1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 ** IA64 System Bus Adapter (SBA) I/O MMU manager 4 ** 5 ** (c) Copyright 2002-2005 Alex Williamson 6 ** (c) Copyright 2002-2003 Grant Grundler 7 ** (c) Copyright 2002-2005 Hewlett-Packard Company 8 ** 9 ** Portions (c) 2000 Grant Grundler (from parisc I/O MMU code) 10 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code) 11 ** 12 ** 13 ** 14 ** This module initializes the IOC (I/O Controller) found on HP 15 ** McKinley machines and their successors. 16 ** 17 */ 18 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/mm.h> 26 #include <linux/string.h> 27 #include <linux/pci.h> 28 #include <linux/proc_fs.h> 29 #include <linux/seq_file.h> 30 #include <linux/acpi.h> 31 #include <linux/efi.h> 32 #include <linux/nodemask.h> 33 #include <linux/bitops.h> /* hweight64() */ 34 #include <linux/crash_dump.h> 35 #include <linux/iommu-helper.h> 36 #include <linux/dma-map-ops.h> 37 #include <linux/prefetch.h> 38 #include <linux/swiotlb.h> 39 40 #include <asm/delay.h> /* ia64_get_itc() */ 41 #include <asm/io.h> 42 #include <asm/page.h> /* PAGE_OFFSET */ 43 #include <asm/dma.h> 44 45 #include <asm/acpi-ext.h> 46 47 #define PFX "IOC: " 48 49 /* 50 ** Enabling timing search of the pdir resource map. Output in /proc. 51 ** Disabled by default to optimize performance. 52 */ 53 #undef PDIR_SEARCH_TIMING 54 55 /* 56 ** This option allows cards capable of 64bit DMA to bypass the IOMMU. If 57 ** not defined, all DMA will be 32bit and go through the TLB. 58 ** There's potentially a conflict in the bio merge code with us 59 ** advertising an iommu, but then bypassing it. Since I/O MMU bypassing 60 ** appears to give more performance than bio-level virtual merging, we'll 61 ** do the former for now. NOTE: BYPASS_SG also needs to be undef'd to 62 ** completely restrict DMA to the IOMMU. 63 */ 64 #define ALLOW_IOV_BYPASS 65 66 /* 67 ** This option specifically allows/disallows bypassing scatterlists with 68 ** multiple entries. Coalescing these entries can allow better DMA streaming 69 ** and in some cases shows better performance than entirely bypassing the 70 ** IOMMU. Performance increase on the order of 1-2% sequential output/input 71 ** using bonnie++ on a RAID0 MD device (sym2 & mpt). 72 */ 73 #undef ALLOW_IOV_BYPASS_SG 74 75 /* 76 ** If a device prefetches beyond the end of a valid pdir entry, it will cause 77 ** a hard failure, ie. MCA. Version 3.0 and later of the zx1 LBA should 78 ** disconnect on 4k boundaries and prevent such issues. If the device is 79 ** particularly aggressive, this option will keep the entire pdir valid such 80 ** that prefetching will hit a valid address. This could severely impact 81 ** error containment, and is therefore off by default. The page that is 82 ** used for spill-over is poisoned, so that should help debugging somewhat. 83 */ 84 #undef FULL_VALID_PDIR 85 86 #define ENABLE_MARK_CLEAN 87 88 /* 89 ** The number of debug flags is a clue - this code is fragile. NOTE: since 90 ** tightening the use of res_lock the resource bitmap and actual pdir are no 91 ** longer guaranteed to stay in sync. The sanity checking code isn't going to 92 ** like that. 93 */ 94 #undef DEBUG_SBA_INIT 95 #undef DEBUG_SBA_RUN 96 #undef DEBUG_SBA_RUN_SG 97 #undef DEBUG_SBA_RESOURCE 98 #undef ASSERT_PDIR_SANITY 99 #undef DEBUG_LARGE_SG_ENTRIES 100 #undef DEBUG_BYPASS 101 102 #if defined(FULL_VALID_PDIR) && defined(ASSERT_PDIR_SANITY) 103 #error FULL_VALID_PDIR and ASSERT_PDIR_SANITY are mutually exclusive 104 #endif 105 106 #define SBA_INLINE __inline__ 107 /* #define SBA_INLINE */ 108 109 #ifdef DEBUG_SBA_INIT 110 #define DBG_INIT(x...) printk(x) 111 #else 112 #define DBG_INIT(x...) 113 #endif 114 115 #ifdef DEBUG_SBA_RUN 116 #define DBG_RUN(x...) printk(x) 117 #else 118 #define DBG_RUN(x...) 119 #endif 120 121 #ifdef DEBUG_SBA_RUN_SG 122 #define DBG_RUN_SG(x...) printk(x) 123 #else 124 #define DBG_RUN_SG(x...) 125 #endif 126 127 128 #ifdef DEBUG_SBA_RESOURCE 129 #define DBG_RES(x...) printk(x) 130 #else 131 #define DBG_RES(x...) 132 #endif 133 134 #ifdef DEBUG_BYPASS 135 #define DBG_BYPASS(x...) printk(x) 136 #else 137 #define DBG_BYPASS(x...) 138 #endif 139 140 #ifdef ASSERT_PDIR_SANITY 141 #define ASSERT(expr) \ 142 if(!(expr)) { \ 143 printk( "\n" __FILE__ ":%d: Assertion " #expr " failed!\n",__LINE__); \ 144 panic(#expr); \ 145 } 146 #else 147 #define ASSERT(expr) 148 #endif 149 150 /* 151 ** The number of pdir entries to "free" before issuing 152 ** a read to PCOM register to flush out PCOM writes. 153 ** Interacts with allocation granularity (ie 4 or 8 entries 154 ** allocated and free'd/purged at a time might make this 155 ** less interesting). 156 */ 157 #define DELAYED_RESOURCE_CNT 64 158 159 #define PCI_DEVICE_ID_HP_SX2000_IOC 0x12ec 160 161 #define ZX1_IOC_ID ((PCI_DEVICE_ID_HP_ZX1_IOC << 16) | PCI_VENDOR_ID_HP) 162 #define ZX2_IOC_ID ((PCI_DEVICE_ID_HP_ZX2_IOC << 16) | PCI_VENDOR_ID_HP) 163 #define REO_IOC_ID ((PCI_DEVICE_ID_HP_REO_IOC << 16) | PCI_VENDOR_ID_HP) 164 #define SX1000_IOC_ID ((PCI_DEVICE_ID_HP_SX1000_IOC << 16) | PCI_VENDOR_ID_HP) 165 #define SX2000_IOC_ID ((PCI_DEVICE_ID_HP_SX2000_IOC << 16) | PCI_VENDOR_ID_HP) 166 167 #define ZX1_IOC_OFFSET 0x1000 /* ACPI reports SBA, we want IOC */ 168 169 #define IOC_FUNC_ID 0x000 170 #define IOC_FCLASS 0x008 /* function class, bist, header, rev... */ 171 #define IOC_IBASE 0x300 /* IO TLB */ 172 #define IOC_IMASK 0x308 173 #define IOC_PCOM 0x310 174 #define IOC_TCNFG 0x318 175 #define IOC_PDIR_BASE 0x320 176 177 #define IOC_ROPE0_CFG 0x500 178 #define IOC_ROPE_AO 0x10 /* Allow "Relaxed Ordering" */ 179 180 181 /* AGP GART driver looks for this */ 182 #define ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL 183 184 /* 185 ** The zx1 IOC supports 4/8/16/64KB page sizes (see TCNFG register) 186 ** 187 ** Some IOCs (sx1000) can run at the above pages sizes, but are 188 ** really only supported using the IOC at a 4k page size. 189 ** 190 ** iovp_size could only be greater than PAGE_SIZE if we are 191 ** confident the drivers really only touch the next physical 192 ** page iff that driver instance owns it. 193 */ 194 static unsigned long iovp_size; 195 static unsigned long iovp_shift; 196 static unsigned long iovp_mask; 197 198 struct ioc { 199 void __iomem *ioc_hpa; /* I/O MMU base address */ 200 char *res_map; /* resource map, bit == pdir entry */ 201 u64 *pdir_base; /* physical base address */ 202 unsigned long ibase; /* pdir IOV Space base */ 203 unsigned long imask; /* pdir IOV Space mask */ 204 205 unsigned long *res_hint; /* next avail IOVP - circular search */ 206 unsigned long dma_mask; 207 spinlock_t res_lock; /* protects the resource bitmap, but must be held when */ 208 /* clearing pdir to prevent races with allocations. */ 209 unsigned int res_bitshift; /* from the RIGHT! */ 210 unsigned int res_size; /* size of resource map in bytes */ 211 #ifdef CONFIG_NUMA 212 unsigned int node; /* node where this IOC lives */ 213 #endif 214 #if DELAYED_RESOURCE_CNT > 0 215 spinlock_t saved_lock; /* may want to try to get this on a separate cacheline */ 216 /* than res_lock for bigger systems. */ 217 int saved_cnt; 218 struct sba_dma_pair { 219 dma_addr_t iova; 220 size_t size; 221 } saved[DELAYED_RESOURCE_CNT]; 222 #endif 223 224 #ifdef PDIR_SEARCH_TIMING 225 #define SBA_SEARCH_SAMPLE 0x100 226 unsigned long avg_search[SBA_SEARCH_SAMPLE]; 227 unsigned long avg_idx; /* current index into avg_search */ 228 #endif 229 230 /* Stuff we don't need in performance path */ 231 struct ioc *next; /* list of IOC's in system */ 232 acpi_handle handle; /* for multiple IOC's */ 233 const char *name; 234 unsigned int func_id; 235 unsigned int rev; /* HW revision of chip */ 236 u32 iov_size; 237 unsigned int pdir_size; /* in bytes, determined by IOV Space size */ 238 struct pci_dev *sac_only_dev; 239 }; 240 241 static struct ioc *ioc_list, *ioc_found; 242 static int reserve_sba_gart = 1; 243 244 static SBA_INLINE void sba_mark_invalid(struct ioc *, dma_addr_t, size_t); 245 static SBA_INLINE void sba_free_range(struct ioc *, dma_addr_t, size_t); 246 247 #define sba_sg_address(sg) sg_virt((sg)) 248 249 #ifdef FULL_VALID_PDIR 250 static u64 prefetch_spill_page; 251 #endif 252 253 #define GET_IOC(dev) ((dev_is_pci(dev)) \ 254 ? ((struct ioc *) PCI_CONTROLLER(to_pci_dev(dev))->iommu) : NULL) 255 256 /* 257 ** DMA_CHUNK_SIZE is used by the SCSI mid-layer to break up 258 ** (or rather not merge) DMAs into manageable chunks. 