xref: /openbmc/linux/arch/hexagon/include/asm/pgtable.h (revision faa16bc4)
1 /*
2  * Page table support for the Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
23 
24 /*
25  * Page table definitions for Qualcomm Hexagon processor.
26  */
27 #include <asm/page.h>
28 #define __ARCH_USE_5LEVEL_HACK
29 #include <asm-generic/pgtable-nopmd.h>
30 
31 /* A handy thing to have if one has the RAM. Declared in head.S */
32 extern unsigned long empty_zero_page;
33 
34 /*
35  * The PTE model described here is that of the Hexagon Virtual Machine,
36  * which autonomously walks 2-level page tables.  At a lower level, we
37  * also describe the RISCish software-loaded TLB entry structure of
38  * the underlying Hexagon processor. A kernel built to run on the
39  * virtual machine has no need to know about the underlying hardware.
40  */
41 #include <asm/vm_mmu.h>
42 
43 /*
44  * To maximize the comfort level for the PTE manipulation macros,
45  * define the "well known" architecture-specific bits.
46  */
47 #define _PAGE_READ	__HVM_PTE_R
48 #define _PAGE_WRITE	__HVM_PTE_W
49 #define _PAGE_EXECUTE	__HVM_PTE_X
50 #define _PAGE_USER	__HVM_PTE_U
51 
52 /*
53  * We have a total of 4 "soft" bits available in the abstract PTE.
54  * The two mandatory software bits are Dirty and Accessed.
55  * To make nonlinear swap work according to the more recent
56  * model, we want a low order "Present" bit to indicate whether
57  * the PTE describes MMU programming or swap space.
58  */
59 #define _PAGE_PRESENT	(1<<0)
60 #define _PAGE_DIRTY	(1<<1)
61 #define _PAGE_ACCESSED	(1<<2)
62 
63 /*
64  * For now, let's say that Valid and Present are the same thing.
65  * Alternatively, we could say that it's the "or" of R, W, and X
66  * permissions.
67  */
68 #define _PAGE_VALID	_PAGE_PRESENT
69 
70 /*
71  * We're not defining _PAGE_GLOBAL here, since there's no concept
72  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
73  * and we want to use the same page table structures and macros in
74  * the native kernel as we do in the virtual machine kernel.
75  * So we'll put up with a bit of inefficiency for now...
76  */
77 
78 /*
79  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
80  * only the second from the bottom, pgd and pud both being collapsed.
81  * Each entry represents 4MB of virtual address space, 4K of table
82  * thus maps the full 4GB.
83  */
84 #define PGDIR_SHIFT 22
85 #define PTRS_PER_PGD 1024
86 
87 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
88 #define PGDIR_MASK (~(PGDIR_SIZE-1))
89 
90 #ifdef CONFIG_PAGE_SIZE_4KB
91 #define PTRS_PER_PTE 1024
92 #endif
93 
94 #ifdef CONFIG_PAGE_SIZE_16KB
95 #define PTRS_PER_PTE 256
96 #endif
97 
98 #ifdef CONFIG_PAGE_SIZE_64KB
99 #define PTRS_PER_PTE 64
100 #endif
101 
102 #ifdef CONFIG_PAGE_SIZE_256KB
103 #define PTRS_PER_PTE 16
104 #endif
105 
106 #ifdef CONFIG_PAGE_SIZE_1MB
107 #define PTRS_PER_PTE 4
108 #endif
109 
110 /*  Any bigger and the PTE disappears.  */
111 #define pgd_ERROR(e) \
112 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
113 		pgd_val(e))
114 
115 /*
116  * Page Protection Constants. Includes (in this variant) cache attributes.
117  */
118 extern unsigned long _dflt_cache_att;
119 
120 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
121 				_dflt_cache_att)
122 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
123 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
124 #define PAGE_COPY	PAGE_READONLY
125 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
126 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
127 #define PAGE_COPY_EXEC	PAGE_EXEC
128 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
129 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
130 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
131 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
132 
133 
134 /*
135  * Aliases for mapping mmap() protection bits to page protections.
136  * These get used for static initialization, so using the _dflt_cache_att
137  * variable for the default cache attribute isn't workable. If the
138  * default gets changed at boot time, the boot option code has to
139  * update data structures like the protaction_map[] array.
140  */
141 #define CACHEDEF	(CACHE_DEFAULT << 6)
142 
143 /* Private (copy-on-write) page protections. */
144 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
145 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
146 #define __P010 __P000	/* Write-only copy-on-write */
147 #define __P011 __P001	/* Read/Write copy-on-write */
148 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
149 			_PAGE_EXECUTE | CACHEDEF)
150 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
151 			_PAGE_READ | CACHEDEF)
152 #define __P110 __P100	/* Write/execute copy-on-write */
153 #define __P111 __P101	/* Read/Write/Execute, copy-on-write */
154 
155 /* Shared page protections. */
156 #define __S000 __P000
157 #define __S001 __P001
158 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
159 			_PAGE_WRITE | CACHEDEF)
160 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
161 			_PAGE_WRITE | CACHEDEF)
162 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
163 			_PAGE_EXECUTE | CACHEDEF)
164 #define __S101 __P101
165 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
166 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
167 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
168 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
169 
170 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
171 
172 /* Seems to be zero even in architectures where the zero page is firewalled? */
173 #define FIRST_USER_ADDRESS 0UL
174 #define pte_special(pte)	0
175 #define pte_mkspecial(pte)	(pte)
176 
177 /*  HUGETLB not working currently  */
178 #ifdef CONFIG_HUGETLB_PAGE
179 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
180 #endif
181 
182 /*
183  * For now, assume that higher-level code will do TLB/MMU invalidations
184  * and don't insert that overhead into this low-level function.
