xref: /openbmc/linux/arch/hexagon/kernel/time.c (revision 7490ca1e)
1 /*
2  * Time related functions for Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #include <linux/init.h>
22 #include <linux/clockchips.h>
23 #include <linux/clocksource.h>
24 #include <linux/interrupt.h>
25 #include <linux/err.h>
26 #include <linux/platform_device.h>
27 #include <linux/ioport.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 
32 #include <asm/timer-regs.h>
33 #include <asm/hexagon_vm.h>
34 
35 /*
36  * For the clocksource we need:
37  *	pcycle frequency (600MHz)
38  * For the loops_per_jiffy we need:
39  *	thread/cpu frequency (100MHz)
40  * And for the timer, we need:
41  *	sleep clock rate
42  */
43 
44 cycles_t	pcycle_freq_mhz;
45 cycles_t	thread_freq_mhz;
46 cycles_t	sleep_clk_freq;
47 
48 static struct resource rtos_timer_resources[] = {
49 	{
50 		.start	= RTOS_TIMER_REGS_ADDR,
51 		.end	= RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
52 		.flags	= IORESOURCE_MEM,
53 	},
54 };
55 
56 static struct platform_device rtos_timer_device = {
57 	.name		= "rtos_timer",
58 	.id		= -1,
59 	.num_resources	= ARRAY_SIZE(rtos_timer_resources),
60 	.resource	= rtos_timer_resources,
61 };
62 
63 /*  A lot of this stuff should move into a platform specific section.  */
64 struct adsp_hw_timer_struct {
65 	u32 match;   /*  Match value  */
66 	u32 count;
67 	u32 enable;  /*  [1] - CLR_ON_MATCH_EN, [0] - EN  */
68 	u32 clear;   /*  one-shot register that clears the count  */
69 };
70 
71 /*  Look for "TCX0" for related constants.  */
72 static __iomem struct adsp_hw_timer_struct *rtos_timer;
73 
74 static cycle_t timer_get_cycles(struct clocksource *cs)
75 {
76 	return (cycle_t) __vmgettime();
77 }
78 
79 static struct clocksource hexagon_clocksource = {
80 	.name		= "pcycles",
81 	.rating		= 250,
82 	.read		= timer_get_cycles,
83 	.mask		= CLOCKSOURCE_MASK(64),
84 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
85 };
86 
87 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
88 {
89 	/*  Assuming the timer will be disabled when we enter here.  */
90 
91 	iowrite32(1, &rtos_timer->clear);
92 	iowrite32(0, &rtos_timer->clear);
93 
94 	iowrite32(delta, &rtos_timer->match);
95 	iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
96 	return 0;
97 }
98 
99 /*
100  * Sets the mode (periodic, shutdown, oneshot, etc) of a timer.
101  */
102 static void set_mode(enum clock_event_mode mode,
103 	struct clock_event_device *evt)
104 {
105 	switch (mode) {
106 	case CLOCK_EVT_MODE_SHUTDOWN:
107 		/* XXX implement me */
108 	default:
109 		break;
110 	}
111 }
112 
113 #ifdef CONFIG_SMP
114 /*  Broadcast mechanism  */
115 static void broadcast(const struct cpumask *mask)
116 {
117 	send_ipi(mask, IPI_TIMER);
118 }
119 #endif
120 
121 static struct clock_event_device hexagon_clockevent_dev = {
122 	.name		= "clockevent",
123 	.features	= CLOCK_EVT_FEAT_ONESHOT,
124 	.rating		= 400,
125 	.irq		= RTOS_TIMER_INT,
126 	.set_next_event = set_next_event,
127 	.set_mode	= set_mode,
128 #ifdef CONFIG_SMP
129 	.broadcast	= broadcast,
130 #endif
131 };
132 
133 #ifdef CONFIG_SMP
134 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
135 
136 void setup_percpu_clockdev(void)
137 {
138 	int cpu = smp_processor_id();
139 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
140 	struct clock_event_device *dummy_clock_dev =
141 		&per_cpu(clock_events, cpu);
142 
143 	memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
144 	INIT_LIST_HEAD(&dummy_clock_dev->list);
145 
146 	dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
147 	dummy_clock_dev->cpumask = cpumask_of(cpu);
148 	dummy_clock_dev->mode = CLOCK_EVT_MODE_UNUSED;
149 
150 	clockevents_register_device(dummy_clock_dev);
151 }
152 
153 /*  Called from smp.c for each CPU's timer ipi call  */
154 void ipi_timer(void)
155 {
156 	int cpu = smp_processor_id();
157 	struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
158 
159 	ce_dev->event_handler(ce_dev);
160 }
161 #endif /* CONFIG_SMP */
162 
163 static irqreturn_t timer_interrupt(int irq, void *devid)
164 {
165 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
166 
167 	iowrite32(0, &rtos_timer->enable);
168 	ce_dev->event_handler(ce_dev);
169 
170 	return IRQ_HANDLED;
171 }
172 
173 /*  This should also be pulled from devtree  */
174 static struct irqaction rtos_timer_intdesc = {
175 	.handler = timer_interrupt,
176 	.flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
177 	.name = "rtos_timer"
178 };
179 
180 /*
181  * time_init_deferred - called by start_kernel to set up timer/clock source
182  *
183  * Install the IRQ handler for the clock, setup timers.
184  * This is done late, as that way, we can use ioremap().
185  *
186  * This runs just before the delay loop is calibrated, and
187  * is used for delay calibration.
188  */
189 void __init time_init_deferred(void)
190 {
191 	struct resource *resource = NULL;
192 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
193 	struct device_node *dn;
194 	struct resource r;
195 	int err;
196 
197 	ce_dev->cpumask = cpu_all_mask;
198 
199 	if (!resource)
200 		resource = rtos_timer_device.resource;
201 
202 	/*  ioremap here means this has to run later, after paging init  */
203 	rtos_timer = ioremap(resource->start, resource->end
204 		- resource->start + 1);
205 
206 	if (!rtos_timer) {
207 		release_mem_region(resource->start, resource->end
208 			- resource->start + 1);
209 	}
210 	clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
211 
212 	/*  Note: the sim generic RTOS clock is apparently really 18750Hz  */
213 
214 	/*
215 	 * Last arg is some guaranteed seconds for which the conversion will
216 	 * work without overflow.
217 	 */
218 	clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
219 
220 	ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
221 	ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
222 
223 #ifdef CONFIG_SMP
224 	setup_percpu_clockdev();
225 #endif
226 
227 	clockevents_register_device(ce_dev);
228 	setup_irq(ce_dev->irq, &rtos_timer_intdesc);
229 }
230 
231 void __init time_init(void)
232 {
233 	late_time_init = time_init_deferred;
234 }
235 
236 /*
237  * This could become parametric or perhaps even computed at run-time,
238  * but for now we take the observed simulator jitter.
239  */
240 static long long fudgefactor = 350;  /* Maybe lower if kernel optimized. */
241 
242 void __udelay(unsigned long usecs)
243 {
244 	unsigned long long start = __vmgettime();
245 	unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
246 
247 	while ((__vmgettime() - start) < finish)
248 		cpu_relax(); /*  not sure how this improves readability  */
249 }
250 EXPORT_SYMBOL(__udelay);
251