259 ** On parisc, this is more of the software/tuning constraint 260 ** rather than the HW. I/O MMU allocation algorithms can be 261 ** faster with smaller sizes (to some degree). 262 */ 263 #define DMA_CHUNK_SIZE (BITS_PER_LONG*iovp_size) 264 265 #define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1)) 266 267 /************************************ 268 ** SBA register read and write support 269 ** 270 ** BE WARNED: register writes are posted. 271 ** (ie follow writes which must reach HW with a read) 272 ** 273 */ 274 #define READ_REG(addr) __raw_readq(addr) 275 #define WRITE_REG(val, addr) __raw_writeq(val, addr) 276 277 #ifdef DEBUG_SBA_INIT 278 279 /** 280 * sba_dump_tlb - debugging only - print IOMMU operating parameters 281 * @hpa: base address of the IOMMU 282 * 283 * Print the size/location of the IO MMU PDIR. 284 */ 285 static void 286 sba_dump_tlb(char *hpa) 287 { 288 DBG_INIT("IO TLB at 0x%p\n", (void *)hpa); 289 DBG_INIT("IOC_IBASE : %016lx\n", READ_REG(hpa+IOC_IBASE)); 290 DBG_INIT("IOC_IMASK : %016lx\n", READ_REG(hpa+IOC_IMASK)); 291 DBG_INIT("IOC_TCNFG : %016lx\n", READ_REG(hpa+IOC_TCNFG)); 292 DBG_INIT("IOC_PDIR_BASE: %016lx\n", READ_REG(hpa+IOC_PDIR_BASE)); 293 DBG_INIT("\n"); 294 } 295 #endif 296 297 298 #ifdef ASSERT_PDIR_SANITY 299 300 /** 301 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry 302 * @ioc: IO MMU structure which owns the pdir we are interested in. 303 * @msg: text to print ont the output line. 304 * @pide: pdir index. 305 * 306 * Print one entry of the IO MMU PDIR in human readable form. 307 */ 308 static void 309 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide) 310 { 311 /* start printing from lowest pde in rval */ 312 u64 *ptr = &ioc->pdir_base[pide & ~(BITS_PER_LONG - 1)]; 313 unsigned long *rptr = (unsigned long *) &ioc->res_map[(pide >>3) & -sizeof(unsigned long)]; 314 uint rcnt; 315 316 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n", 317 msg, rptr, pide & (BITS_PER_LONG - 1), *rptr); 318 319 rcnt = 0; 320 while (rcnt < BITS_PER_LONG) { 321 printk(KERN_DEBUG "%s %2d %p %016Lx\n", 322 (rcnt == (pide & (BITS_PER_LONG - 1))) 323 ? " -->" : " ", 324 rcnt, ptr, (unsigned long long) *ptr ); 325 rcnt++; 326 ptr++; 327 } 328 printk(KERN_DEBUG "%s", msg); 329 } 330 331 332 /** 333 * sba_check_pdir - debugging only - consistency checker 334 * @ioc: IO MMU structure which owns the pdir we are interested in. 335 * @msg: text to print ont the output line. 336 * 337 * Verify the resource map and pdir state is consistent 338 */ 339 static int 340 sba_check_pdir(struct ioc *ioc, char *msg) 341 { 342 u64 *rptr_end = (u64 *) &(ioc->res_map[ioc->res_size]); 343 u64 *rptr = (u64 *) ioc->res_map; /* resource map ptr */ 344 u64 *pptr = ioc->pdir_base; /* pdir ptr */ 345 uint pide = 0; 346 347 while (rptr < rptr_end) { 348 u64 rval; 349 int rcnt; /* number of bits we might check */ 350 351 rval = *rptr; 352 rcnt = 64; 353 354 while (rcnt) { 355 /* Get last byte and highest bit from that */ 356 u32 pde = ((u32)((*pptr >> (63)) & 0x1)); 357 if ((rval & 0x1) ^ pde) 358 { 359 /* 360 ** BUMMER! -- res_map != pdir -- 361 ** Dump rval and matching pdir entries 362 */ 363 sba_dump_pdir_entry(ioc, msg, pide); 364 return(1); 365 } 366 rcnt--; 367 rval >>= 1; /* try the next bit */ 368 pptr++; 369 pide++; 370 } 371 rptr++; /* look at next word of res_map */ 372 } 373 /* It'd be nice if we always got here :^) */ 374 return 0; 375 } 376 377 378 /** 379 * sba_dump_sg - debugging only - print Scatter-Gather list 380 * @ioc: IO MMU structure which owns the pdir we are interested in. 381 * @startsg: head of the SG list 382 * @nents: number of entries in SG list 383 * 384 * print the SG list so we can verify it's correct by hand. 385 */ 386 static void 387 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 388 { 389 while (nents-- > 0) { 390 printk(KERN_DEBUG " %d : DMA %08lx/%05x CPU %p\n", nents, 391 startsg->dma_address, startsg->dma_length, 392 sba_sg_address(startsg)); 393 startsg = sg_next(startsg); 394 } 395 } 396 397 static void 398 sba_check_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 399 { 400 struct scatterlist *the_sg = startsg; 401 int the_nents = nents; 402 403 while (the_nents-- > 0) { 404 if (sba_sg_address(the_sg) == 0x0UL) 405 sba_dump_sg(NULL, startsg, nents); 406 the_sg = sg_next(the_sg); 407 } 408 } 409 410 #endif /* ASSERT_PDIR_SANITY */ 411 412 413 414 415 /************************************************************** 416 * 417 * I/O Pdir Resource Management 418 * 419 * Bits set in the resource map are in use. 420 * Each bit can represent a number of pages. 421 * LSbs represent lower addresses (IOVA's). 422 * 423 ***************************************************************/ 424 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */ 425 426 /* Convert from IOVP to IOVA and vice versa. */ 427 #define SBA_IOVA(ioc,iovp,offset) ((ioc->ibase) | (iovp) | (offset)) 428 #define SBA_IOVP(ioc,iova) ((iova) & ~(ioc->ibase)) 429 430 #define PDIR_ENTRY_SIZE sizeof(u64) 431 432 #define PDIR_INDEX(iovp) ((iovp)>>iovp_shift) 433 434 #define RESMAP_MASK(n) ~(~0UL << (n)) 435 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1) 436 437 438 /** 439 * For most cases the normal get_order is sufficient, however it limits us 440 * to PAGE_SIZE being the minimum mapping alignment and TC flush granularity. 441 * It only incurs about 1 clock cycle to use this one with the static variable 442 * and makes the code more intuitive. 443 */ 444 static SBA_INLINE int 445 get_iovp_order (unsigned long size) 446 { 447 long double d = size - 1; 448 long order; 449 450 order = ia64_getf_exp(d); 451 order = order - iovp_shift - 0xffff + 1; 452 if (order < 0) 453 order = 0; 454 return order; 455 } 456 457 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr, 458 unsigned int bitshiftcnt) 459 { 460 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3) 461 + bitshiftcnt; 462 } 463 464 /** 465 * sba_search_bitmap - find free space in IO PDIR resource bitmap 466 * @ioc: IO MMU structure which owns the pdir we are interested in. 467 * @bits_wanted: number of entries we need. 468 * @use_hint: use res_hint to indicate where to start looking 469 * 470 * Find consecutive free bits in resource bitmap. 471 * Each bit represents one entry in the IO Pdir. 472 * Cool perf optimization: search for log2(size) bits at a time. 473 */ 474 static SBA_INLINE unsigned long 475 sba_search_bitmap(struct ioc *ioc, struct device *dev, 476 unsigned long bits_wanted, int use_hint) 477 { 478 unsigned long *res_ptr; 479 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]); 480 unsigned long flags, pide = ~0UL, tpide; 481 unsigned long boundary_size; 482 unsigned long shift; 483 int ret; 484 485 ASSERT(((unsigned long) ioc->res_hint & (sizeof(unsigned long) - 1UL)) == 0); 486 ASSERT(res_ptr < res_end); 487 488 boundary_size = dma_get_seg_boundary_nr_pages(dev, iovp_shift); 489 490 BUG_ON(ioc->ibase & ~iovp_mask); 491 shift = ioc->ibase >> iovp_shift; 492 493 spin_lock_irqsave(&ioc->res_lock, flags); 494 495 /* Allow caller to force a search through the entire resource space */ 496 if (likely(use_hint)) { 497 res_ptr = ioc->res_hint; 498 } else { 499 res_ptr = (ulong *)ioc->res_map; 500 ioc->res_bitshift = 0; 501 } 502 503 /* 504 * N.B. REO/Grande defect AR2305 can cause TLB fetch timeouts 505 * if a TLB entry is purged while in use. sba_mark_invalid() 506 * purges IOTLB entries in power-of-two sizes, so we also 507 * allocate IOVA space in power-of-two sizes. 