent such issues.  If the device is
79 ** particularly aggressive, this option will keep the entire pdir valid such
80 ** that prefetching will hit a valid address.  This could severely impact
81 ** error containment, and is therefore off by default.  The page that is
82 ** used for spill-over is poisoned, so that should help debugging somewhat.
83 */
84 #undef FULL_VALID_PDIR
85 
86 #define ENABLE_MARK_CLEAN
87 
88 /*
89 ** The number of debug flags is a clue - this code is fragile.  NOTE: since
90 ** tightening the use of res_lock the resource bitmap and actual pdir are no
91 ** longer guaranteed to stay in sync.  The sanity checking code isn't going to
92 ** like that.
93 */
94 #undef DEBUG_SBA_INIT
95 #undef DEBUG_SBA_RUN
96 #undef DEBUG_SBA_RUN_SG
97 #undef DEBUG_SBA_RESOURCE
98 #undef ASSERT_PDIR_SANITY
99 #undef DEBUG_LARGE_SG_ENTRIES
100 #undef DEBUG_BYPASS
101 
102 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY)
103 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive
104 #endif
105 
106 #define SBA_INLINE	__inline__
107 /* #define SBA_INLINE */
108 
109 #ifdef DEBUG_SBA_INIT
110 #define DBG_INIT(x...)	printk(x)
111 #else
112 #define DBG_INIT(x...)
113 #endif
114 
115 #ifdef DEBUG_SBA_RUN
116 #define DBG_RUN(x...)	printk(x)
117 #else
118 #define DBG_RUN(x...)
119 #endif
120 
121 #ifdef DEBUG_SBA_RUN_SG
122 #define DBG_RUN_SG(x...)	printk(x)
123 #else
124 #define DBG_RUN_SG(x...)
125 #endif
126 
127 
128 #ifdef DEBUG_SBA_RESOURCE
129 #define DBG_RES(x...)	printk(x)
130 #else
131 #define DBG_RES(x...)
132 #endif
133 
134 #ifdef DEBUG_BYPASS
135 #define DBG_BYPASS(x...)	printk(x)
136 #else
137 #define DBG_BYPASS(x...)
138 #endif
139 
140 #ifdef ASSERT_PDIR_SANITY
141 #define ASSERT(expr) \
142         if(!(expr)) { \
143                 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \
144                 panic(#expr); \
145         }
146 #else
147 #define ASSERT(expr)
148 #endif
149 
150 /*
151 ** The number of pdir entries to "free" before issuing
152 ** a read to PCOM register to flush out PCOM writes.
153 ** Interacts with allocation granularity (ie 4 or 8 entries
154 ** allocated and free'd/purged at a time might make this
155 ** less interesting).
156 */
157 #define DELAYED_RESOURCE_CNT	64
158 
159 #define PCI_DEVICE_ID_HP_SX2000_IOC	0x12ec
160 
161 #define ZX1_IOC_ID	((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP)
162 #define ZX2_IOC_ID	((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP)
163 #define REO_IOC_ID	((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP)
164 #define SX1000_IOC_ID	((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP)
165 #define SX2000_IOC_ID	((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP)
166 
167 #define ZX1_IOC_OFFSET	0x1000	/* ACPI reports SBA, we want IOC */
168 
169 #define IOC_FUNC_ID	0x000
170 #define IOC_FCLASS	0x008	/* function class, bist, header, rev... */
171 #define IOC_IBASE	0x300	/* IO TLB */
172 #define IOC_IMASK	0x308
173 #define IOC_PCOM	0x310
174 #define IOC_TCNFG	0x318
175 #define IOC_PDIR_BASE	0x320
176 
177 #define IOC_ROPE0_CFG	0x500
178 #define   IOC_ROPE_AO	  0x10	/* Allow "Relaxed Ordering" */
179 
180 
181 /* AGP GART driver looks for this */
182 #define ZX1_SBA_IOMMU_COOKIE	0x0000badbadc0ffeeUL
183 
184 /*
185 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register)
186 **
187 ** Some IOCs (sx1000) can run at the above pages sizes, but are
188 ** really only supported using the IOC at a 4k page size.
189 **
190 ** iovp_size could only be greater than PAGE_SIZE if we are
191 ** confident the drivers really only touch the next physical
192 ** page iff that driver instance owns it.
193 */
194 static unsigned long iovp_size;
195 static unsigned long iovp_shift;
196 static unsigned long iovp_mask;
197 
198 struct ioc {
199 	void __iomem	*ioc_hpa;	/* I/O MMU base address */
200 	char		*res_map;	/* resource map, bit == pdir entry */
201 	u64		*pdir_base;	/* physical base address */
202 	unsigned long	ibase;		/* pdir IOV Space base */
203 	unsigned long	imask;		/* pdir IOV Space mask */
204 
205 	unsigned long	*res_hint;	/* next avail IOVP - circular search */
206 	unsigned long	dma_mask;
207 	spinlock_t	res_lock;	/* protects the resource bitmap, but must be held when */
208 					/* clearing pdir to prevent races with allocations. */
209 	unsigned int	res_bitshift;	/* from the RIGHT! */
210 	unsigned int	res_size;	/* size of resource map in bytes */
211 #ifdef CONFIG_NUMA
212 	unsigned int	node;		/* node where this IOC lives */
213 #endif
214 #if DELAYED_RESOURCE_CNT > 0
215 	spinlock_t	saved_lock;	/* may want to try to get this on a separate cacheline */
216 					/* than res_lock for bigger systems. */
217 	int		saved_cnt;
218 	struct sba_dma_pair {
219 		dma_addr_t	iova;
220 		size_t		size;
221 	} saved[DELAYED_RESOURCE_CNT];
222 #endif
223 
224 #ifdef PDIR_SEARCH_TIMING
225 #define SBA_SEARCH_SAMPLE	0x100
226 	unsigned long avg_search[SBA_SEARCH_SAMPLE];
227 	unsigned long avg_idx;	/* current index into avg_search */
228 #endif
229 
230 	/* Stuff we don't need in performance path */
231 	struct ioc	*next;		/* list of IOC's in system */
232 	acpi_handle	handle;		/* for multiple IOC's */
233 	const char 	*name;
234 	unsigned int	func_id;
235 	unsigned int	rev;		/* HW revision of chip */
236 	u32		iov_size;
237 	unsigned int	pdir_size;	/* in bytes, determined by IOV Space size */
238 	struct pci_dev	*sac_only_dev;
239 };
240 
241 static struct ioc *ioc_list, *ioc_found;
242 static int reserve_sba_gart = 1;
243 
244 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t);
245 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t);
246 
247 #define sba_sg_address(sg)	sg_virt((sg))
248 
249 #ifdef FULL_VALID_PDIR
250 static u64 prefetch_spill_page;
251 #endif
252 
253 #define GET_IOC(dev)	((dev_is_pci(dev))						\
254 			 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL)
255 
256 /*
257 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up
258 ** (or rather not merge) DMAs into manageable chunks.
259 ** On parisc, this is more of the software/tuning constraint
260 ** rather than the HW. I/O MMU allocation algorithms can be
261 ** faster with smaller sizes (to some degree).
262 */
263 #define DMA_CHUNK_SIZE  (BITS_PER_LONG*iovp_size)
264 
265 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
266 
267 /************************************
268 ** SBA register read and write support
269 **
270 ** BE WARNED: register writes are posted.
271 **  (ie follow writes which must reach HW with a read)
272 **
273 */
274 #define READ_REG(addr)       __raw_readq(addr)
275 #define WRITE_REG(val, addr) __raw_writeq(val, addr)
276 
277 #ifdef DEBUG_SBA_INIT
278 
279 /**
280  * sba_dump_tlb - debugging only - print IOMMU operating parameters
281  * @hpa: base address of the IOMMU
282  *
283  * Print the size/location of the IO MMU PDIR.
284  */
285 static void
286 sba_dump_tlb(char *hpa)
287 {
288 	DBG_INIT("IO TLB at 0x%p\n", (void *)hpa);
289 	DBG_INIT("IOC_IBASE    : %016lx\n", READ_REG(hpa+IOC_IBASE));
290 	DBG_INIT("IOC_IMASK    : %016lx\n", READ_REG(hpa+IOC_IMASK));
291 	DBG_INIT("IOC_TCNFG    : %016lx\n", READ_REG(hpa+IOC_TCNFG));
292 	DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE));
293 	DBG_INIT("\n");
294 }
295 #endif
296 
297 
298 #ifdef ASSERT_PDIR_SANITY
299 
300 /**
301  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
302  * @ioc: IO MMU structure which owns the pdir we are interested in.
303  * @msg: text to print ont the output line.
304  * @pide: pdir index.
305  *
306  * Print one entry of the IO MMU PDIR in human readable form.
