xref: /openbmc/linux/arch/hexagon/kernel/time.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Time related functions for Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #include <linux/init.h>
22 #include <linux/clockchips.h>
23 #include <linux/clocksource.h>
24 #include <linux/interrupt.h>
25 #include <linux/err.h>
26 #include <linux/platform_device.h>
27 #include <linux/ioport.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/module.h>
32 
33 #include <asm/timer-regs.h>
34 #include <asm/hexagon_vm.h>
35 
36 /*
37  * For the clocksource we need:
38  *	pcycle frequency (600MHz)
39  * For the loops_per_jiffy we need:
40  *	thread/cpu frequency (100MHz)
41  * And for the timer, we need:
42  *	sleep clock rate
43  */
44 
45 cycles_t	pcycle_freq_mhz;
46 cycles_t	thread_freq_mhz;
47 cycles_t	sleep_clk_freq;
48 
49 static struct resource rtos_timer_resources[] = {
50 	{
51 		.start	= RTOS_TIMER_REGS_ADDR,
52 		.end	= RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
53 		.flags	= IORESOURCE_MEM,
54 	},
55 };
56 
57 static struct platform_device rtos_timer_device = {
58 	.name		= "rtos_timer",
59 	.id		= -1,
60 	.num_resources	= ARRAY_SIZE(rtos_timer_resources),
61 	.resource	= rtos_timer_resources,
62 };
63 
64 /*  A lot of this stuff should move into a platform specific section.  */
65 struct adsp_hw_timer_struct {
66 	u32 match;   /*  Match value  */
67 	u32 count;
68 	u32 enable;  /*  [1] - CLR_ON_MATCH_EN, [0] - EN  */
69 	u32 clear;   /*  one-shot register that clears the count  */
70 };
71 
72 /*  Look for "TCX0" for related constants.  */
73 static __iomem struct adsp_hw_timer_struct *rtos_timer;
74 
75 static cycle_t timer_get_cycles(struct clocksource *cs)
76 {
77 	return (cycle_t) __vmgettime();
78 }
79 
80 static struct clocksource hexagon_clocksource = {
81 	.name		= "pcycles",
82 	.rating		= 250,
83 	.read		= timer_get_cycles,
84 	.mask		= CLOCKSOURCE_MASK(64),
85 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
86 };
87 
88 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
89 {
90 	/*  Assuming the timer will be disabled when we enter here.  */
91 
92 	iowrite32(1, &rtos_timer->clear);
93 	iowrite32(0, &rtos_timer->clear);
94 
95 	iowrite32(delta, &rtos_timer->match);
96 	iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
97 	return 0;
98 }
99 
100 /*
101  * Sets the mode (periodic, shutdown, oneshot, etc) of a timer.
102  */
103 static void set_mode(enum clock_event_mode mode,
104 	struct clock_event_device *evt)
105 {
106 	switch (mode) {
107 	case CLOCK_EVT_MODE_SHUTDOWN:
108 		/* XXX implement me */
109 	default:
110 		break;
111 	}
112 }
113 
114 #ifdef CONFIG_SMP
115 /*  Broadcast mechanism  */
116 static void broadcast(const struct cpumask *mask)
117 {
118 	send_ipi(mask, IPI_TIMER);
119 }
120 #endif
121 
122 static struct clock_event_device hexagon_clockevent_dev = {
123 	.name		= "clockevent",
124 	.features	= CLOCK_EVT_FEAT_ONESHOT,
125 	.rating		= 400,
126 	.irq		= RTOS_TIMER_INT,
127 	.set_next_event = set_next_event,
128 	.set_mode	= set_mode,
129 #ifdef CONFIG_SMP
130 	.broadcast	= broadcast,
131 #endif
132 };
133 
134 #ifdef CONFIG_SMP
135 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
136 
137 void setup_percpu_clockdev(void)
138 {
139 	int cpu = smp_processor_id();
140 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
141 	struct clock_event_device *dummy_clock_dev =
142 		&per_cpu(clock_events, cpu);
143 
144 	memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
145 	INIT_LIST_HEAD(&dummy_clock_dev->list);
146 
147 	dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
148 	dummy_clock_dev->cpumask = cpumask_of(cpu);
149 	dummy_clock_dev->mode = CLOCK_EVT_MODE_UNUSED;
150 
151 	clockevents_register_device(dummy_clock_dev);
152 }
153 
154 /*  Called from smp.c for each CPU's timer ipi call  */
155 void ipi_timer(void)
156 {
157 	int cpu = smp_processor_id();
158 	struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
159 
160 	ce_dev->event_handler(ce_dev);
161 }
162 #endif /* CONFIG_SMP */
163 
164 static irqreturn_t timer_interrupt(int irq, void *devid)
165 {
166 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
167 
168 	iowrite32(0, &rtos_timer->enable);
169 	ce_dev->event_handler(ce_dev);
170 
171 	return IRQ_HANDLED;
172 }
173 
174 /*  This should also be pulled from devtree  */
175 static struct irqaction rtos_timer_intdesc = {
176 	.handler = timer_interrupt,
177 	.flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
178 	.name = "rtos_timer"
179 };
180 
181 /*
182  * time_init_deferred - called by start_kernel to set up timer/clock source
183  *
184  * Install the IRQ handler for the clock, setup timers.
185  * This is done late, as that way, we can use ioremap().
186  *
187  * This runs just before the delay loop is calibrated, and
188  * is used for delay calibration.
189  */
190 void __init time_init_deferred(void)
191 {
192 	struct resource *resource = NULL;
193 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
194 
195 	ce_dev->cpumask = cpu_all_mask;
196 
197 	if (!resource)
198 		resource = rtos_timer_device.resource;
199 
200 	/*  ioremap here means this has to run later, after paging init  */
201 	rtos_timer = ioremap(resource->start, resource_size(resource));
202 
203 	if (!rtos_timer) {
204 		release_mem_region(resource->start, resource_size(resource));
205 	}
206 	clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
207 
208 	/*  Note: the sim generic RTOS clock is apparently really 18750Hz  */
209 
210 	/*
211 	 * Last arg is some guaranteed seconds for which the conversion will
212 	 * work without overflow.
213 	 */
214 	clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
215 
216 	ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
217 	ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
218 
219 #ifdef CONFIG_SMP
220 	setup_percpu_clockdev();
221 #endif
222 
223 	clockevents_register_device(ce_dev);
224 	setup_irq(ce_dev->irq, &rtos_timer_intdesc);
225 }
226 
227 void __init time_init(void)
228 {
229 	late_time_init = time_init_deferred;
230 }
231 
232 void __delay(unsigned long cycles)
233 {
234 	unsigned long long start = __vmgettime();
235 
236 	while ((__vmgettime() - start) < cycles)
237 		cpu_relax();
238 }
239 EXPORT_SYMBOL(__delay);
240 
241 /*
242  * This could become parametric or perhaps even computed at run-time,
243  * but for now we take the observed simulator jitter.
244  */
245 static long long fudgefactor = 350;  /* Maybe lower if kernel optimized. */
246 
247 void __udelay(unsigned long usecs)
248 {
249 	unsigned long long start = __vmgettime();
250 	unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
251 
252 	while ((__vmgettime() - start) < finish)
253 		cpu_relax(); /*  not sure how this improves readability  */
254 }
255 EXPORT_SYMBOL(__udelay);
256