508 */ 509 bits_wanted = 1UL << get_iovp_order(bits_wanted << iovp_shift); 510 511 if (likely(bits_wanted == 1)) { 512 unsigned int bitshiftcnt; 513 for(; res_ptr < res_end ; res_ptr++) { 514 if (likely(*res_ptr != ~0UL)) { 515 bitshiftcnt = ffz(*res_ptr); 516 *res_ptr |= (1UL << bitshiftcnt); 517 pide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 518 ioc->res_bitshift = bitshiftcnt + bits_wanted; 519 goto found_it; 520 } 521 } 522 goto not_found; 523 524 } 525 526 if (likely(bits_wanted <= BITS_PER_LONG/2)) { 527 /* 528 ** Search the resource bit map on well-aligned values. 529 ** "o" is the alignment. 530 ** We need the alignment to invalidate I/O TLB using 531 ** SBA HW features in the unmap path. 532 */ 533 unsigned long o = 1 << get_iovp_order(bits_wanted << iovp_shift); 534 uint bitshiftcnt = ROUNDUP(ioc->res_bitshift, o); 535 unsigned long mask, base_mask; 536 537 base_mask = RESMAP_MASK(bits_wanted); 538 mask = base_mask << bitshiftcnt; 539 540 DBG_RES("%s() o %ld %p", __func__, o, res_ptr); 541 for(; res_ptr < res_end ; res_ptr++) 542 { 543 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr); 544 ASSERT(0 != mask); 545 for (; mask ; mask <<= o, bitshiftcnt += o) { 546 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 547 ret = iommu_is_span_boundary(tpide, bits_wanted, 548 shift, 549 boundary_size); 550 if ((0 == ((*res_ptr) & mask)) && !ret) { 551 *res_ptr |= mask; /* mark resources busy! */ 552 pide = tpide; 553 ioc->res_bitshift = bitshiftcnt + bits_wanted; 554 goto found_it; 555 } 556 } 557 558 bitshiftcnt = 0; 559 mask = base_mask; 560 561 } 562 563 } else { 564 int qwords, bits, i; 565 unsigned long *end; 566 567 qwords = bits_wanted >> 6; /* /64 */ 568 bits = bits_wanted - (qwords * BITS_PER_LONG); 569 570 end = res_end - qwords; 571 572 for (; res_ptr < end; res_ptr++) { 573 tpide = ptr_to_pide(ioc, res_ptr, 0); 574 ret = iommu_is_span_boundary(tpide, bits_wanted, 575 shift, boundary_size); 576 if (ret) 577 goto next_ptr; 578 for (i = 0 ; i < qwords ; i++) { 579 if (res_ptr[i] != 0) 580 goto next_ptr; 581 } 582 if (bits && res_ptr[i] && (__ffs(res_ptr[i]) < bits)) 583 continue; 584 585 /* Found it, mark it */ 586 for (i = 0 ; i < qwords ; i++) 587 res_ptr[i] = ~0UL; 588 res_ptr[i] |= RESMAP_MASK(bits); 589 590 pide = tpide; 591 res_ptr += qwords; 592 ioc->res_bitshift = bits; 593 goto found_it; 594 next_ptr: 595 ; 596 } 597 } 598 599 not_found: 600 prefetch(ioc->res_map); 601 ioc->res_hint = (unsigned long *) ioc->res_map; 602 ioc->res_bitshift = 0; 603 spin_unlock_irqrestore(&ioc->res_lock, flags); 604 return (pide); 605 606 found_it: 607 ioc->res_hint = res_ptr; 608 spin_unlock_irqrestore(&ioc->res_lock, flags); 609 return (pide); 610 } 611 612 613 /** 614 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap 615 * @ioc: IO MMU structure which owns the pdir we are interested in. 616 * @size: number of bytes to create a mapping for 617 * 618 * Given a size, find consecutive unmarked and then mark those bits in the 619 * resource bit map. 620 */ 621 static int 622 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 623 { 624 unsigned int pages_needed = size >> iovp_shift; 625 #ifdef PDIR_SEARCH_TIMING 626 unsigned long itc_start; 627 #endif 628 unsigned long pide; 629 630 ASSERT(pages_needed); 631 ASSERT(0 == (size & ~iovp_mask)); 632 633 #ifdef PDIR_SEARCH_TIMING 634 itc_start = ia64_get_itc(); 635 #endif 636 /* 637 ** "seek and ye shall find"...praying never hurts either... 638 */ 639 pide = sba_search_bitmap(ioc, dev, pages_needed, 1); 640 if (unlikely(pide >= (ioc->res_size << 3))) { 641 pide = sba_search_bitmap(ioc, dev, pages_needed, 0); 642 if (unlikely(pide >= (ioc->res_size << 3))) { 643 #if DELAYED_RESOURCE_CNT > 0 644 unsigned long flags; 645 646 /* 647 ** With delayed resource freeing, we can give this one more shot. We're 648 ** getting close to being in trouble here, so do what we can to make this 649 ** one count. 650 */ 651 spin_lock_irqsave(&ioc->saved_lock, flags); 652 if (ioc->saved_cnt > 0) { 653 struct sba_dma_pair *d; 654 int cnt = ioc->saved_cnt; 655 656 d = &(ioc->saved[ioc->saved_cnt - 1]); 657 658 spin_lock(&ioc->res_lock); 659 while (cnt--) { 660 sba_mark_invalid(ioc, d->iova, d->size); 661 sba_free_range(ioc, d->iova, d->size); 662 d--; 663 } 664 ioc->saved_cnt = 0; 665 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 666 spin_unlock(&ioc->res_lock); 667 } 668 spin_unlock_irqrestore(&ioc->saved_lock, flags); 669 670 pide = sba_search_bitmap(ioc, dev, pages_needed, 0); 671 if (unlikely(pide >= (ioc->res_size << 3))) { 672 printk(KERN_WARNING "%s: I/O MMU @ %p is" 673 "out of mapping resources, %u %u %lx\n", 674 __func__, ioc->ioc_hpa, ioc->res_size, 675 pages_needed, dma_get_seg_boundary(dev)); 676 return -1; 677 } 678 #else 679 printk(KERN_WARNING "%s: I/O MMU @ %p is" 680 "out of mapping resources, %u %u %lx\n", 681 __func__, ioc->ioc_hpa, ioc->res_size, 682 pages_needed, dma_get_seg_boundary(dev)); 683 return -1; 684 #endif 685 } 686 } 687 688 #ifdef PDIR_SEARCH_TIMING 689 ioc->avg_search[ioc->avg_idx++] = (ia64_get_itc() - itc_start) / pages_needed; 690 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1; 691 #endif 692 693 prefetchw(&(ioc->pdir_base[pide])); 694 695 #ifdef ASSERT_PDIR_SANITY 696 /* verify the first enable bit is clear */ 697 if(0x00 != ((u8 *) ioc->pdir_base)[pide*PDIR_ENTRY_SIZE + 7]) { 698 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide); 699 } 700 #endif 701 702 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n", 703 __func__, size, pages_needed, pide, 704 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map), 705 ioc->res_bitshift ); 706 707 return (pide); 708 } 709 710 711 /** 712 * sba_free_range - unmark bits in IO PDIR resource bitmap 713 * @ioc: IO MMU structure which owns the pdir we are interested in. 714 * @iova: IO virtual address which was previously allocated. 715 * @size: number of bytes to create a mapping for 716 * 717 * clear bits in the ioc's resource map 718 */ 719 static SBA_INLINE void 720 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size) 721 { 722 unsigned long iovp = SBA_IOVP(ioc, iova); 723 unsigned int pide = PDIR_INDEX(iovp); 724 unsigned int ridx = pide >> 3; /* convert bit to byte address */ 725 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]); 726 int bits_not_wanted = size >> iovp_shift; 727 unsigned long m; 728 729 /* Round up to power-of-two size: see AR2305 note above */ 730 bits_not_wanted = 1UL << get_iovp_order(bits_not_wanted << iovp_shift); 731 for (; bits_not_wanted > 0 ; res_ptr++) { 732 733 if (unlikely(bits_not_wanted > BITS_PER_LONG)) { 734 735 /* these mappings start 64bit aligned */ 736 *res_ptr = 0UL; 737 bits_not_wanted -= BITS_PER_LONG; 738 pide += BITS_PER_LONG; 739 740 } else { 741 742 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */ 743 m = RESMAP_MASK(bits_not_wanted) << (pide & (BITS_PER_LONG - 1)); 744 bits_not_wanted = 0; 745 746 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", __func__, (uint) iova, size, 747 bits_not_wanted, m, pide, res_ptr, *res_ptr); 748 749 ASSERT(m != 0); 750 ASSERT(bits_not_wanted); 751 ASSERT((*res_ptr & m) == m); /* verify same bits are set */ 752 *res_ptr &= ~m; 753 } 754 } 755 } 756 757 758 /************************************************************** 759 * 760 * "Dynamic DMA Mapping" support (aka "Coherent I/O") 761 * 762 ***************************************************************/ 763 764 /** 765 * sba_io_pdir_entry - fill in one IO PDIR entry 766 * @pdir_ptr: pointer to IO PDIR entry 767 * @vba: Virtual CPU address of buffer to map 768 * 769 * SBA Mapping Routine 770 * 771 * Given a virtual address (vba, arg1) sba_io_pdir_entry() 772 * loads the I/O PDIR entry pointed to by pdir_ptr (arg0). 