307  */
308 static void
309 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
310 {
311 	/* start printing from lowest pde in rval */
312 	u64 *ptr = &ioc->pdir_base[pide  & ~(BITS_PER_LONG - 1)];
313 	unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)];
314 	uint rcnt;
315 
316 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
317 		 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr);
318 
319 	rcnt = 0;
320 	while (rcnt < BITS_PER_LONG) {
321 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
322 		       (rcnt == (pide & (BITS_PER_LONG - 1)))
323 		       ? "    -->" : "       ",
324 		       rcnt, ptr, (unsigned long long) *ptr );
325 		rcnt++;
326 		ptr++;
327 	}
328 	printk(KERN_DEBUG "%s", msg);
329 }
330 
331 
332 /**
333  * sba_check_pdir - debugging only - consistency checker
334  * @ioc: IO MMU structure which owns the pdir we are interested in.
335  * @msg: text to print ont the output line.
336  *
337  * Verify the resource map and pdir state is consistent
338  */
339 static int
340 sba_check_pdir(struct ioc *ioc, char *msg)
341 {
342 	u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]);
343 	u64 *rptr = (u64 *) ioc->res_map;	/* resource map ptr */
344 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
345 	uint pide = 0;
346 
347 	while (rptr < rptr_end) {
348 		u64 rval;
349 		int rcnt; /* number of bits we might check */
350 
351 		rval = *rptr;
352 		rcnt = 64;
353 
354 		while (rcnt) {
355 			/* Get last byte and highest bit from that */
356 			u32 pde = ((u32)((*pptr >> (63)) & 0x1));
357 			if ((rval & 0x1) ^ pde)
358 			{
359 				/*
360 				** BUMMER!  -- res_map != pdir --
361 				** Dump rval and matching pdir entries
362 				*/
363 				sba_dump_pdir_entry(ioc, msg, pide);
364 				return(1);
365 			}
366 			rcnt--;
367 			rval >>= 1;	/* try the next bit */
368 			pptr++;
369 			pide++;
370 		}
371 		rptr++;	/* look at next word of res_map */
372 	}
373 	/* It'd be nice if we always got here :^) */
374 	return 0;
375 }
376 
377 
378 /**
379  * sba_dump_sg - debugging only - print Scatter-Gather list
380  * @ioc: IO MMU structure which owns the pdir we are interested in.
381  * @startsg: head of the SG list
382  * @nents: number of entries in SG list
383  *
384  * print the SG list so we can verify it's correct by hand.
385  */
386 static void
387 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
388 {
389 	while (nents-- > 0) {
390 		printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents,
391 		       startsg->dma_address, startsg->dma_length,
392 		       sba_sg_address(startsg));
393 		startsg = sg_next(startsg);
394 	}
395 }
396 
397 static void
398 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
399 {
400 	struct scatterlist *the_sg = startsg;
401 	int the_nents = nents;
402 
403 	while (the_nents-- > 0) {
404 		if (sba_sg_address(the_sg) == 0x0UL)
405 			sba_dump_sg(NULL, startsg, nents);
406 		the_sg = sg_next(the_sg);
407 	}
408 }
409 
410 #endif /* ASSERT_PDIR_SANITY */
411 
412 
413 
414 
415 /**************************************************************
416 *
417 *   I/O Pdir Resource Management
418 *
419 *   Bits set in the resource map are in use.
420 *   Each bit can represent a number of pages.
421 *   LSbs represent lower addresses (IOVA's).
422 *
423 ***************************************************************/
424 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
425 
426 /* Convert from IOVP to IOVA and vice versa. */
427 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset))
428 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase))
429 
430 #define PDIR_ENTRY_SIZE	sizeof(u64)
431 
432 #define PDIR_INDEX(iovp)   ((iovp)>>iovp_shift)
433 
434 #define RESMAP_MASK(n)    ~(~0UL << (n))
435 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
436 
437 
438 /**
439  * For most cases the normal get_order is sufficient, however it limits us
440  * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity.
441  * It only incurs about 1 clock cycle to use this one with the static variable
442  * and makes the code more intuitive.
443  */
444 static SBA_INLINE int
445 get_iovp_order (unsigned long size)
446 {
447 	long double d = size - 1;
448 	long order;
449 
450 	order = ia64_getf_exp(d);
451 	order = order - iovp_shift - 0xffff + 1;
452 	if (order < 0)
453 		order = 0;
454 	return order;
455 }
456 
457 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
458 				 unsigned int bitshiftcnt)
459 {
460 	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
461 		+ bitshiftcnt;
462 }
463 
464 /**
465  * sba_search_bitmap - find free space in IO PDIR resource bitmap
466  * @ioc: IO MMU structure which owns the pdir we are interested in.
467  * @bits_wanted: number of entries we need.
468  * @use_hint: use res_hint to indicate where to start looking
469  *
470  * Find consecutive free bits in resource bitmap.
471  * Each bit represents one entry in the IO Pdir.
472  * Cool perf optimization: search for log2(size) bits at a time.
473  */
474 static SBA_INLINE unsigned long
475 sba_search_bitmap(struct ioc *ioc, struct device *dev,
476 		  unsigned long bits_wanted, int use_hint)
477 {
478 	unsigned long *res_ptr;
479 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
480 	unsigned long flags, pide = ~0UL, tpide;
481 	unsigned long boundary_size;
482 	unsigned long shift;
483 	int ret;
484 
485 	ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0);
486 	ASSERT(res_ptr < res_end);
487 
488 	boundary_size = dma_get_seg_boundary_nr_pages(dev, iovp_shift);
489 
490 	BUG_ON(ioc->ibase & ~iovp_mask);
491 	shift = ioc->ibase >> iovp_shift;
492 
493 	spin_lock_irqsave(&ioc->res_lock, flags);
494 
495 	/* Allow caller to force a search through the entire resource space */
496 	if (likely(use_hint)) {
497 		res_ptr = ioc->res_hint;
498 	} else {
499 		res_ptr = (ulong *)ioc->res_map;
500 		ioc->res_bitshift = 0;
501 	}
502 
503 	/*
504 	 * N.B.  REO/Grande defect AR2305 can cause TLB fetch timeouts
505 	 * if a TLB entry is purged while in use.  sba_mark_invalid()
506 	 * purges IOTLB entries in power-of-two sizes, so we also
507 	 * allocate IOVA space in power-of-two sizes.
508 	 */
509 	bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift);
510 
511 	if (likely(bits_wanted == 1)) {
512 		unsigned int bitshiftcnt;
513 		for(; res_ptr < res_end ; res_ptr++) {
514 			if (likely(*res_ptr != ~0UL)) {
515 				bitshiftcnt = ffz(*res_ptr);
516 				*res_ptr |= (1UL << bitshiftcnt);
517 				pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
518 				ioc->res_bitshift = bitshiftcnt + bits_wanted;
519 				goto found_it;
520 			}
521 		}
522 		goto not_found;
523 
524 	}
525 
526 	if (likely(bits_wanted <= BITS_PER_LONG/2)) {
527 		/*
528 		** Search the resource bit map on well-aligned values.
529 		** "o" is the alignment.
530 		** We need the alignment to invalidate I/O TLB using
531 		** SBA HW features in the unmap path.
532 		*/
533 		unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift);
534 		uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o);
535 		unsigned long mask, base_mask;
536 
537 		base_mask = RESMAP_MASK(bits_wanted);
538 		mask = base_mask << bitshiftcnt;
539 
540 		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
541 		for(; res_ptr < res_end ; res_ptr++)
542 		{
543 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
544 			ASSERT(0 != mask);
545 			for (; mask ; mask <<= o, bitshiftcnt += o) {
546 				tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
547 				ret = iommu_is_span_boundary(tpide, bits_wanted,
548 							     shift,
549 							     boundary_size);
550 				if ((0 == ((*res_ptr) & mask)) && !ret) {
551 					*res_ptr |= mask;     /* mark resources busy! */
552 					pide = tpide;
553 					ioc->res_bitshift = bitshiftcnt + bits_wanted;
554 					goto found_it;
555 				}
556 			}
557 
558 			bitshiftcnt = 0;
559 			mask = base_mask;
560 
561 		}
562 
563 	} else {
564 		int qwords, bits, i;
565 		unsigned long *end;
566 
567 		qwords = bits_wanted >> 6; /* /64 */
568 		bits = bits_wanted - (qwords * BITS_PER_LONG);
569 
570 		end = res_end - qwords;
571 
572 		for (; res_ptr < end; res_ptr++) {
573 			tpide = ptr_to_pide(ioc, res_ptr, 0);
574 			ret = iommu_is_span_boundary(tpide, bits_wanted,
575 						     shift, boundary_size);
576 			if (ret)
577 				goto next_ptr;
578 			for (i = 0 ; i < qwords ; i++) {
579 				if (res_ptr[i] != 0)
580 					goto next_ptr;
581 			}
582 			if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits))
583 				continue;
584 
585 			/* Found it, mark it */
586 			for (i = 0 ; i < qwords ; i++)
587 				res_ptr[i] = ~0UL;
588 			res_ptr[i] |= RESMAP_MASK(bits);
589 
590 			pide = tpide;
591 			res_ptr += qwords;
592 			ioc->res_bitshift = bits;
593 			goto found_it;
594 next_ptr:
595 			;
596 		}
597 	}
598 
599 not_found:
600 	prefetch(ioc->res_map);
601 	ioc->res_hint = (unsigned long *) ioc->res_map;
602 	ioc->res_bitshift = 0;
603 	spin_unlock_irqrestore(&ioc->res_lock, flags);
604 	return (pide);
605 
606 found_it:
607 	ioc->res_hint = res_ptr;
608 	spin_unlock_irqrestore(&ioc->res_lock, flags);
609 	return (pide);
610 }
611 
612 
613 /**
614  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
615  * @ioc: IO MMU structure which owns the pdir we are interested in.