773 * Each IO Pdir entry consists of 8 bytes as shown below 774 * (LSB == bit 0): 775 * 776 * 63 40 11 7 0 777 * +-+---------------------+----------------------------------+----+--------+ 778 * |V| U | PPN[39:12] | U | FF | 779 * +-+---------------------+----------------------------------+----+--------+ 780 * 781 * V == Valid Bit 782 * U == Unused 783 * PPN == Physical Page Number 784 * 785 * The physical address fields are filled with the results of virt_to_phys() 786 * on the vba. 787 */ 788 789 #if 1 790 #define sba_io_pdir_entry(pdir_ptr, vba) *pdir_ptr = ((vba & ~0xE000000000000FFFULL) \ 791 | 0x8000000000000000ULL) 792 #else 793 void SBA_INLINE 794 sba_io_pdir_entry(u64 *pdir_ptr, unsigned long vba) 795 { 796 *pdir_ptr = ((vba & ~0xE000000000000FFFULL) | 0x80000000000000FFULL); 797 } 798 #endif 799 800 #ifdef ENABLE_MARK_CLEAN 801 /** 802 * Since DMA is i-cache coherent, any (complete) pages that were written via 803 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 804 * flush them when they get mapped into an executable vm-area. 805 */ 806 static void 807 mark_clean (void *addr, size_t size) 808 { 809 unsigned long pg_addr, end; 810 811 pg_addr = PAGE_ALIGN((unsigned long) addr); 812 end = (unsigned long) addr + size; 813 while (pg_addr + PAGE_SIZE <= end) { 814 struct page *page = virt_to_page((void *)pg_addr); 815 set_bit(PG_arch_1, &page->flags); 816 pg_addr += PAGE_SIZE; 817 } 818 } 819 #endif 820 821 /** 822 * sba_mark_invalid - invalidate one or more IO PDIR entries 823 * @ioc: IO MMU structure which owns the pdir we are interested in. 824 * @iova: IO Virtual Address mapped earlier 825 * @byte_cnt: number of bytes this mapping covers. 826 * 827 * Marking the IO PDIR entry(ies) as Invalid and invalidate 828 * corresponding IO TLB entry. The PCOM (Purge Command Register) 829 * is to purge stale entries in the IO TLB when unmapping entries. 830 * 831 * The PCOM register supports purging of multiple pages, with a minium 832 * of 1 page and a maximum of 2GB. Hardware requires the address be 833 * aligned to the size of the range being purged. The size of the range 834 * must be a power of 2. The "Cool perf optimization" in the 835 * allocation routine helps keep that true. 836 */ 837 static SBA_INLINE void 838 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 839 { 840 u32 iovp = (u32) SBA_IOVP(ioc,iova); 841 842 int off = PDIR_INDEX(iovp); 843 844 /* Must be non-zero and rounded up */ 845 ASSERT(byte_cnt > 0); 846 ASSERT(0 == (byte_cnt & ~iovp_mask)); 847 848 #ifdef ASSERT_PDIR_SANITY 849 /* Assert first pdir entry is set */ 850 if (!(ioc->pdir_base[off] >> 60)) { 851 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp)); 852 } 853 #endif 854 855 if (byte_cnt <= iovp_size) 856 { 857 ASSERT(off < ioc->pdir_size); 858 859 iovp |= iovp_shift; /* set "size" field for PCOM */ 860 861 #ifndef FULL_VALID_PDIR 862 /* 863 ** clear I/O PDIR entry "valid" bit 864 ** Do NOT clear the rest - save it for debugging. 865 ** We should only clear bits that have previously 866 ** been enabled. 867 */ 868 ioc->pdir_base[off] &= ~(0x80000000000000FFULL); 869 #else 870 /* 871 ** If we want to maintain the PDIR as valid, put in 872 ** the spill page so devices prefetching won't 873 ** cause a hard fail. 874 */ 875 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); 876 #endif 877 } else { 878 u32 t = get_iovp_order(byte_cnt) + iovp_shift; 879 880 iovp |= t; 881 ASSERT(t <= 31); /* 2GB! Max value of "size" field */ 882 883 do { 884 /* verify this pdir entry is enabled */ 885 ASSERT(ioc->pdir_base[off] >> 63); 886 #ifndef FULL_VALID_PDIR 887 /* clear I/O Pdir entry "valid" bit first */ 888 ioc->pdir_base[off] &= ~(0x80000000000000FFULL); 889 #else 890 ioc->pdir_base[off] = (0x80000000000000FFULL | prefetch_spill_page); 891 #endif 892 off++; 893 byte_cnt -= iovp_size; 894 } while (byte_cnt > 0); 895 } 896 897 WRITE_REG(iovp | ioc->ibase, ioc->ioc_hpa+IOC_PCOM); 898 } 899 900 /** 901 * sba_map_page - map one buffer and return IOVA for DMA 902 * @dev: instance of PCI owned by the driver that's asking. 903 * @page: page to map 904 * @poff: offset into page 905 * @size: number of bytes to map 906 * @dir: dma direction 907 * @attrs: optional dma attributes 908 * 909 * See Documentation/core-api/dma-api-howto.rst 910 */ 911 static dma_addr_t sba_map_page(struct device *dev, struct page *page, 912 unsigned long poff, size_t size, 913 enum dma_data_direction dir, 914 unsigned long attrs) 915 { 916 struct ioc *ioc; 917 void *addr = page_address(page) + poff; 918 dma_addr_t iovp; 919 dma_addr_t offset; 920 u64 *pdir_start; 921 int pide; 922 #ifdef ASSERT_PDIR_SANITY 923 unsigned long flags; 924 #endif 925 #ifdef ALLOW_IOV_BYPASS 926 unsigned long pci_addr = virt_to_phys(addr); 927 #endif 928 929 #ifdef ALLOW_IOV_BYPASS 930 ASSERT(to_pci_dev(dev)->dma_mask); 931 /* 932 ** Check if the PCI device can DMA to ptr... if so, just return ptr 933 */ 934 if (likely((pci_addr & ~to_pci_dev(dev)->dma_mask) == 0)) { 935 /* 936 ** Device is bit capable of DMA'ing to the buffer... 937 ** just return the PCI address of ptr 938 */ 939 DBG_BYPASS("sba_map_page() bypass mask/addr: " 940 "0x%lx/0x%lx\n", 941 to_pci_dev(dev)->dma_mask, pci_addr); 942 return pci_addr; 943 } 944 #endif 945 ioc = GET_IOC(dev); 946 ASSERT(ioc); 947 948 prefetch(ioc->res_hint); 949 950 ASSERT(size > 0); 951 ASSERT(size <= DMA_CHUNK_SIZE); 952 953 /* save offset bits */ 954 offset = ((dma_addr_t) (long) addr) & ~iovp_mask; 955 956 /* round up to nearest iovp_size */ 957 size = (size + offset + ~iovp_mask) & iovp_mask; 958 959 #ifdef ASSERT_PDIR_SANITY 960 spin_lock_irqsave(&ioc->res_lock, flags); 961 if (sba_check_pdir(ioc,"Check before sba_map_page()")) 962 panic("Sanity check failed"); 963 spin_unlock_irqrestore(&ioc->res_lock, flags); 964 #endif 965 966 pide = sba_alloc_range(ioc, dev, size); 967 if (pide < 0) 968 return DMA_MAPPING_ERROR; 969 970 iovp = (dma_addr_t) pide << iovp_shift; 971 972 DBG_RUN("%s() 0x%p -> 0x%lx\n", __func__, addr, (long) iovp | offset); 973 974 pdir_start = &(ioc->pdir_base[pide]); 975 976 while (size > 0) { 977 ASSERT(((u8 *)pdir_start)[7] == 0); /* verify availability */ 978 sba_io_pdir_entry(pdir_start, (unsigned long) addr); 979 980 DBG_RUN(" pdir 0x%p %lx\n", pdir_start, *pdir_start); 981 982 addr += iovp_size; 983 size -= iovp_size; 984 pdir_start++; 985 } 986 /* force pdir update */ 987 wmb(); 988 989 /* form complete address */ 990 #ifdef ASSERT_PDIR_SANITY 991 spin_lock_irqsave(&ioc->res_lock, flags); 992 sba_check_pdir(ioc,"Check after sba_map_page()"); 993 spin_unlock_irqrestore(&ioc->res_lock, flags); 994 #endif 995 return SBA_IOVA(ioc, iovp, offset); 996 } 997 998 #ifdef ENABLE_MARK_CLEAN 999 static SBA_INLINE void 1000 sba_mark_clean(struct ioc *ioc, dma_addr_t iova, size_t size) 1001 { 1002 u32 iovp = (u32) SBA_IOVP(ioc,iova); 1003 int off = PDIR_INDEX(iovp); 1004 void *addr; 1005 1006 if (size <= iovp_size) { 1007 addr = phys_to_virt(ioc->pdir_base[off] & 1008 ~0xE000000000000FFFULL); 1009 mark_clean(addr, size); 1010 } else { 1011 do { 1012 addr = phys_to_virt(ioc->pdir_base[off] & 1013 ~0xE000000000000FFFULL); 1014 mark_clean(addr, min(size, iovp_size)); 1015 off++; 1016 size -= iovp_size; 1017 } while (size > 0); 1018 } 1019 } 1020 #endif 1021 1022 /** 1023 * sba_unmap_page - unmap one IOVA and free resources 1024 * @dev: instance of PCI owned by the driver that's asking. 1025 * @iova: IOVA of driver buffer previously mapped. 1026 * @size: number of bytes mapped in driver buffer. 1027 * @dir: R/W or both. 1028 * @attrs: optional dma attributes 1029 * 1030 * See Documentation/core-api/dma-api-howto.rst 1031 */ 1032 static void sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size, 1033 enum dma_data_direction dir, unsigned long attrs) 1034 { 1035 struct ioc *ioc; 1036 #if DELAYED_RESOURCE_CNT > 0 1037 struct sba_dma_pair *d; 1038 #endif 1039 unsigned long flags; 1040 dma_addr_t offset; 1041 1042 ioc = GET_IOC(dev); 1043 ASSERT(ioc); 1044 1045 #ifdef ALLOW_IOV_BYPASS 1046 if (likely((iova & ioc->imask) != ioc->ibase)) { 1047 /* 1048 ** Address does not fall w/in IOVA, must be bypassing 1049 */ 1050 DBG_BYPASS("sba_unmap_page() bypass addr: 0x%lx\n", 1051 iova); 1052 1053 #ifdef ENABLE_MARK_CLEAN 1054 if (dir == DMA_FROM_DEVICE) { 1055 mark_clean(phys_to_virt(iova), size); 1056 } 1057 #endif 1058 return; 1059 } 1060 #endif 1061 offset = iova & ~iovp_mask; 1062 1063 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size); 1064 1065 iova ^= offset; /* clear offset bits */ 1066 size += offset; 1067 size = ROUNDUP(size, iovp_size); 1068 1069 #ifdef ENABLE_MARK_CLEAN 1070 if (dir == DMA_FROM_DEVICE) 1071 sba_mark_clean(ioc, iova, size); 1072 #endif 1073 1074 #if DELAYED_RESOURCE_CNT > 0 1075 spin_lock_irqsave(&ioc->saved_lock, flags); 1076 d = &(ioc->saved[ioc->saved_cnt]); 1077 d->iova = iova; 1078 d->size = size; 1079 if (unlikely(++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT)) { 1080 int cnt = ioc->saved_cnt; 1081 spin_lock(&ioc->res_lock); 1082 while (cnt--) { 1083 sba_mark_invalid(ioc, d->iova, d->size); 1084 sba_free_range(ioc, d->iova, d->size); 1085 d--; 1086 } 1087 ioc->saved_cnt = 0; 1088 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 1089 spin_unlock(&ioc->res_lock); 1090 } 1091 spin_unlock_irqrestore(&ioc->saved_lock, flags); 1092 #else /* DELAYED_RESOURCE_CNT == 0 */ 1093 spin_lock_irqsave(&ioc->res_lock, flags); 1094 sba_mark_invalid(ioc, iova, size); 1095 sba_free_range(ioc, iova, size); 1096 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 1097 spin_unlock_irqrestore(&ioc->res_lock, flags); 1098 #endif /* DELAYED_RESOURCE_CNT == 0 */ 1099 } 1100 1101 /** 1102 * sba_alloc_coherent - allocate/map shared mem for DMA 1103 * @dev: instance of PCI owned by the driver that's asking. 1104 * @size: number of bytes mapped in driver buffer. 1105 * @dma_handle: IOVA of new buffer. 1106 * 1107 * See Documentation/core-api/dma-api-howto.rst 1108 */ 1109 static void * 1110 sba_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 1111 gfp_t flags, unsigned long attrs) 1112 { 1113 struct page *page; 1114 struct ioc *ioc; 1115 int node = -1; 1116 void *addr; 1117 1118 ioc = GET_IOC(dev); 1119 ASSERT(ioc); 1120 #ifdef CONFIG_NUMA 1121 node = ioc->node; 1122 #endif 1123 1124 page = alloc_pages_node(node, flags, get_order(size)); 1125 if (unlikely(!page)) 1126 return NULL; 1127 1128 addr = page_address(page); 1129 memset(addr, 0, size); 1130 *dma_handle = page_to_phys(page); 1131 1132 #ifdef ALLOW_IOV_BYPASS 1133 ASSERT(dev->coherent_dma_mask); 1134 /* 1135 ** Check if the PCI device can DMA to ptr... if so, just return ptr 1136 */ 1137 if (likely((*dma_handle & ~dev->coherent_dma_mask) == 0)) { 1138 DBG_BYPASS("sba_alloc_coherent() bypass mask/addr: 0x%lx/0x%lx\n", 1139 dev->coherent_dma_mask, *dma_handle); 1140 1141 return addr; 1142 } 1143 #endif 1144 1145 /* 1146 * If device can't bypass or bypass is disabled, pass the 32bit fake 1147 * device to map single to get an iova mapping. 1148 */ 1149 *dma_handle = sba_map_page(&ioc->sac_only_dev->dev, page, 0, size, 1150 DMA_BIDIRECTIONAL, 0); 1151 if (dma_mapping_error(dev, *dma_handle)) 1152 return NULL; 1153 return addr; 1154 } 1155 1156 1157 /** 1158 * sba_free_coherent - free/unmap shared mem for DMA 1159 * @dev: instance of PCI owned by the driver that's asking. 1160 * @size: number of bytes mapped in driver buffer. 1161 * @vaddr: virtual address IOVA of "consistent" buffer. 1162 * @dma_handler: IO virtual address of "consistent" buffer. 1163 * 1164 * See Documentation/core-api/dma-api-howto.rst 1165 */ 1166 static void sba_free_coherent(struct device *dev, size_t size, void *vaddr, 1167 dma_addr_t dma_handle, unsigned long attrs) 1168 { 1169 sba_unmap_page(dev, dma_handle, size, 0, 0); 1170 free_pages((unsigned long) vaddr, get_order(size)); 1171 } 1172 1173 1174 /* 1175 ** Since 0 is a valid pdir_base index value, can't use that 1176 ** to determine if a value is valid or not. Use a flag to indicate 1177 ** the SG list entry contains a valid pdir index. 1178 */ 1179 #define PIDE_FLAG 0x1UL 1180 1181 #ifdef DEBUG_LARGE_SG_ENTRIES 1182 int dump_run_sg = 0; 1183 #endif 1184 1185 1186 /** 1187 * sba_fill_pdir - write allocated SG entries into IO PDIR 1188 * @ioc: IO MMU structure which owns the pdir we are interested in. 1189 * @startsg: list of IOVA/size pairs 1190 * @nents: number of entries in startsg list 1191 * 1192 * Take preprocessed SG list and write corresponding entries 1193 * in the IO PDIR. 1194 */ 1195 1196 static SBA_INLINE int 1197 sba_fill_pdir( 1198 struct ioc *ioc, 1199 struct scatterlist *startsg, 1200 int nents) 1201 { 1202 struct scatterlist *dma_sg = startsg; /* pointer to current DMA */ 1203 int n_mappings = 0; 1204 u64 *pdirp = NULL; 1205 unsigned long dma_offset = 0; 1206 1207 while (nents-- > 0) { 1208 int cnt = startsg->dma_length; 1209 startsg->dma_length = 0; 1210 1211 #ifdef DEBUG_LARGE_SG_ENTRIES 1212 if (dump_run_sg) 1213 printk(" %2d : %08lx/%05x %p\n", 1214 nents, startsg->dma_address, cnt, 1215 sba_sg_address(startsg)); 1216 #else 1217 DBG_RUN_SG(" %d : %08lx/%05x %p\n", 1218 nents, startsg->dma_address, cnt, 1219 sba_sg_address(startsg)); 1220 #endif 1221 /* 1222 ** Look for the start of a new DMA stream 1223 */ 1224 if (startsg->dma_address & PIDE_FLAG) { 1225 u32 pide = startsg->dma_address & ~PIDE_FLAG; 1226 dma_offset = (unsigned long) pide & ~iovp_mask; 1227 startsg->dma_address = 0; 1228 if (n_mappings) 1229 dma_sg = sg_next(dma_sg); 1230 dma_sg->dma_address = pide | ioc->ibase; 1231 pdirp = &(ioc->pdir_base[pide >> iovp_shift]); 1232 n_mappings++; 1233 } 1234 1235 /* 1236 ** Look for a VCONTIG chunk 1237 */ 1238 if (cnt) { 1239 unsigned long vaddr = (unsigned long) sba_sg_address(startsg); 1240 ASSERT(pdirp); 1241 1242 /* Since multiple Vcontig blocks could make up 1243 ** one DMA stream, *add* cnt to dma_len. 1244 */ 1245 dma_sg->dma_length += cnt; 1246 cnt += dma_offset; 1247 dma_offset=0; /* only want offset on first chunk */ 1248 cnt = ROUNDUP(cnt, iovp_size); 1249 do { 1250 sba_io_pdir_entry(pdirp, vaddr); 1251 vaddr += iovp_size; 1252 cnt -= iovp_size; 1253 pdirp++; 1254 } while (cnt > 0); 1255 } 1256 startsg = sg_next(startsg); 1257 } 1258 /* force pdir update */ 1259 wmb(); 1260 1261 #ifdef DEBUG_LARGE_SG_ENTRIES 1262 dump_run_sg = 0; 1263 #endif 1264 return(n_mappings); 1265 } 1266 1267 1268 /* 1269 ** Two address ranges are DMA contiguous *iff* "end of prev" and 1270 ** "start of next" are both on an IOV page boundary. 1271 ** 1272 ** (shift left is a quick trick to mask off upper bits) 1273 */ 1274 #define DMA_CONTIG(__X, __Y) \ 1275 (((((unsigned long) __X) | ((unsigned long) __Y)) << (BITS_PER_LONG - iovp_shift)) == 0UL) 1276 1277 1278 /** 1279 * sba_coalesce_chunks - preprocess the SG list 1280 * @ioc: IO MMU structure which owns the pdir we are interested in. 1281 * @startsg: list of IOVA/size pairs 1282 * @nents: number of entries in startsg list 1283 * 1284 * First pass is to walk the SG list and determine where the breaks are 1285 * in the DMA stream. Allocates PDIR entries but does not fill them. 1286 * Returns the number of DMA chunks. 1287 * 1288 * Doing the fill separate from the coalescing/allocation keeps the 1289 * code simpler. Future enhancement could make one pass through 1290 * the sglist do both. 1291 */ 1292 static SBA_INLINE int 1293 sba_coalesce_chunks(struct ioc *ioc, struct device *dev, 1294 struct scatterlist *startsg, 1295 int nents) 1296 { 1297 struct scatterlist *vcontig_sg; /* VCONTIG chunk head */ 1298 unsigned long vcontig_len; /* len of VCONTIG chunk */ 1299 unsigned long vcontig_end; 1300 struct scatterlist *dma_sg; /* next DMA stream head */ 1301 unsigned long dma_offset, dma_len; /* start/len of DMA stream */ 1302 int n_mappings = 0; 1303 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1304 int idx; 1305 1306 while (nents > 0) { 1307 unsigned long vaddr = (unsigned long) sba_sg_address(startsg); 1308 1309 /* 1310 ** Prepare for first/next DMA stream 1311 */ 1312 dma_sg = vcontig_sg = startsg; 1313 dma_len = vcontig_len = vcontig_end = startsg->length; 1314 vcontig_end += vaddr; 1315 dma_offset = vaddr & ~iovp_mask; 1316 1317 /* PARANOID: clear entries */ 1318 startsg->dma_address = startsg->dma_length = 0; 1319 1320 /* 1321 ** This loop terminates one iteration "early" since 1322 ** it's always looking one "ahead". 