616  * @size: number of bytes to create a mapping for
617  *
618  * Given a size, find consecutive unmarked and then mark those bits in the
619  * resource bit map.
620  */
621 static int
622 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
623 {
624 	unsigned int pages_needed = size >> iovp_shift;
625 #ifdef PDIR_SEARCH_TIMING
626 	unsigned long itc_start;
627 #endif
628 	unsigned long pide;
629 
630 	ASSERT(pages_needed);
631 	ASSERT(0 == (size & ~iovp_mask));
632 
633 #ifdef PDIR_SEARCH_TIMING
634 	itc_start = ia64_get_itc();
635 #endif
636 	/*
637 	** "seek and ye shall find"...praying never hurts either...
638 	*/
639 	pide = sba_search_bitmap(ioc, dev, pages_needed, 1);
640 	if (unlikely(pide >= (ioc->res_size << 3))) {
641 		pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
642 		if (unlikely(pide >= (ioc->res_size << 3))) {
643 #if DELAYED_RESOURCE_CNT > 0
644 			unsigned long flags;
645 
646 			/*
647 			** With delayed resource freeing, we can give this one more shot.  We're
648 			** getting close to being in trouble here, so do what we can to make this
649 			** one count.
650 			*/
651 			spin_lock_irqsave(&ioc->saved_lock, flags);
652 			if (ioc->saved_cnt > 0) {
653 				struct sba_dma_pair *d;
654 				int cnt = ioc->saved_cnt;
655 
656 				d = &(ioc->saved[ioc->saved_cnt - 1]);
657 
658 				spin_lock(&ioc->res_lock);
659 				while (cnt--) {
660 					sba_mark_invalid(ioc, d->iova, d->size);
661 					sba_free_range(ioc, d->iova, d->size);
662 					d--;
663 				}
664 				ioc->saved_cnt = 0;
665 				READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
666 				spin_unlock(&ioc->res_lock);
667 			}
668 			spin_unlock_irqrestore(&ioc->saved_lock, flags);
669 
670 			pide = sba_search_bitmap(ioc, dev, pages_needed, 0);
671 			if (unlikely(pide >= (ioc->res_size << 3))) {
672 				printk(KERN_WARNING "%s: I/O MMU @ %p is"
673 				       "out of mapping resources, %u %u %lx\n",
674 				       __func__, ioc->ioc_hpa, ioc->res_size,
675 				       pages_needed, dma_get_seg_boundary(dev));
676 				return -1;
677 			}
678 #else
679 			printk(KERN_WARNING "%s: I/O MMU @ %p is"
680 			       "out of mapping resources, %u %u %lx\n",
681 			       __func__, ioc->ioc_hpa, ioc->res_size,
682 			       pages_needed, dma_get_seg_boundary(dev));
683 			return -1;
684 #endif
685 		}
686 	}
687 
688 #ifdef PDIR_SEARCH_TIMING
689 	ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed;
690 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
691 #endif
692 
693 	prefetchw(&(ioc->pdir_base[pide]));
694 
695 #ifdef ASSERT_PDIR_SANITY
696 	/* verify the first enable bit is clear */
697 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) {
698 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
699 	}
700 #endif
701 
702 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
703 		__func__, size, pages_needed, pide,
704 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
705 		ioc->res_bitshift );
706 
707 	return (pide);
708 }
709 
710 
711 /**
712  * sba_free_range - unmark bits in IO PDIR resource bitmap
713  * @ioc: IO MMU structure which owns the pdir we are interested in.
714  * @iova: IO virtual address which was previously allocated.
715  * @size: number of bytes to create a mapping for
716  *
717  * clear bits in the ioc's resource map
718  */
719 static SBA_INLINE void
720 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
721 {
722 	unsigned long iovp = SBA_IOVP(ioc, iova);
723 	unsigned int pide = PDIR_INDEX(iovp);
724 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
725 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
726 	int bits_not_wanted = size >> iovp_shift;
727 	unsigned long m;
728 
729 	/* Round up to power-of-two size: see AR2305 note above */
730 	bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift);
731 	for (; bits_not_wanted > 0 ; res_ptr++) {
732 
733 		if (unlikely(bits_not_wanted > BITS_PER_LONG)) {
734 
735 			/* these mappings start 64bit aligned */
736 			*res_ptr = 0UL;
737 			bits_not_wanted -= BITS_PER_LONG;
738 			pide += BITS_PER_LONG;
739 
740 		} else {
741 
742 			/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
743 			m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1));
744 			bits_not_wanted = 0;
745 
746 			DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size,
747 			        bits_not_wanted, m, pide, res_ptr, *res_ptr);
748 
749 			ASSERT(m != 0);
750 			ASSERT(bits_not_wanted);
751 			ASSERT((*res_ptr & m) == m); /* verify same bits are set */
752 			*res_ptr &= ~m;
753 		}
754 	}
755 }
756 
757 
758 /**************************************************************
759 *
760 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
761 *
762 ***************************************************************/
763 
764 /**
765  * sba_io_pdir_entry - fill in one IO PDIR entry
766  * @pdir_ptr:  pointer to IO PDIR entry
767  * @vba: Virtual CPU address of buffer to map
768  *
769  * SBA Mapping Routine
770  *
771  * Given a virtual address (vba, arg1) sba_io_pdir_entry()
772  * loads the I/O PDIR entry pointed to by pdir_ptr (arg0).
773  * Each IO Pdir entry consists of 8 bytes as shown below
774  * (LSB == bit 0):
775  *
776  *  63                    40                                 11    7        0
777  * +-+---------------------+----------------------------------+----+--------+
778  * |V|        U            |            PPN[39:12]            | U  |   FF   |
779  * +-+---------------------+----------------------------------+----+--------+
780  *
781  *  V  == Valid Bit
782  *  U  == Unused
783  * PPN == Physical Page Number
784  *
785  * The physical address fields are filled with the results of virt_to_phys()
786  * on the vba.
787  */
788 
789 #if 1
790 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL)	\
791 						      | 0x8000000000000000ULL)
792 #else
793 void SBA_INLINE
794 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba)
795 {
796 	*pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL);
797 }
798 #endif
799 
800 #ifdef ENABLE_MARK_CLEAN
801 /*
802  * Since DMA is i-cache coherent, any (complete) pages that were written via
803  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
804  * flush them when they get mapped into an executable vm-area.
805  */
806 static void mark_clean(void *addr, size_t size)
807 {
808 	struct folio *folio = virt_to_folio(addr);
809 	ssize_t left = size;
810 	size_t offset = offset_in_folio(folio, addr);
811 
812 	if (offset) {
813 		left -= folio_size(folio) - offset;
814 		if (left <= 0)
815 			return;
816 		folio = folio_next(folio);
817 	}
818 
819 	while (left >= folio_size(folio)) {
820 		left -= folio_size(folio);
821 		set_bit(PG_arch_1, &folio->flags);
822 		if (!left)
823 			break;
824 		folio = folio_next(folio);
825 	}
826 }
827 #endif
828 
829 /**
830  * sba_mark_invalid - invalidate one or more IO PDIR entries
831  * @ioc: IO MMU structure which owns the pdir we are interested in.
832  * @iova:  IO Virtual Address mapped earlier
833  * @byte_cnt:  number of bytes this mapping covers.
834  *
835  * Marking the IO PDIR entry(ies) as Invalid and invalidate
836  * corresponding IO TLB entry. The PCOM (Purge Command Register)
837  * is to purge stale entries in the IO TLB when unmapping entries.
838  *
839  * The PCOM register supports purging of multiple pages, with a minium
840  * of 1 page and a maximum of 2GB. Hardware requires the address be
841  * aligned to the size of the range being purged. The size of the range
842  * must be a power of 2. The "Cool perf optimization" in the
843  * allocation routine helps keep that true.
844  */
845 static SBA_INLINE void
846 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
847 {
848 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
849 
850 	int off = PDIR_INDEX(iovp);
851 
852 	/* Must be non-zero and rounded up */
853 	ASSERT(byte_cnt > 0);
854 	ASSERT(0 == (byte_cnt & ~iovp_mask));
855 
856 #ifdef ASSERT_PDIR_SANITY
857 	/* Assert first pdir entry is set */
858 	if (!(ioc->pdir_base[off] >> 60)) {
859 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
860 	}
861 #endif
862 
863 	if (byte_cnt <= iovp_size)
864 	{
865 		ASSERT(off < ioc->pdir_size);
866 
867 		iovp |= iovp_shift;     /* set "size" field for PCOM */
868 
869 #ifndef FULL_VALID_PDIR
870 		/*
871 		** clear I/O PDIR entry "valid" bit
872 		** Do NOT clear the rest - save it for debugging.