1323 */ 1324 while (--nents > 0) { 1325 unsigned long vaddr; /* tmp */ 1326 1327 startsg = sg_next(startsg); 1328 1329 /* PARANOID */ 1330 startsg->dma_address = startsg->dma_length = 0; 1331 1332 /* catch brokenness in SCSI layer */ 1333 ASSERT(startsg->length <= DMA_CHUNK_SIZE); 1334 1335 /* 1336 ** First make sure current dma stream won't 1337 ** exceed DMA_CHUNK_SIZE if we coalesce the 1338 ** next entry. 1339 */ 1340 if (((dma_len + dma_offset + startsg->length + ~iovp_mask) & iovp_mask) 1341 > DMA_CHUNK_SIZE) 1342 break; 1343 1344 if (dma_len + startsg->length > max_seg_size) 1345 break; 1346 1347 /* 1348 ** Then look for virtually contiguous blocks. 1349 ** 1350 ** append the next transaction? 1351 */ 1352 vaddr = (unsigned long) sba_sg_address(startsg); 1353 if (vcontig_end == vaddr) 1354 { 1355 vcontig_len += startsg->length; 1356 vcontig_end += startsg->length; 1357 dma_len += startsg->length; 1358 continue; 1359 } 1360 1361 #ifdef DEBUG_LARGE_SG_ENTRIES 1362 dump_run_sg = (vcontig_len > iovp_size); 1363 #endif 1364 1365 /* 1366 ** Not virtually contiguous. 1367 ** Terminate prev chunk. 1368 ** Start a new chunk. 1369 ** 1370 ** Once we start a new VCONTIG chunk, dma_offset 1371 ** can't change. And we need the offset from the first 1372 ** chunk - not the last one. Ergo Successive chunks 1373 ** must start on page boundaries and dove tail 1374 ** with it's predecessor. 1375 */ 1376 vcontig_sg->dma_length = vcontig_len; 1377 1378 vcontig_sg = startsg; 1379 vcontig_len = startsg->length; 1380 1381 /* 1382 ** 3) do the entries end/start on page boundaries? 1383 ** Don't update vcontig_end until we've checked. 1384 */ 1385 if (DMA_CONTIG(vcontig_end, vaddr)) 1386 { 1387 vcontig_end = vcontig_len + vaddr; 1388 dma_len += vcontig_len; 1389 continue; 1390 } else { 1391 break; 1392 } 1393 } 1394 1395 /* 1396 ** End of DMA Stream 1397 ** Terminate last VCONTIG block. 1398 ** Allocate space for DMA stream. 1399 */ 1400 vcontig_sg->dma_length = vcontig_len; 1401 dma_len = (dma_len + dma_offset + ~iovp_mask) & iovp_mask; 1402 ASSERT(dma_len <= DMA_CHUNK_SIZE); 1403 idx = sba_alloc_range(ioc, dev, dma_len); 1404 if (idx < 0) { 1405 dma_sg->dma_length = 0; 1406 return -1; 1407 } 1408 dma_sg->dma_address = (dma_addr_t)(PIDE_FLAG | (idx << iovp_shift) 1409 | dma_offset); 1410 n_mappings++; 1411 } 1412 1413 return n_mappings; 1414 } 1415 1416 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, 1417 int nents, enum dma_data_direction dir, 1418 unsigned long attrs); 1419 /** 1420 * sba_map_sg - map Scatter/Gather list 1421 * @dev: instance of PCI owned by the driver that's asking. 1422 * @sglist: array of buffer/length pairs 1423 * @nents: number of entries in list 1424 * @dir: R/W or both. 1425 * @attrs: optional dma attributes 1426 * 1427 * See Documentation/core-api/dma-api-howto.rst 1428 */ 1429 static int sba_map_sg_attrs(struct device *dev, struct scatterlist *sglist, 1430 int nents, enum dma_data_direction dir, 1431 unsigned long attrs) 1432 { 1433 struct ioc *ioc; 1434 int coalesced, filled = 0; 1435 #ifdef ASSERT_PDIR_SANITY 1436 unsigned long flags; 1437 #endif 1438 #ifdef ALLOW_IOV_BYPASS_SG 1439 struct scatterlist *sg; 1440 #endif 1441 1442 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 1443 ioc = GET_IOC(dev); 1444 ASSERT(ioc); 1445 1446 #ifdef ALLOW_IOV_BYPASS_SG 1447 ASSERT(to_pci_dev(dev)->dma_mask); 1448 if (likely((ioc->dma_mask & ~to_pci_dev(dev)->dma_mask) == 0)) { 1449 for_each_sg(sglist, sg, nents, filled) { 1450 sg->dma_length = sg->length; 1451 sg->dma_address = virt_to_phys(sba_sg_address(sg)); 1452 } 1453 return filled; 1454 } 1455 #endif 1456 /* Fast path single entry scatterlists. */ 1457 if (nents == 1) { 1458 sglist->dma_length = sglist->length; 1459 sglist->dma_address = sba_map_page(dev, sg_page(sglist), 1460 sglist->offset, sglist->length, dir, attrs); 1461 if (dma_mapping_error(dev, sglist->dma_address)) 1462 return -EIO; 1463 return 1; 1464 } 1465 1466 #ifdef ASSERT_PDIR_SANITY 1467 spin_lock_irqsave(&ioc->res_lock, flags); 1468 if (sba_check_pdir(ioc,"Check before sba_map_sg_attrs()")) 1469 { 1470 sba_dump_sg(ioc, sglist, nents); 1471 panic("Check before sba_map_sg_attrs()"); 1472 } 1473 spin_unlock_irqrestore(&ioc->res_lock, flags); 1474 #endif 1475 1476 prefetch(ioc->res_hint); 1477 1478 /* 1479 ** First coalesce the chunks and allocate I/O pdir space 1480 ** 1481 ** If this is one DMA stream, we can properly map using the 1482 ** correct virtual address associated with each DMA page. 1483 ** w/o this association, we wouldn't have coherent DMA! 1484 ** Access to the virtual address is what forces a two pass algorithm. 1485 */ 1486 coalesced = sba_coalesce_chunks(ioc, dev, sglist, nents); 1487 if (coalesced < 0) { 1488 sba_unmap_sg_attrs(dev, sglist, nents, dir, attrs); 1489 return -ENOMEM; 1490 } 1491 1492 /* 1493 ** Program the I/O Pdir 1494 ** 1495 ** map the virtual addresses to the I/O Pdir 1496 ** o dma_address will contain the pdir index 1497 ** o dma_len will contain the number of bytes to map 1498 ** o address contains the virtual address. 1499 */ 1500 filled = sba_fill_pdir(ioc, sglist, nents); 1501 1502 #ifdef ASSERT_PDIR_SANITY 1503 spin_lock_irqsave(&ioc->res_lock, flags); 1504 if (sba_check_pdir(ioc,"Check after sba_map_sg_attrs()")) 1505 { 1506 sba_dump_sg(ioc, sglist, nents); 1507 panic("Check after sba_map_sg_attrs()\n"); 1508 } 1509 spin_unlock_irqrestore(&ioc->res_lock, flags); 1510 #endif 1511 1512 ASSERT(coalesced == filled); 1513 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 1514 1515 return filled; 1516 } 1517 1518 /** 1519 * sba_unmap_sg_attrs - unmap Scatter/Gather list 1520 * @dev: instance of PCI owned by the driver that's asking. 1521 * @sglist: array of buffer/length pairs 1522 * @nents: number of entries in list 1523 * @dir: R/W or both. 1524 * @attrs: optional dma attributes 1525 * 1526 * See Documentation/core-api/dma-api-howto.rst 1527 */ 1528 static void sba_unmap_sg_attrs(struct device *dev, struct scatterlist *sglist, 1529 int nents, enum dma_data_direction dir, 1530 unsigned long attrs) 1531 { 1532 #ifdef ASSERT_PDIR_SANITY 1533 struct ioc *ioc; 1534 unsigned long flags; 1535 #endif 1536 1537 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 1538 __func__, nents, sba_sg_address(sglist), sglist->length); 1539 1540 #ifdef ASSERT_PDIR_SANITY 1541 ioc = GET_IOC(dev); 1542 ASSERT(ioc); 1543 1544 spin_lock_irqsave(&ioc->res_lock, flags); 1545 sba_check_pdir(ioc,"Check before sba_unmap_sg_attrs()"); 1546 spin_unlock_irqrestore(&ioc->res_lock, flags); 1547 #endif 1548 1549 while (nents && sglist->dma_length) { 1550 1551 sba_unmap_page(dev, sglist->dma_address, sglist->dma_length, 1552 dir, attrs); 1553 sglist = sg_next(sglist); 1554 nents--; 1555 } 1556 1557 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1558 1559 #ifdef ASSERT_PDIR_SANITY 1560 spin_lock_irqsave(&ioc->res_lock, flags); 1561 sba_check_pdir(ioc,"Check after sba_unmap_sg_attrs()"); 1562 spin_unlock_irqrestore(&ioc->res_lock, flags); 1563 #endif 1564 1565 } 1566 1567 /************************************************************** 1568 * 1569 * Initialization and claim 1570 * 1571 ***************************************************************/ 1572 1573 static void 1574 ioc_iova_init(struct ioc *ioc) 1575 { 1576 int tcnfg; 1577 int agp_found = 0; 1578 struct pci_dev *device = NULL; 1579 #ifdef FULL_VALID_PDIR 1580 unsigned long index; 1581 #endif 1582 1583 /* 1584 ** Firmware programs the base and size of a "safe IOVA space" 1585 ** (one that doesn't overlap memory or LMMIO space) in the 1586 ** IBASE and IMASK registers. 1587 */ 1588 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1UL; 1589 ioc->imask = READ_REG(ioc->ioc_hpa + IOC_IMASK) | 0xFFFFFFFF00000000UL; 1590 1591 ioc->iov_size = ~ioc->imask + 1; 1592 1593 DBG_INIT("%s() hpa %p IOV base 0x%lx mask 0x%lx (%dMB)\n", 1594 __func__, ioc->ioc_hpa, ioc->ibase, ioc->imask, 1595 ioc->iov_size >> 20); 1596 1597 switch (iovp_size) { 1598 case 4*1024: tcnfg = 0; break; 1599 case 8*1024: tcnfg = 1; break; 1600 case 16*1024: tcnfg = 2; break; 1601 case 64*1024: tcnfg = 3; break; 1602 default: 1603 panic(PFX "Unsupported IOTLB page size %ldK", 1604 iovp_size >> 10); 1605 break; 1606 } 1607 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG); 1608 1609 ioc->pdir_size = (ioc->iov_size / iovp_size) * PDIR_ENTRY_SIZE; 1610 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL, 1611 get_order(ioc->pdir_size)); 1612 if (!ioc->pdir_base) 1613 panic(PFX "Couldn't allocate I/O Page Table\n"); 1614 1615 memset(ioc->pdir_base, 0, ioc->pdir_size); 1616 1617 DBG_INIT("%s() IOV page size %ldK pdir %p size %x\n", __func__, 1618 iovp_size >> 10, ioc->pdir_base, ioc->pdir_size); 1619 1620 ASSERT(ALIGN((unsigned long) ioc->pdir_base, 4*1024) == (unsigned long) ioc->pdir_base); 1621 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE); 1622 1623 /* 1624 ** If an AGP device is present, only use half of the IOV space 1625 ** for PCI DMA. Unfortunately we can't know ahead of time 1626 ** whether GART support will actually be used, for now we 1627 ** can just key on an AGP device found in the system. 1628 ** We program the next pdir index after we stop w/ a key for 1629 ** the GART code to handshake on. 1630 */ 1631 for_each_pci_dev(device) 1632 agp_found |= pci_find_capability(device, PCI_CAP_ID_AGP); 1633 1634 if (agp_found && reserve_sba_gart) { 1635 printk(KERN_INFO PFX "reserving %dMb of IOVA space at 0x%lx for agpgart\n", 1636 ioc->iov_size/2 >> 20, ioc->ibase + ioc->iov_size/2); 1637 ioc->pdir_size /= 2; 1638 ((u64 *)ioc->pdir_base)[PDIR_INDEX(ioc->iov_size/2)] = ZX1_SBA_IOMMU_COOKIE; 1639 } 1640 #ifdef FULL_VALID_PDIR 1641 /* 1642 ** Check to see if the spill page has been allocated, we don't need more than 1643 ** one across multiple SBAs. 1644 */ 1645 if (!prefetch_spill_page) { 1646 char *spill_poison = "SBAIOMMU POISON"; 1647 int poison_size = 16; 1648 void *poison_addr, *addr; 1649 1650 addr = (void *)__get_free_pages(GFP_KERNEL, get_order(iovp_size)); 1651 if (!addr) 1652 panic(PFX "Couldn't allocate PDIR spill page\n"); 1653 1654 poison_addr = addr; 1655 for ( ; (u64) poison_addr < addr + iovp_size; poison_addr += poison_size) 1656 memcpy(poison_addr, spill_poison, poison_size); 1657 1658 prefetch_spill_page = virt_to_phys(addr); 1659 1660 DBG_INIT("%s() prefetch spill addr: 0x%lx\n", __func__, prefetch_spill_page); 1661 } 1662 /* 1663 ** Set all the PDIR entries valid w/ the spill page as the target 1664 */ 1665 for (index = 0 ; index < (ioc->pdir_size / PDIR_ENTRY_SIZE) ; index++) 1666 ((u64 *)ioc->pdir_base)[index] = (0x80000000000000FF | prefetch_spill_page); 1667 #endif 1668 1669 /* Clear I/O TLB of any possible entries */ 1670 WRITE_REG(ioc->ibase | (get_iovp_order(ioc->iov_size) + iovp_shift), ioc->ioc_hpa + IOC_PCOM); 1671 READ_REG(ioc->ioc_hpa + IOC_PCOM); 1672 1673 /* Enable IOVA translation */ 1674 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE); 1675 READ_REG(ioc->ioc_hpa + IOC_IBASE); 1676 } 1677 1678 static void __init 1679 ioc_resource_init(struct ioc *ioc) 1680 { 1681 spin_lock_init(&ioc->res_lock); 1682 #if DELAYED_RESOURCE_CNT > 0 1683 spin_lock_init(&ioc->saved_lock); 1684 #endif 1685 1686 /* resource map size dictated by pdir_size */ 1687 ioc->res_size = ioc->pdir_size / PDIR_ENTRY_SIZE; /* entries */ 1688 ioc->res_size >>= 3; /* convert bit count to byte count */ 1689 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1690 1691 ioc->res_map = (char *) __get_free_pages(GFP_KERNEL, 1692 get_order(ioc->res_size)); 1693 if (!ioc->res_map) 1694 panic(PFX "Couldn't allocate resource map\n"); 1695 1696 memset(ioc->res_map, 0, ioc->res_size); 1697 /* next available IOVP - circular search */ 1698 ioc->res_hint = (unsigned long *) ioc->res_map; 1699 1700 #ifdef ASSERT_PDIR_SANITY 1701 /* Mark first bit busy - ie no IOVA 0 */ 1702 ioc->res_map[0] = 0x1; 1703 ioc->pdir_base[0] = 0x8000000000000000ULL | ZX1_SBA_IOMMU_COOKIE; 1704 #endif 1705 #ifdef FULL_VALID_PDIR 1706 /* Mark the last resource used so we don't prefetch beyond IOVA space */ 1707 ioc->res_map[ioc->res_size - 1] |= 0x80UL; /* res_map is chars */ 1708 ioc->pdir_base[(ioc->pdir_size / PDIR_ENTRY_SIZE) - 1] = (0x80000000000000FF 1709 | prefetch_spill_page); 1710 #endif 1711 1712 DBG_INIT("%s() res_map %x %p\n", __func__, 1713 ioc->res_size, (void *) ioc->res_map); 1714 } 1715 1716 static void __init 1717 ioc_sac_init(struct ioc *ioc) 1718 { 1719 struct pci_dev *sac = NULL; 1720 struct pci_controller *controller = NULL; 1721 1722 /* 1723 * pci_alloc_coherent() must return a DMA address which is 1724 * SAC (single address cycle) addressable, so allocate a 1725 * pseudo-device to enforce that. 1726 */ 1727 sac = kzalloc(sizeof(*sac), GFP_KERNEL); 1728 if (!sac) 1729 panic(PFX "Couldn't allocate struct pci_dev"); 1730 1731 controller = kzalloc(sizeof(*controller), GFP_KERNEL); 1732 if (!controller) 1733 panic(PFX "Couldn't allocate struct pci_controller"); 1734 1735 controller->iommu = ioc; 1736 sac->sysdata = controller; 1737 sac->dma_mask = 0xFFFFFFFFUL; 1738 sac->dev.bus = &pci_bus_type; 1739 ioc->sac_only_dev = sac; 1740 } 1741 1742 static void __init 1743 ioc_zx1_init(struct ioc *ioc) 1744 { 1745 unsigned long rope_config; 1746 unsigned int i; 1747 1748 if (ioc->rev < 0x20) 1749 panic(PFX "IOC 2.0 or later required for IOMMU support\n"); 1750 1751 /* 38 bit memory controller + extra bit for range displaced by MMIO */ 1752 ioc->dma_mask = (0x1UL << 39) - 1; 1753 1754 /* 1755 ** Clear ROPE(N)_CONFIG AO bit. 1756 ** Disables "NT Ordering" (~= !"Relaxed Ordering") 1757 ** Overrides bit 1 in DMA Hint Sets. 1758 ** Improves netperf UDP_STREAM by ~10% for tg3 on bcm5701. 1759 */ 1760 for (i=0; i<(8*8); i+=8) { 1761 rope_config = READ_REG(ioc->ioc_hpa + IOC_ROPE0_CFG + i); 1762 rope_config &= ~IOC_ROPE_AO; 1763 WRITE_REG(rope_config, ioc->ioc_hpa + IOC_ROPE0_CFG + i); 1764 } 1765 } 1766 1767 typedef void (initfunc)(struct ioc *); 1768 1769 struct ioc_iommu { 1770 u32 func_id; 1771 char *name; 1772 initfunc *init; 1773 }; 1774 1775 static struct ioc_iommu ioc_iommu_info[] __initdata = { 1776 { ZX1_IOC_ID, "zx1", ioc_zx1_init }, 1777 { ZX2_IOC_ID, "zx2", NULL }, 1778 { SX1000_IOC_ID, "sx1000", NULL }, 1779 { SX2000_IOC_ID, "sx2000", NULL }, 1780 }; 1781 1782 static void __init ioc_init(unsigned long hpa, struct ioc *ioc) 1783 { 1784 struct ioc_iommu *info; 1785 1786 ioc->next = ioc_list; 1787 ioc_list = ioc; 1788 1789 ioc->ioc_hpa = ioremap(hpa, 0x1000); 1790 1791 ioc->func_id = READ_REG(ioc->ioc_hpa + IOC_FUNC_ID); 1792 ioc->rev = READ_REG(ioc->ioc_hpa + IOC_FCLASS) & 0xFFUL; 1793 ioc->dma_mask = 0xFFFFFFFFFFFFFFFFUL; /* conservative */ 1794 1795 for (info = ioc_iommu_info; info < ioc_iommu_info + ARRAY_SIZE(ioc_iommu_info); info++) { 1796 if (ioc->func_id == info->func_id) { 1797 ioc->name = info->name; 1798 if (info->init) 1799 (info->init)(ioc); 1800 } 1801 } 1802 1803 iovp_size = (1 << iovp_shift); 1804 iovp_mask = ~(iovp_size - 1); 1805 1806 DBG_INIT("%s: PAGE_SIZE %ldK, iovp_size %ldK\n", __func__, 1807 PAGE_SIZE >> 10, iovp_size >> 10); 1808 1809 if (!ioc->name) { 1810 ioc->name = kmalloc(24, GFP_KERNEL); 1811 if (ioc->name) 1812 sprintf((char *) ioc->name, "Unknown (%04x:%04x)", 1813 ioc->func_id & 0xFFFF, (ioc->func_id >> 16) & 0xFFFF); 1814 else 1815 ioc->name = "Unknown"; 1816 } 1817 1818 ioc_iova_init(ioc); 1819 ioc_resource_init(ioc); 1820 ioc_sac_init(ioc); 1821 1822 printk(KERN_INFO PFX 1823 "%s %d.