873 		** We should only clear bits that have previously
874 		** been enabled.
875 		*/
876 		ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
877 #else
878 		/*
879   		** If we want to maintain the PDIR as valid, put in
880 		** the spill page so devices prefetching won't
881 		** cause a hard fail.
882 		*/
883 		ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
884 #endif
885 	} else {
886 		u32 t = get_iovp_order(byte_cnt) + iovp_shift;
887 
888 		iovp |= t;
889 		ASSERT(t <= 31);   /* 2GB! Max value of "size" field */
890 
891 		do {
892 			/* verify this pdir entry is enabled */
893 			ASSERT(ioc->pdir_base[off]  >> 63);
894 #ifndef FULL_VALID_PDIR
895 			/* clear I/O Pdir entry "valid" bit first */
896 			ioc->pdir_base[off] &= ~(0x80000000000000FFULL);
897 #else
898 			ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page);
899 #endif
900 			off++;
901 			byte_cnt -= iovp_size;
902 		} while (byte_cnt > 0);
903 	}
904 
905 	WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM);
906 }
907 
908 /**
909  * sba_map_page - map one buffer and return IOVA for DMA
910  * @dev: instance of PCI owned by the driver that's asking.
911  * @page: page to map
912  * @poff: offset into page
913  * @size: number of bytes to map
914  * @dir: dma direction
915  * @attrs: optional dma attributes
916  *
917  * See Documentation/core-api/dma-api-howto.rst
918  */
919 static dma_addr_t sba_map_page(struct device *dev, struct page *page,
920 			       unsigned long poff, size_t size,
921 			       enum dma_data_direction dir,
922 			       unsigned long attrs)
923 {
924 	struct ioc *ioc;
925 	void *addr = page_address(page) + poff;
926 	dma_addr_t iovp;
927 	dma_addr_t offset;
928 	u64 *pdir_start;
929 	int pide;
930 #ifdef ASSERT_PDIR_SANITY
931 	unsigned long flags;
932 #endif
933 #ifdef ALLOW_IOV_BYPASS
934 	unsigned long pci_addr = virt_to_phys(addr);
935 #endif
936 
937 #ifdef ALLOW_IOV_BYPASS
938 	ASSERT(to_pci_dev(dev)->dma_mask);
939 	/*
940  	** Check if the PCI device can DMA to ptr... if so, just return ptr
941  	*/
942 	if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) {
943 		/*
944  		** Device is bit capable of DMA'ing to the buffer...
945 		** just return the PCI address of ptr
946  		*/
947 		DBG_BYPASS("sba_map_page() bypass mask/addr: "
948 			   "0x%lx/0x%lx\n",
949 		           to_pci_dev(dev)->dma_mask, pci_addr);
950 		return pci_addr;
951 	}
952 #endif
953 	ioc = GET_IOC(dev);
954 	ASSERT(ioc);
955 
956 	prefetch(ioc->res_hint);
957 
958 	ASSERT(size > 0);
959 	ASSERT(size <= DMA_CHUNK_SIZE);
960 
961 	/* save offset bits */
962 	offset = ((dma_addr_t) (long) addr) & ~iovp_mask;
963 
964 	/* round up to nearest iovp_size */
965 	size = (size + offset + ~iovp_mask) & iovp_mask;
966 
967 #ifdef ASSERT_PDIR_SANITY
968 	spin_lock_irqsave(&ioc->res_lock, flags);
969 	if (sba_check_pdir(ioc,"Check before sba_map_page()"))
970 		panic("Sanity check failed");
971 	spin_unlock_irqrestore(&ioc->res_lock, flags);
972 #endif
973 
974 	pide = sba_alloc_range(ioc, dev, size);
975 	if (pide < 0)
976 		return DMA_MAPPING_ERROR;
977 
978 	iovp = (dma_addr_t) pide << iovp_shift;
979 
980 	DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset);
981 
982 	pdir_start = &(ioc->pdir_base[pide]);
983 
984 	while (size > 0) {
985 		ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */
986 		sba_io_pdir_entry(pdir_start, (unsigned long) addr);
987 
988 		DBG_RUN("     pdir 0x%p %lx\n", pdir_start, *pdir_start);
989 
990 		addr += iovp_size;
991 		size -= iovp_size;
992 		pdir_start++;
993 	}
994 	/* force pdir update */
995 	wmb();
996 
997 	/* form complete address */
998 #ifdef ASSERT_PDIR_SANITY
999 	spin_lock_irqsave(&ioc->res_lock, flags);
1000 	sba_check_pdir(ioc,"Check after sba_map_page()");
1001 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1002 #endif
1003 	return SBA_IOVA(ioc, iovp, offset);
1004 }
1005 
1006 #ifdef ENABLE_MARK_CLEAN
1007 static SBA_INLINE void
1008 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size)
1009 {
1010 	u32	iovp = (u32) SBA_IOVP(ioc,iova);
1011 	int	off = PDIR_INDEX(iovp);
1012 	void	*addr;
1013 
1014 	if (size <= iovp_size) {
1015 		addr = phys_to_virt(ioc->pdir_base[off] &
1016 		                    ~0xE000000000000FFFULL);
1017 		mark_clean(addr, size);
1018 	} else {
1019 		do {
1020 			addr = phys_to_virt(ioc->pdir_base[off] &
1021 			                    ~0xE000000000000FFFULL);
1022 			mark_clean(addr, min(size, iovp_size));
1023 			off++;
1024 			size -= iovp_size;
1025 		} while (size > 0);
1026 	}
1027 }
1028 #endif
1029 
1030 /**
1031  * sba_unmap_page - unmap one IOVA and free resources
1032  * @dev: instance of PCI owned by the driver that's asking.
1033  * @iova:  IOVA of driver buffer previously mapped.
1034  * @size:  number of bytes mapped in driver buffer.
1035  * @dir:  R/W or both.
1036  * @attrs: optional dma attributes
1037  *
1038  * See Documentation/core-api/dma-api-howto.rst
1039  */
1040 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
1041 			   enum dma_data_direction dir, unsigned long attrs)
1042 {
1043 	struct ioc *ioc;
1044 #if DELAYED_RESOURCE_CNT > 0
1045 	struct sba_dma_pair *d;
1046 #endif
1047 	unsigned long flags;
1048 	dma_addr_t offset;
1049 
1050 	ioc = GET_IOC(dev);
1051 	ASSERT(ioc);
1052 
1053 #ifdef ALLOW_IOV_BYPASS
1054 	if (likely((iova & ioc->imask) != ioc->ibase)) {
1055 		/*
1056 		** Address does not fall w/in IOVA, must be bypassing
1057 		*/
1058 		DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n",
1059 			   iova);
1060 
1061 #ifdef ENABLE_MARK_CLEAN
1062 		if (dir == DMA_FROM_DEVICE) {
1063 			mark_clean(phys_to_virt(iova), size);
1064 		}
1065 #endif
1066 		return;
1067 	}
1068 #endif
1069 	offset = iova & ~iovp_mask;
1070 
1071 	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
1072 
1073 	iova ^= offset;        /* clear offset bits */
1074 	size += offset;
1075 	size = ROUNDUP(size, iovp_size);
1076 
1077 #ifdef ENABLE_MARK_CLEAN
1078 	if (dir == DMA_FROM_DEVICE)
1079 		sba_mark_clean(ioc, iova, size);
1080 #endif
1081 
1082 #if DELAYED_RESOURCE_CNT > 0
1083 	spin_lock_irqsave(&ioc->saved_lock, flags);
1084 	d = &(ioc->saved[ioc->saved_cnt]);
1085 	d->iova = iova;
1086 	d->size = size;
1087 	if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) {
1088 		int cnt = ioc->saved_cnt;
1089 		spin_lock(&ioc->res_lock);
1090 		while (cnt--) {
1091 			sba_mark_invalid(ioc, d->iova, d->size);
1092 			sba_free_range(ioc, d->iova, d->size);
1093 			d--;
1094 		}
1095 		ioc->saved_cnt = 0;
1096 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1097 		spin_unlock(&ioc->res_lock);
1098 	}
1099 	spin_unlock_irqrestore(&ioc->saved_lock, flags);
1100 #else /* DELAYED_RESOURCE_CNT == 0 */
1101 	spin_lock_irqsave(&ioc->res_lock, flags);
1102 	sba_mark_invalid(ioc, iova, size);
1103 	sba_free_range(ioc, iova, size);
1104 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
1105 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1106 #endif /* DELAYED_RESOURCE_CNT == 0 */
1107 }
1108 
1109 /**
1110  * sba_alloc_coherent - allocate/map shared mem for DMA
1111  * @dev: instance of PCI owned by the driver that's asking.
1112  * @size:  number of bytes mapped in driver buffer.
1113  * @dma_handle:  IOVA of new buffer.
1114  *
1115  * See Documentation/core-api/dma-api-howto.rst
1116  */
1117 static void *
1118 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
1119 		   gfp_t flags, unsigned long attrs)
1120 {
1121 	struct page *page;
1122 	struct ioc *ioc;
1123 	int node = -1;
1124 	void *addr;
1125 
1126 	ioc = GET_IOC(dev);
1127 	ASSERT(ioc);
1128 #ifdef CONFIG_NUMA
1129 	node = ioc->node;
1130 #endif
1131 
1132 	page = alloc_pages_node(node, flags, get_order(size));
1133 	if (unlikely(!page))
1134 		return NULL;
1135 
1136 	addr = page_address(page);
1137 	memset(addr, 0, size);
1138 	*dma_handle = page_to_phys(page);
1139 
1140 #ifdef ALLOW_IOV_BYPASS
1141 	ASSERT(dev->coherent_dma_mask);
1142 	/*
1143  	** Check if the PCI device can DMA to ptr... if so, just return ptr
1144  	*/
1145 	if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) {
1146 		DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n",
1147 		           dev->coherent_dma_mask, *dma_handle);
1148 
1149 		return addr;
1150 	}
1151 #endif
1152 
1153 	/*
1154 	 * If device can't bypass or bypass is disabled, pass the 32bit fake
1155 	 * device to map single to get an iova mapping.
1156 	 */
1157 	*dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size,
1158 			DMA_BIDIRECTIONAL, 0);
1159 	if (dma_mapping_error(dev, *dma_handle))
1160 		return NULL;
1161 	return addr;
1162 }
1163 
1164 
1165 /**
1166  * sba_free_coherent - free/unmap shared mem for DMA
1167  * @dev: instance of PCI owned by the driver that's asking.
1168  * @size:  number of bytes mapped in driver buffer.
1169  * @vaddr:  virtual address IOVA of "consistent" buffer.
1170  * @dma_handler:  IO virtual address of "consistent" buffer.
1171  *
1172  * See Documentation/core-api/dma-api-howto.rst
1173  */
1174 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr,
1175 			      dma_addr_t dma_handle, unsigned long attrs)
1176 {
1177 	sba_unmap_page(dev, dma_handle, size, 0, 0);
1178 	free_pages((unsigned long) vaddr, get_order(size));
1179 }
1180 
1181 
1182 /*
1183 ** Since 0 is a valid pdir_base index value, can't use that
1184 ** to determine if a value is valid or not. Use a flag to indicate
1185 ** the SG list entry contains a valid pdir index.
1186 */
1187 #define PIDE_FLAG 0x1UL
1188 
1189 #ifdef DEBUG_LARGE_SG_ENTRIES
1190 int dump_run_sg = 0;
1191 #endif
1192 
1193 
1194 /**
1195  * sba_fill_pdir - write allocated SG entries into IO PDIR
1196  * @ioc: IO MMU structure which owns the pdir we are interested in.
1197  * @startsg:  list of IOVA/size pairs
1198  * @nents: number of entries in startsg list
1199  *
1200  * Take preprocessed SG list and write corresponding entries
1201  * in the IO PDIR.
1202  */
1203 
1204 static SBA_INLINE int
1205 sba_fill_pdir(
1206 	struct ioc *ioc,
1207 	struct scatterlist *startsg,
1208 	int nents)
1209 {
1210 	struct scatterlist *dma_sg = startsg;	/* pointer to current DMA */
1211 	int n_mappings = 0;
1212 	u64 *pdirp = NULL;
1213 	unsigned long dma_offset = 0;
1214 
1215 	while (nents-- > 0) {
1216 		int     cnt = startsg->dma_length;
1217 		startsg->dma_length = 0;
1218 
1219 #ifdef DEBUG_LARGE_SG_ENTRIES
1220 		if (dump_run_sg)
1221 			printk(" %2d : %08lx/%05x %p\n",
1222 				nents, startsg->dma_address, cnt,
1223 				sba_sg_address(startsg));
1224 #else
1225 		DBG_RUN_SG(" %d : %08lx/%05x %p\n",
1226 				nents, startsg->dma_address, cnt,
1227 				sba_sg_address(startsg));
1228 #endif
1229 		/*
1230 		** Look for the start of a new DMA stream
1231 		*/
1232 		if (startsg->dma_address & PIDE_FLAG) {
1233 			u32 pide = startsg->dma_address & ~PIDE_FLAG;
1234 			dma_offset = (unsigned long) pide & ~iovp_mask;
1235 			startsg->dma_address = 0;
1236 			if (n_mappings)
1237 				dma_sg = sg_next(dma_sg);
1238 			dma_sg->dma_address = pide | ioc->ibase;
1239 			pdirp = &(ioc->pdir_base[pide >> iovp_shift]);
1240 			n_mappings++;
1241 		}
1242 
1243 		/*
1244 		** Look for a VCONTIG chunk
1245 		*/
1246 		if (cnt) {
1247 			unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1248 			ASSERT(pdirp);
1249 
1250 			/* Since multiple Vcontig blocks could make up
1251 			** one DMA stream, *add* cnt to dma_len.
1252 			*/
1253 			dma_sg->dma_length += cnt;
1254 			cnt += dma_offset;
1255 			dma_offset=0;	/* only want offset on first chunk */
1256 			cnt = ROUNDUP(cnt, iovp_size);
1257 			do {
1258 				sba_io_pdir_entry(pdirp, vaddr);
1259 				vaddr += iovp_size;
1260 				cnt -= iovp_size;
1261 				pdirp++;
1262 			} while (cnt > 0);
1263 		}
1264 		startsg = sg_next(startsg);
1265 	}
1266 	/* force pdir update */
1267 	wmb();
1268 
1269 #ifdef DEBUG_LARGE_SG_ENTRIES
1270 	dump_run_sg = 0;
1271 #endif
1272 	return(n_mappings);
1273 }
1274 
1275 
1276 /*
1277 ** Two address ranges are DMA contiguous *iff* "end of prev" and
1278 ** "start of next" are both on an IOV page boundary.
1279 **
1280 ** (shift left is a quick trick to mask off upper bits)
1281 */
1282 #define DMA_CONTIG(__X, __Y) \
1283 	(((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL)
1284 
1285 
1286 /**
1287  * sba_coalesce_chunks - preprocess the SG list
1288  * @ioc: IO MMU structure which owns the pdir we are interested in.
1289  * @startsg:  list of IOVA/size pairs
1290  * @nents: number of entries in startsg list
1291  *
1292  * First pass is to walk the SG list and determine where the breaks are
1293  * in the DMA stream. Allocates PDIR entries but does not fill them.
1294  * Returns the number of DMA chunks.
1295  *
1296  * Doing the fill separate from the coalescing/allocation keeps the
1297  * code simpler. Future enhancement could make one pass through
1298  * the sglist do both.
1299  */
1300 static SBA_INLINE int
1301 sba_coalesce_chunks(struct ioc *ioc, struct device *dev,
1302 	struct scatterlist *startsg,
1303 	int nents)
1304 {
1305 	struct scatterlist *vcontig_sg;    /* VCONTIG chunk head */
1306 	unsigned long vcontig_len;         /* len of VCONTIG chunk */
1307 	unsigned long vcontig_end;
1308 	struct scatterlist *dma_sg;        /* next DMA stream head */
1309 	unsigned long dma_offset, dma_len; /* start/len of DMA stream */
1310 	int n_mappings = 0;
1311 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1312 	int idx;
1313 
1314 	while (nents > 0) {
1315 		unsigned long vaddr = (unsigned long) sba_sg_address(startsg);
1316 
1317 		/*
1318 		** Prepare for first/next DMA stream
1319 		*/
1320 		dma_sg = vcontig_sg = startsg;
1321 		dma_len = vcontig_len = vcontig_end = startsg->length;
1322 		vcontig_end +=  vaddr;
1323 		dma_offset = vaddr & ~iovp_mask;
1324 
1325 		/* PARANOID: clear entries */
1326 		startsg->dma_address = startsg->dma_length = 0;
1327 
1328 		/*
1329 		** This loop terminates one iteration "early" since
1330 		** it's always looking one "ahead".
1331 		*/
1332 		while (--nents > 0) {
1333 			unsigned long vaddr;	/* tmp */
1334 
1335 			startsg = sg_next(startsg);
1336 
1337 			/* PARANOID */
1338 			startsg->dma_address = startsg->dma_length = 0;
1339 
1340 			/* catch brokenness in SCSI layer */
1341 			ASSERT(startsg->length <= DMA_CHUNK_SIZE);
1342 
1343 			/*
1344 			** First make sure current dma stream won't
1345 			** exceed DMA_CHUNK_SIZE if we coalesce the
1346 			** next entry.
1347 			*/
1348 			if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask)
1349 			    > DMA_CHUNK_SIZE)
1350 				break;
1351 
1352 			if (dma_len + startsg->length > max_seg_size)
1353 				break;
1354 
1355 			/*
1356 			** Then look for virtually contiguous blocks.
1357 			**
1358 			** append the next transaction?