%d HPA 0x%lx IOVA space %dMb at 0x%lx\n", 1824 ioc->name, (ioc->rev >> 4) & 0xF, ioc->rev & 0xF, 1825 hpa, ioc->iov_size >> 20, ioc->ibase); 1826 } 1827 1828 1829 1830 /************************************************************************** 1831 ** 1832 ** SBA initialization code (HW and SW) 1833 ** 1834 ** o identify SBA chip itself 1835 ** o FIXME: initialize DMA hints for reasonable defaults 1836 ** 1837 **************************************************************************/ 1838 1839 #ifdef CONFIG_PROC_FS 1840 static void * 1841 ioc_start(struct seq_file *s, loff_t *pos) 1842 { 1843 struct ioc *ioc; 1844 loff_t n = *pos; 1845 1846 for (ioc = ioc_list; ioc; ioc = ioc->next) 1847 if (!n--) 1848 return ioc; 1849 1850 return NULL; 1851 } 1852 1853 static void * 1854 ioc_next(struct seq_file *s, void *v, loff_t *pos) 1855 { 1856 struct ioc *ioc = v; 1857 1858 ++*pos; 1859 return ioc->next; 1860 } 1861 1862 static void 1863 ioc_stop(struct seq_file *s, void *v) 1864 { 1865 } 1866 1867 static int 1868 ioc_show(struct seq_file *s, void *v) 1869 { 1870 struct ioc *ioc = v; 1871 unsigned long *res_ptr = (unsigned long *)ioc->res_map; 1872 int i, used = 0; 1873 1874 seq_printf(s, "Hewlett Packard %s IOC rev %d.%d\n", 1875 ioc->name, ((ioc->rev >> 4) & 0xF), (ioc->rev & 0xF)); 1876 #ifdef CONFIG_NUMA 1877 if (ioc->node != NUMA_NO_NODE) 1878 seq_printf(s, "NUMA node : %d\n", ioc->node); 1879 #endif 1880 seq_printf(s, "IOVA size : %ld MB\n", ((ioc->pdir_size >> 3) * iovp_size)/(1024*1024)); 1881 seq_printf(s, "IOVA page size : %ld kb\n", iovp_size/1024); 1882 1883 for (i = 0; i < (ioc->res_size / sizeof(unsigned long)); ++i, ++res_ptr) 1884 used += hweight64(*res_ptr); 1885 1886 seq_printf(s, "PDIR size : %d entries\n", ioc->pdir_size >> 3); 1887 seq_printf(s, "PDIR used : %d entries\n", used); 1888 1889 #ifdef PDIR_SEARCH_TIMING 1890 { 1891 unsigned long i = 0, avg = 0, min, max; 1892 min = max = ioc->avg_search[0]; 1893 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) { 1894 avg += ioc->avg_search[i]; 1895 if (ioc->avg_search[i] > max) max = ioc->avg_search[i]; 1896 if (ioc->avg_search[i] < min) min = ioc->avg_search[i]; 1897 } 1898 avg /= SBA_SEARCH_SAMPLE; 1899 seq_printf(s, "Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles/IOVA page)\n", 1900 min, avg, max); 1901 } 1902 #endif 1903 #ifndef ALLOW_IOV_BYPASS 1904 seq_printf(s, "IOVA bypass disabled\n"); 1905 #endif 1906 return 0; 1907 } 1908 1909 static const struct seq_operations ioc_seq_ops = { 1910 .start = ioc_start, 1911 .next = ioc_next, 1912 .stop = ioc_stop, 1913 .show = ioc_show 1914 }; 1915 1916 static void __init 1917 ioc_proc_init(void) 1918 { 1919 struct proc_dir_entry *dir; 1920 1921 dir = proc_mkdir("bus/mckinley", NULL); 1922 if (!dir) 1923 return; 1924 1925 proc_create_seq(ioc_list->name, 0, dir, &ioc_seq_ops); 1926 } 1927 #endif 1928 1929 static void 1930 sba_connect_bus(struct pci_bus *bus) 1931 { 1932 acpi_handle handle, parent; 1933 acpi_status status; 1934 struct ioc *ioc; 1935 1936 if (!PCI_CONTROLLER(bus)) 1937 panic(PFX "no sysdata on bus %d!\n", bus->number); 1938 1939 if (PCI_CONTROLLER(bus)->iommu) 1940 return; 1941 1942 handle = acpi_device_handle(PCI_CONTROLLER(bus)->companion); 1943 if (!handle) 1944 return; 1945 1946 /* 1947 * The IOC scope encloses PCI root bridges in the ACPI 1948 * namespace, so work our way out until we find an IOC we 1949 * claimed previously. 1950 */ 1951 do { 1952 for (ioc = ioc_list; ioc; ioc = ioc->next) 1953 if (ioc->handle == handle) { 1954 PCI_CONTROLLER(bus)->iommu = ioc; 1955 return; 1956 } 1957 1958 status = acpi_get_parent(handle, &parent); 1959 handle = parent; 1960 } while (ACPI_SUCCESS(status)); 1961 1962 printk(KERN_WARNING "No IOC for PCI Bus %04x:%02x in ACPI\n", pci_domain_nr(bus), bus->number); 1963 } 1964 1965 static void __init 1966 sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle) 1967 { 1968 #ifdef CONFIG_NUMA 1969 unsigned int node; 1970 1971 node = acpi_get_node(handle); 1972 if (node != NUMA_NO_NODE && !node_online(node)) 1973 node = NUMA_NO_NODE; 1974 1975 ioc->node = node; 1976 #endif 1977 } 1978 1979 static void __init acpi_sba_ioc_add(struct ioc *ioc) 1980 { 1981 acpi_handle handle = ioc->handle; 1982 acpi_status status; 1983 u64 hpa, length; 1984 struct acpi_device_info *adi; 1985 1986 ioc_found = ioc->next; 1987 status = hp_acpi_csr_space(handle, &hpa, &length); 1988 if (ACPI_FAILURE(status)) 1989 goto err; 1990 1991 status = acpi_get_object_info(handle, &adi); 1992 if (ACPI_FAILURE(status)) 1993 goto err; 1994 1995 /* 1996 * For HWP0001, only SBA appears in ACPI namespace. It encloses the PCI 1997 * root bridges, and its CSR space includes the IOC function. 1998 */ 1999 if (strncmp("HWP0001", adi->hardware_id.string, 7) == 0) { 2000 hpa += ZX1_IOC_OFFSET; 2001 /* zx1 based systems default to kernel page size iommu pages */ 2002 if (!iovp_shift) 2003 iovp_shift = min(PAGE_SHIFT, 16); 2004 } 2005 kfree(adi); 2006 2007 /* 2008 * default anything not caught above or specified on cmdline to 4k 2009 * iommu page size 2010 */ 2011 if (!iovp_shift) 2012 iovp_shift = 12; 2013 2014 ioc_init(hpa, ioc); 2015 /* setup NUMA node association */ 2016 sba_map_ioc_to_node(ioc, handle); 2017 return; 2018 2019 err: 2020 kfree(ioc); 2021 } 2022 2023 static const struct acpi_device_id hp_ioc_iommu_device_ids[] = { 2024 {"HWP0001", 0}, 2025 {"HWP0004", 0}, 2026 {"", 0}, 2027 }; 2028 2029 static int acpi_sba_ioc_attach(struct acpi_device *device, 2030 const struct acpi_device_id *not_used) 2031 { 2032 struct ioc *ioc; 2033 2034 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 2035 if (!ioc) 2036 return -ENOMEM; 2037 2038 ioc->next = ioc_found; 2039 ioc_found = ioc; 2040 ioc->handle = device->handle; 2041 return 1; 2042 } 2043 2044 2045 static struct acpi_scan_handler acpi_sba_ioc_handler = { 2046 .ids = hp_ioc_iommu_device_ids, 2047 .attach = acpi_sba_ioc_attach, 2048 }; 2049 2050 static int __init acpi_sba_ioc_init_acpi(void) 2051 { 2052 return acpi_scan_add_handler(&acpi_sba_ioc_handler); 2053 } 2054 /* This has to run before acpi_scan_init(). */ 2055 arch_initcall(acpi_sba_ioc_init_acpi); 2056 2057 static int sba_dma_supported (struct device *dev, u64 mask) 2058 { 2059 /* make sure it's at least 32bit capable */ 2060 return ((mask & 0xFFFFFFFFUL) == 0xFFFFFFFFUL); 2061 } 2062 2063 static const struct dma_map_ops sba_dma_ops = { 2064 .alloc = sba_alloc_coherent, 2065 .free = sba_free_coherent, 2066 .map_page = sba_map_page, 2067 .unmap_page = sba_unmap_page, 2068 .map_sg = sba_map_sg_attrs, 2069 .unmap_sg = sba_unmap_sg_attrs, 2070 .dma_supported = sba_dma_supported, 2071 .mmap = dma_common_mmap, 2072 .get_sgtable = dma_common_get_sgtable, 2073 .alloc_pages = dma_common_alloc_pages, 2074 .free_pages = dma_common_free_pages, 2075 }; 2076 2077 static int __init 2078 sba_init(void) 2079 { 2080 /* 2081 * If we are booting a kdump kernel, the sba_iommu will cause devices 2082 * that were not shutdown properly to MCA as soon as they are turned 2083 * back on. Our only option for a successful kdump kernel boot is to 2084 * use swiotlb. 2085 */ 2086 if (is_kdump_kernel()) 2087 return 0; 2088 2089 /* 2090 * ioc_found should be populated by the acpi_sba_ioc_handler's .attach() 2091 * routine, but that only happens if acpi_scan_init() has already run. 2092 */ 2093 while (ioc_found) 2094 acpi_sba_ioc_add(ioc_found); 2095 2096 if (!ioc_list) 2097 return 0; 2098 2099 { 2100 struct pci_bus *b = NULL; 2101 while ((b = pci_find_next_bus(b)) != NULL) 2102 sba_connect_bus(b); 2103 } 2104 2105 /* no need for swiotlb with the iommu */ 2106 swiotlb_exit(); 2107 dma_ops = &sba_dma_ops; 2108 2109 #ifdef CONFIG_PROC_FS 2110 ioc_proc_init(); 2111 #endif 2112 return 0; 2113 } 2114 2115 subsys_initcall(sba_init); /* must be initialized after ACPI etc., but before any drivers... */ 2116 2117 static int __init 2118 nosbagart(char *str) 2119 { 2120 reserve_sba_gart = 0; 2121 return 1; 2122 } 2123 2124 __setup("nosbagart", nosbagart); 2125 2126 static int __init 2127 sba_page_override(char *str) 2128 { 2129 unsigned long page_size; 2130 2131 page_size = memparse(str, &str); 2132 switch (page_size) { 2133 case 4096: 2134 case 8192: 2135 case 16384: 2136 case 65536: 2137 iovp_shift = ffs(page_size) - 1; 2138 break; 2139 default: 2140 printk("%s: unknown/unsupported iommu page size %ld\n", 2141 __func__, page_size); 2142 } 2143 2144 return 1; 2145 } 2146 2147 __setup("sbapagesize=",sba_page_override); 2148