1359 			*/
1360 			vaddr = (unsigned long) sba_sg_address(startsg);
1361 			if  (vcontig_end == vaddr)
1362 			{
1363 				vcontig_len += startsg->length;
1364 				vcontig_end += startsg->length;
1365 				dma_len     += startsg->length;
1366 				continue;
1367 			}
1368 
1369 #ifdef DEBUG_LARGE_SG_ENTRIES
1370 			dump_run_sg = (vcontig_len > iovp_size);
1371 #endif
1372 
1373 			/*
1374 			** Not virtually contiguous.
1375 			** Terminate prev chunk.
1376 			** Start a new chunk.
1377 			**
1378 			** Once we start a new VCONTIG chunk, dma_offset
1379 			** can't change. And we need the offset from the first
1380 			** chunk - not the last one. Ergo Successive chunks
1381 			** must start on page boundaries and dove tail
1382 			** with it's predecessor.
1383 			*/
1384 			vcontig_sg->dma_length = vcontig_len;
1385 
1386 			vcontig_sg = startsg;
1387 			vcontig_len = startsg->length;
1388 
1389 			/*
1390 			** 3) do the entries end/start on page boundaries?
1391 			**    Don't update vcontig_end until we've checked.
1392 			*/
1393 			if (DMA_CONTIG(vcontig_end, vaddr))
1394 			{
1395 				vcontig_end = vcontig_len + vaddr;
1396 				dma_len += vcontig_len;
1397 				continue;
1398 			} else {
1399 				break;
1400 			}
1401 		}
1402 
1403 		/*
1404 		** End of DMA Stream
1405 		** Terminate last VCONTIG block.
1406 		** Allocate space for DMA stream.
1407 		*/
1408 		vcontig_sg->dma_length = vcontig_len;
1409 		dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask;
1410 		ASSERT(dma_len <= DMA_CHUNK_SIZE);
1411 		idx = sba_alloc_range(ioc, dev, dma_len);
1412 		if (idx < 0) {
1413 			dma_sg->dma_length = 0;
1414 			return -1;
1415 		}
1416 		dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift)
1417 						   | dma_offset);
1418 		n_mappings++;
1419 	}
1420 
1421 	return n_mappings;
1422 }
1423 
1424 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1425 			       int nents, enum dma_data_direction dir,
1426 			       unsigned long attrs);
1427 /**
1428  * sba_map_sg - map Scatter/Gather list
1429  * @dev: instance of PCI owned by the driver that's asking.
1430  * @sglist:  array of buffer/length pairs
1431  * @nents:  number of entries in list
1432  * @dir:  R/W or both.
1433  * @attrs: optional dma attributes
1434  *
1435  * See Documentation/core-api/dma-api-howto.rst
1436  */
1437 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist,
1438 			    int nents, enum dma_data_direction dir,
1439 			    unsigned long attrs)
1440 {
1441 	struct ioc *ioc;
1442 	int coalesced, filled = 0;
1443 #ifdef ASSERT_PDIR_SANITY
1444 	unsigned long flags;
1445 #endif
1446 #ifdef ALLOW_IOV_BYPASS_SG
1447 	struct scatterlist *sg;
1448 #endif
1449 
1450 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1451 	ioc = GET_IOC(dev);
1452 	ASSERT(ioc);
1453 
1454 #ifdef ALLOW_IOV_BYPASS_SG
1455 	ASSERT(to_pci_dev(dev)->dma_mask);
1456 	if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) {
1457 		for_each_sg(sglist, sg, nents, filled) {
1458 			sg->dma_length = sg->length;
1459 			sg->dma_address = virt_to_phys(sba_sg_address(sg));
1460 		}
1461 		return filled;
1462 	}
1463 #endif
1464 	/* Fast path single entry scatterlists. */
1465 	if (nents == 1) {
1466 		sglist->dma_length = sglist->length;
1467 		sglist->dma_address = sba_map_page(dev, sg_page(sglist),
1468 				sglist->offset, sglist->length, dir, attrs);
1469 		if (dma_mapping_error(dev, sglist->dma_address))
1470 			return -EIO;
1471 		return 1;
1472 	}
1473 
1474 #ifdef ASSERT_PDIR_SANITY
1475 	spin_lock_irqsave(&ioc->res_lock, flags);
1476 	if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()"))
1477 	{
1478 		sba_dump_sg(ioc, sglist, nents);
1479 		panic("Check before sba_map_sg_attrs()");
1480 	}
1481 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1482 #endif
1483 
1484 	prefetch(ioc->res_hint);
1485 
1486 	/*
1487 	** First coalesce the chunks and allocate I/O pdir space
1488 	**
1489 	** If this is one DMA stream, we can properly map using the
1490 	** correct virtual address associated with each DMA page.
1491 	** w/o this association, we wouldn't have coherent DMA!
1492 	** Access to the virtual address is what forces a two pass algorithm.
1493 	*/
1494 	coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents);
1495 	if (coalesced < 0) {
1496 		sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs);
1497 		return -ENOMEM;
1498 	}
1499 
1500 	/*
1501 	** Program the I/O Pdir
1502 	**
1503 	** map the virtual addresses to the I/O Pdir
1504 	** o dma_address will contain the pdir index
1505 	** o dma_len will contain the number of bytes to map
1506 	** o address contains the virtual address.
1507 	*/
1508 	filled = sba_fill_pdir(ioc, sglist, nents);
1509 
1510 #ifdef ASSERT_PDIR_SANITY
1511 	spin_lock_irqsave(&ioc->res_lock, flags);
1512 	if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()"))
1513 	{
1514 		sba_dump_sg(ioc, sglist, nents);
1515 		panic("Check after sba_map_sg_attrs()\n");
1516 	}
1517 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1518 #endif
1519 
1520 	ASSERT(coalesced == filled);
1521 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1522 
1523 	return filled;
1524 }
1525 
1526 /**
1527  * sba_unmap_sg_attrs - unmap Scatter/Gather list
1528  * @dev: instance of PCI owned by the driver that's asking.
1529  * @sglist:  array of buffer/length pairs
1530  * @nents:  number of entries in list
1531  * @dir:  R/W or both.
1532  * @attrs: optional dma attributes
1533  *
1534  * See Documentation/core-api/dma-api-howto.rst
1535  */
1536 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist,
1537 			       int nents, enum dma_data_direction dir,
1538 			       unsigned long attrs)
1539 {
1540 #ifdef ASSERT_PDIR_SANITY
1541 	struct ioc *ioc;
1542 	unsigned long flags;
1543 #endif
1544 
1545 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1546 		   __func__, nents, sba_sg_address(sglist), sglist->length);
1547 
1548 #ifdef ASSERT_PDIR_SANITY
1549 	ioc = GET_IOC(dev);
1550 	ASSERT(ioc);
1551 
1552 	spin_lock_irqsave(&ioc->res_lock, flags);
1553 	sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()");
1554 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1555 #endif
1556 
1557 	while (nents && sglist->dma_length) {
1558 
1559 		sba_unmap_page(dev, sglist->dma_address, sglist->dma_length,
1560 			       dir, attrs);
1561 		sglist = sg_next(sglist);
1562 		nents--;
1563 	}
1564 
1565 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1566 
1567 #ifdef ASSERT_PDIR_SANITY
1568 	spin_lock_irqsave(&ioc->res_lock, flags);
1569 	sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()");
1570 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1571 #endif
1572 
1573 }
1574 
1575 /**************************************************************
1576 *
1577 *   Initialization and claim
1578 *
1579 ***************************************************************/
1580 
1581 static void
1582 ioc_iova_init(struct ioc *ioc)
1583 {
1584 	int tcnfg;
1585 	int agp_found = 0;
1586 	struct pci_dev *device = NULL;
1587 #ifdef FULL_VALID_PDIR
1588 	unsigned long index;
1589 #endif
1590 
1591 	/*
1592 	** Firmware programs the base and size of a "safe IOVA space"
1593 	** (one that doesn't overlap memory or LMMIO space) in the
1594 	** IBASE and IMASK registers.
1595 	*/
1596 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL;
1597 	ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL;
1598 
1599 	ioc->iov_size = ~ioc->imask + 1;
1600 
1601 	DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n",
1602 		__func__, ioc->ioc_hpa, ioc->ibase, ioc->imask,
1603 		ioc->iov_size >> 20);
1604 
1605 	switch (iovp_size) {
1606 		case  4*1024: tcnfg = 0; break;
1607 		case  8*1024: tcnfg = 1; break;
1608 		case 16*1024: tcnfg = 2; break;
1609 		case 64*1024: tcnfg = 3; break;
1610 		default:
1611 			panic(PFX "Unsupported IOTLB page size %ldK",
1612 				iovp_size >> 10);
1613 			break;
1614 	}
1615 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1616 
1617 	ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE;
1618 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1619 						   get_order(ioc->pdir_size));
1620 	if (!ioc->pdir_base)
1621 		panic(PFX "Couldn't allocate I/O Page Table\n");
1622 
1623 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1624 
1625 	DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__,
1626 		iovp_size >> 10, ioc->pdir_base, ioc->pdir_size);
1627 
1628 	ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base);
1629 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1630 
1631 	/*
1632 	** If an AGP device is present, only use half of the IOV space
1633 	** for PCI DMA.  Unfortunately we can't know ahead of time
1634 	** whether GART support will actually be used, for now we
1635 	** can just key on an AGP device found in the system.
1636 	** We program the next pdir index after we stop w/ a key for
1637 	** the GART code to handshake on.
1638 	*/
1639 	for_each_pci_dev(device)
1640 		agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP);
1641 
1642 	if (agp_found && reserve_sba_gart) {
1643 		printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n",
1644 		      ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2);
1645 		ioc->pdir_size /= 2;
1646 		((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE;
1647 	}
1648 #ifdef FULL_VALID_PDIR
1649 	/*
1650   	** Check to see if the spill page has been allocated, we don't need more than
1651 	** one across multiple SBAs.
1652 	*/
1653 	if (!prefetch_spill_page) {
1654 		char *spill_poison = "SBAIOMMU POISON";
1655 		int poison_size = 16;
1656 		void *poison_addr, *addr;
1657 
1658 		addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size));
1659 		if (!addr)
1660 			panic(PFX "Couldn't allocate PDIR spill page\n");
1661 
1662 		poison_addr = addr;
1663 		for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size)
1664 			memcpy(poison_addr, spill_poison, poison_size);
1665 
1666 		prefetch_spill_page = virt_to_phys(addr);
1667 
1668 		DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page);
1669 	}
1670 	/*
1671   	** Set all the PDIR entries valid w/ the spill page as the target
1672 	*/
1673 	for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++)
1674 		((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page);
1675 #endif
1676 
1677 	/* Clear I/O TLB of any possible entries */
1678 	WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM);
1679 	READ_REG(ioc->ioc_hpa + IOC_PCOM);
1680 
1681 	/* Enable IOVA translation */
1682 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1683 	READ_REG(ioc->ioc_hpa + IOC_IBASE);
1684 }
1685 
1686 static void __init
1687 ioc_resource_init(struct ioc *ioc)
1688 {
1689 	spin_lock_init(&ioc->res_lock);
1690 #if DELAYED_RESOURCE_CNT > 0
1691 	spin_lock_init(&ioc->saved_lock);
1692 #endif
1693 
1694 	/* resource map size dictated by pdir_size */
1695 	ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */
1696 	ioc->res_size >>= 3;  /* convert bit count to byte count */
1697 	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1698 
1699 	ioc->res_map = (char *) __get_free_pages(GFP_KERNEL,
1700 						 get_order(ioc->res_size));
1701 	if (!ioc->res_map)
1702 		panic(PFX "Couldn't allocate resource map\n");
1703 
1704 	memset(ioc->res_map, 0, ioc->res_size);
1705 	/* next available IOVP - circular search */
1706 	ioc->res_hint = (unsigned long *) ioc->res_map;
1707 
1708 #ifdef ASSERT_PDIR_SANITY
1709 	/* Mark first bit busy - ie no IOVA 0 */
1710 	ioc->res_map[0] = 0x1;
1711 	ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE;
1712 #endif
1713 #ifdef FULL_VALID_PDIR
1714 	/* Mark the last resource used so we don't prefetch beyond IOVA space */
1715 	ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */
1716 	ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF
1717 							      | prefetch_spill_page);
1718 #endif
1719 
1720 	DBG_INIT("%s() res_map %x %p\n", __func__,
1721 		 ioc->res_size, (void *) ioc->res_map);
1722 }
1723 
1724 static void __init
1725 ioc_sac_init(struct ioc *ioc)
1726 {
1727 	struct pci_dev *sac = NULL;
1728 	struct pci_controller *controller = NULL;
1729 
1730 	/*
1731 	 * pci_alloc_coherent() must return a DMA address which is
1732 	 * SAC (single address cycle) addressable, so allocate a
1733 	 * pseudo-device to enforce that.
1734 	 */
1735 	sac = kzalloc(sizeof(*sac), GFP_KERNEL);
1736 	if (!sac)
1737 		panic(PFX "Couldn't allocate struct pci_dev");
1738 
1739 	controller = kzalloc(sizeof(*controller), GFP_KERNEL);
1740 	if (!controller)
1741 		panic(PFX "Couldn't allocate struct pci_controller");
1742 
1743 	controller->iommu = ioc;
1744 	sac->sysdata = controller;
1745 	sac->dma_mask = 0xFFFFFFFFUL;
1746 	sac->dev.bus = &pci_bus_type;
1747 	ioc->sac_only_dev = sac;
1748 }
1749 
1750 static void __init
1751 ioc_zx1_init(struct ioc *ioc)
1752 {
1753 	unsigned long rope_config;
1754 	unsigned int i;
1755 
1756 	if (ioc->rev < 0x20)
1757 		panic(PFX "IOC 2.0 or later required for IOMMU support\n");
1758 
1759 	/* 38 bit memory controller + extra bit for range displaced by MMIO */
1760 	ioc->dma_mask = (0x1UL << 39) - 1;
1761 
1762 	/*
1763 	** Clear ROPE(N)_CONFIG AO bit.
1764 	** Disables "NT Ordering" (~= !"Relaxed Ordering")
1765 	** Overrides bit 1 in DMA Hint Sets.
1766 	** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701.
1767 	*/
1768 	for (i=0; i<(8*8); i+=8) {
1769 		rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1770 		rope_config &= ~IOC_ROPE_AO;
1771 		WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i);
1772 	}
1773 }
1774 
1775 typedef void (initfunc)(struct ioc *);
1776 
1777 struct ioc_iommu {
1778 	u32 func_id;
1779 	char *name;
1780 	initfunc *init;
1781 };
1782 
1783 static struct ioc_iommu ioc_iommu_info[] __initdata = {
1784 	{ ZX1_IOC_ID, "zx1", ioc_zx1_init },
1785 	{ ZX2_IOC_ID, "zx2", NULL },
1786 	{ SX1000_IOC_ID, "sx1000", NULL },
1787 	{ SX2000_IOC_ID, "sx2000", NULL },
1788 };
1789 
1790 static void __init ioc_init(unsigned long hpa, struct ioc *ioc)
1791 {
1792 	struct ioc_iommu *info;
1793 
1794 	ioc->next = ioc_list;
1795 	ioc_list = ioc;
1796 
1797 	ioc->ioc_hpa = ioremap(hpa, 0x1000);
1798 
1799 	ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID);
1800 	ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL;
1801 	ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL;	/* conservative */
1802 
1803 	for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) {
1804 		if (ioc->func_id == info->func_id) {
1805 			ioc->name = info->name;
1806 			if (info->init)
1807 				(info->init)(ioc);
1808 		}
1809 	}
1810 
1811 	iovp_size = (1 << iovp_shift);
1812 	iovp_mask = ~(iovp_size - 1);
1813 
1814 	DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__,
1815 		PAGE_SIZE >> 10, iovp_size >> 10);
1816 
1817 	if (!ioc->name) {
1818 		ioc->name = kmalloc(24, GFP_KERNEL);
1819 		if (ioc->name)
1820 			sprintf((char *) ioc->name, "Unknown (%04x:%04x)",
1821 				ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF);
1822 		else
1823 			ioc->name = "Unknown";
1824 	}
1825 
1826 	ioc_iova_init(ioc);
1827 	ioc_resource_init(ioc);
1828 	ioc_sac_init(ioc);
1829 
1830 	printk(KERN_INFO PFX
1831 		"%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n",
1832 		ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF,
1833 		hpa, ioc->iov_size >> 20, ioc->ibase);
1834 }
1835 
1836 
1837 
1838 /**************************************************************************
1839 **
1840 **   SBA initialization code (HW and SW)
1841 **
1842 **   o identify SBA chip itself
1843 **   o FIXME: initialize DMA hints for reasonable defaults
1844 **
1845 **************************************************************************/
1846 
1847 #ifdef CONFIG_PROC_FS
1848 static void *
1849 ioc_start(struct seq_file *s, loff_t *pos)
1850 {
1851 	struct ioc *ioc;
1852 	loff_t n = *pos;
1853 
1854 	for (ioc = ioc_list; ioc; ioc = ioc->next)
1855 		if (!n--)
1856 			return ioc;
1857 
1858 	return NULL;
1859 }
1860 
1861 static void *
1862 ioc_next(struct seq_file *s, void *v, loff_t *pos)
1863 {
1864 	struct ioc *ioc = v;
1865 
1866 	++*pos;
1867 	return ioc->next;
1868 }
1869 
1870 static void
1871 ioc_stop(struct seq_file *s, void *v)
1872 {
1873 }
1874 
1875 static int
1876 ioc_show(struct seq_file *s, void *v)
1877 {
1878 	struct ioc *ioc = v;
1879 	unsigned long *res_ptr = (unsigned long *)ioc->res_map;
1880 	int i, used = 0;
1881 
1882 	seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n",
1883 		ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF));
1884 #ifdef CONFIG_NUMA
1885 	if (ioc->node != NUMA_NO_NODE)
1886 		seq_printf(s, "NUMA node       : %d\n", ioc->node);
1887 #endif
1888 	seq_printf(s, "IOVA size       : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024));
1889 	seq_printf(s, "IOVA page size  : %ld kb\n", iovp_size/1024);
1890 
1891 	for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr)
1892 		used += hweight64(*res_ptr);
1893 
1894 	seq_printf(s, "PDIR size       : %d entries\n", ioc->pdir_size >> 3);
1895 	seq_printf(s, "PDIR used       : %d entries\n", used);
1896 
1897 #ifdef PDIR_SEARCH_TIMING
1898 	{
1899 		unsigned long i = 0, avg = 0, min, max;
1900 		min = max = ioc->avg_search[0];
1901 		for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1902 			avg += ioc->avg_search[i];
1903 			if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1904 			if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1905 		}
1906 		avg /= SBA_SEARCH_SAMPLE;
1907 		seq_printf(s, "Bitmap search   : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n",
1908 		           min, avg, max);
1909 	}
1910 #endif
1911 #ifndef ALLOW_IOV_BYPASS
1912 	 seq_printf(s, "IOVA bypass disabled\n");
1913 #endif
1914 	return 0;
1915 }
1916 
1917 static const struct seq_operations ioc_seq_ops = {
1918 	.start = ioc_start,
1919 	.next  = ioc_next,
1920 	.stop  = ioc_stop,
1921 	.show  = ioc_show
1922 };
1923 
1924 static void __init
1925 ioc_proc_init(void)
1926 {
1927 	struct proc_dir_entry *dir;
1928 
1929 	dir = proc_mkdir("bus/mckinley", NULL);
1930 	if (!dir)
1931 		return;
1932 
1933 	proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops);
1934 }
1935 #endif
1936 
1937 static void
1938 sba_connect_bus(struct pci_bus *bus)
1939 {
1940 	acpi_handle handle, parent;
1941 	acpi_status status;
1942 	struct ioc *ioc;
1943 
1944 	if (!PCI_CONTROLLER(bus))
1945 		panic(PFX "no sysdata on bus %d!\n", bus->number);
1946 
1947 	if (PCI_CONTROLLER(bus)->iommu)
1948 		return;
1949 
1950 	handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion);
1951 	if (!handle)
1952 		return;
1953 
1954 	/*
1955 	 * The IOC scope encloses PCI root bridges in the ACPI
1956 	 * namespace, so work our way out until we find an IOC we
1957 	 * claimed previously.
1958 	 */
1959 	do {
1960 		for (ioc = ioc_list; ioc; ioc = ioc->next)
1961 			if (ioc->handle == handle) {
1962 				PCI_CONTROLLER(bus)->iommu = ioc;
1963 				return;
1964 			}
1965 
1966 		status = acpi_get_parent(handle, &parent);
1967 		handle = parent;
1968 	} while (ACPI_SUCCESS(status));
1969 
1970 	printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number);
1971 }
1972 
1973 static void __init
1974 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle)
1975 {
1976 #ifdef CONFIG_NUMA
1977 	unsigned int node;
1978 
1979 	node = acpi_get_node(handle);
1980 	if (node != NUMA_NO_NODE && !node_online(node))
1981 		node = NUMA_NO_NODE;
1982 
1983 	ioc->node = node;
1984 #endif
1985 }
1986 
1987 static void __init acpi_sba_ioc_add(struct ioc *ioc)
1988 {
1989 	acpi_handle handle = ioc->handle;
1990 	acpi_status status;
1991 	u64 hpa, length;
1992 	struct acpi_device_info *adi;
1993 
1994 	ioc_found = ioc->next;
1995 	status = hp_acpi_csr_space(handle, &hpa, &length);
1996 	if (ACPI_FAILURE(status))
1997 		goto err;
1998 
1999 	status = acpi_get_object_info(handle, &adi);
2000 	if (ACPI_FAILURE(status))
2001 		goto err;
2002 
2003 	/*
2004 	 * For HWP0001, only SBA appears in ACPI namespace.  It encloses the PCI
2005 	 * root bridges, and its CSR space includes the IOC function.
2006 	 */
2007 	if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) {
2008 		hpa += ZX1_IOC_OFFSET;
2009 		/* zx1 based systems default to kernel page size iommu pages */
2010 		if (!iovp_shift)
2011 			iovp_shift = min(PAGE_SHIFT, 16);
2012 	}
2013 	kfree(adi);
2014 
2015 	/*
2016 	 * default anything not caught above or specified on cmdline to 4k
2017 	 * iommu page size
2018 	 */
2019 	if (!iovp_shift)
2020 		iovp_shift = 12;
2021 
2022 	ioc_init(hpa, ioc);
2023 	/* setup NUMA node association */
2024 	sba_map_ioc_to_node(ioc, handle);
2025 	return;
2026 
2027  err:
2028 	kfree(ioc);
2029 }
2030 
2031 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = {
2032 	{"HWP0001", 0},
2033 	{"HWP0004", 0},
2034 	{"", 0},
2035 };
2036 
2037 static int acpi_sba_ioc_attach(struct acpi_device *device,
2038 			       const struct acpi_device_id *not_used)
2039 {
2040 	struct ioc *ioc;
2041 
2042 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2043 	if (!ioc)
2044 		return -ENOMEM;
2045 
2046 	ioc->next = ioc_found;
2047 	ioc_found = ioc;
2048 	ioc->handle = device->handle;
2049 	return 1;
2050 }
2051 
2052 
2053 static struct acpi_scan_handler acpi_sba_ioc_handler = {
2054 	.ids	= hp_ioc_iommu_device_ids,
2055 	.attach	= acpi_sba_ioc_attach,
2056 };
2057 
2058 static int __init acpi_sba_ioc_init_acpi(void)
2059 {
2060 	return acpi_scan_add_handler(&acpi_sba_ioc_handler);
2061 }
2062 /* This has to run before acpi_scan_init(). */
2063 arch_initcall(acpi_sba_ioc_init_acpi);
2064 
2065 static int sba_dma_supported (struct device *dev, u64 mask)
2066 {
2067 	/* make sure it's at least 32bit capable */
2068 	return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL);
2069 }
2070 
2071 static const struct dma_map_ops sba_dma_ops = {
2072 	.alloc			= sba_alloc_coherent,
2073 	.free			= sba_free_coherent,
2074 	.map_page		= sba_map_page,
2075 	.unmap_page		= sba_unmap_page,
2076 	.map_sg			= sba_map_sg_attrs,
2077 	.unmap_sg		= sba_unmap_sg_attrs,
2078 	.dma_supported		= sba_dma_supported,
2079 	.mmap			= dma_common_mmap,
2080 	.get_sgtable		= dma_common_get_sgtable,
2081 	.alloc_pages		= dma_common_alloc_pages,
2082 	.free_pages		= dma_common_free_pages,
2083 };
2084 
2085 static int __init
2086 sba_init(void)
2087 {
2088 	/*
2089 	 * If we are booting a kdump kernel, the sba_iommu will cause devices
2090 	 * that were not shutdown properly to MCA as soon as they are turned
2091 	 * back on.  Our only option for a successful kdump kernel boot is to
2092 	 * use swiotlb.
2093 	 */
2094 	if (is_kdump_kernel())
2095 		return 0;
2096 
2097 	/*
2098 	 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach()
2099 	 * routine, but that only happens if acpi_scan_init() has already run.
2100 	 */
2101 	while (ioc_found)
2102 		acpi_sba_ioc_add(ioc_found);
2103 
2104 	if (!ioc_list)
2105 		return 0;
2106 
2107 	{
2108 		struct pci_bus *b = NULL;
2109 		while ((b = pci_find_next_bus(b)) != NULL)
2110 			sba_connect_bus(b);
2111 	}
2112 
2113 	/* no need for swiotlb with the iommu */
2114 	swiotlb_exit();
2115 	dma_ops = &sba_dma_ops;
2116 
2117 #ifdef CONFIG_PROC_FS
2118 	ioc_proc_init();
2119 #endif
2120 	return 0;
2121 }
2122 
2123 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */
2124 
2125 static int __init
2126 nosbagart(char *str)
2127 {
2128 	reserve_sba_gart = 0;
2129 	return 1;
2130 }
2131 
2132 __setup("nosbagart", nosbagart);
2133 
2134 static int __init
2135 sba_page_override(char *str)
2136 {
2137 	unsigned long page_size;
2138 
2139 	page_size = memparse(str, &str);
2140 	switch (page_size) {
2141 		case 4096:
2142 		case 8192:
2143 		case 16384:
2144 		case 65536:
2145 			iovp_shift = ffs(page_size) - 1;
2146 			break;
2147 		default:
2148 			printk("%s: unknown/unsupported iommu page size %ld\n",
2149 			       __func__, page_size);
2150 	}
2151 
2152 	return 1;
2153 }
2154 
2155 __setup("sbapagesize=",sba_page_override);
2156