185  */
186 extern void sync_icache_dcache(pte_t pte);
187 
188 #define pte_present_exec_user(pte) \
189 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
190 	(_PAGE_EXECUTE | _PAGE_USER))
191 
192 static inline void set_pte(pte_t *ptep, pte_t pteval)
193 {
194 	/*  should really be using pte_exec, if it weren't declared later. */
195 	if (pte_present_exec_user(pteval))
196 		sync_icache_dcache(pteval);
197 
198 	*ptep = pteval;
199 }
200 
201 /*
202  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
203  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
204  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
205  * as a universal null entry, but some of those least significant bits
206  * are interpreted by software.
207  */
208 #define _NULL_PMD	0x7
209 #define _NULL_PTE	0x0
210 
211 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
212 {
213 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
214 }
215 
216 /*
217  * Conveniently, a null PTE value is invalid.
218  */
219 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
220 				pte_t *ptep)
221 {
222 	pte_val(*ptep) = _NULL_PTE;
223 }
224 
225 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
226 /**
227  * pmd_index - returns the index of the entry in the PMD page
228  * which would control the given virtual address
229  */
230 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
231 
232 #endif
233 
234 /**
235  * pgd_index - returns the index of the entry in the PGD page
236  * which would control the given virtual address
237  *
238  * This returns the *index* for the address in the pgd_t
239  */
240 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
241 
242 /*
243  * pgd_offset - find an offset in a page-table-directory
244  */
245 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
246 
247 /*
248  * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
249  */
250 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
251 
252 /**
253  * pmd_none - check if pmd_entry is mapped
254  * @pmd_entry:  pmd entry
255  *
256  * MIPS checks it against that "invalid pte table" thing.
257  */
258 static inline int pmd_none(pmd_t pmd)
259 {
260 	return pmd_val(pmd) == _NULL_PMD;
261 }
262 
263 /**
264  * pmd_present - is there a page table behind this?
265  * Essentially the inverse of pmd_none.  We maybe
266  * save an inline instruction by defining it this
267  * way, instead of simply "!pmd_none".
268  */
269 static inline int pmd_present(pmd_t pmd)
270 {
271 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
272 }
273 
274 /**
275  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
276  * As we have no known cause of badness, it's null, as it is for many
277  * architectures.
278  */
279 static inline int pmd_bad(pmd_t pmd)
280 {
281 	return 0;
282 }
283 
284 /*
285  * pmd_page - converts a PMD entry to a page pointer
286  */
287 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
288 #define pmd_pgtable(pmd) pmd_page(pmd)
289 
290 /**
291  * pte_none - check if pte is mapped
292  * @pte: pte_t entry
293  */
294 static inline int pte_none(pte_t pte)
295 {
296 	return pte_val(pte) == _NULL_PTE;
297 };
298 
299 /*
300  * pte_present - check if page is present
301  */
302 static inline int pte_present(pte_t pte)
303 {
304 	return pte_val(pte) & _PAGE_PRESENT;
305 }
306 
307 /* mk_pte - make a PTE out of a page pointer and protection bits */
308 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
309 
310 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
311 #define pte_page(x) pfn_to_page(pte_pfn(x))
312 
313 /* pte_mkold - mark PTE as not recently accessed */
314 static inline pte_t pte_mkold(pte_t pte)
315 {
316 	pte_val(pte) &= ~_PAGE_ACCESSED;
317 	return pte;
318 }
319 
320 /* pte_mkyoung - mark PTE as recently accessed */
321 static inline pte_t pte_mkyoung(pte_t pte)
322 {
323 	pte_val(pte) |= _PAGE_ACCESSED;
324 	return pte;
325 }
326 
327 /* pte_mkclean - mark page as in sync with backing store */
328 static inline pte_t pte_mkclean(pte_t pte)
329 {
330 	pte_val(pte) &= ~_PAGE_DIRTY;
331 	return pte;
332 }
333 
334 /* pte_mkdirty - mark page as modified */
335 static inline pte_t pte_mkdirty(pte_t pte)
336 {
337 	pte_val(pte) |= _PAGE_DIRTY;
338 	return pte;
339 }
340 
341 /* pte_young - "is PTE marked as accessed"? */
342 static inline int pte_young(pte_t pte)
343 {
344 	return pte_val(pte) & _PAGE_ACCESSED;
345 }
346 
347 /* pte_dirty - "is PTE dirty?" */
348 static inline int pte_dirty(pte_t pte)
349 {
350 	return pte_val(pte) & _PAGE_DIRTY;
351 }
352 
353 /* pte_modify - set protection bits on PTE */
354 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
355 {
356 	pte_val(pte) &= PAGE_MASK;
357 	pte_val(pte) |= pgprot_val(prot);
358 	return pte;
359 }
360 
361 /* pte_wrprotect - mark page as not writable */
362 static inline pte_t pte_wrprotect(pte_t pte)
363 {
364 	pte_val(pte) &= ~_PAGE_WRITE;
365 	return pte;
366 }
367 
368 /* pte_mkwrite - mark page as writable */
369 static inline pte_t pte_mkwrite(pte_t pte)
370 {
371 	pte_val(pte) |= _PAGE_WRITE;
372 	return pte;
373 }
374 
375 /* pte_mkexec - mark PTE as executable */
376 static inline pte_t pte_mkexec(pte_t pte)
377 {
378 	pte_val(pte) |= _PAGE_EXECUTE;
379 	return pte;
380 }
381 
382 /* pte_read - "is PTE marked as readable?" */
383 static inline int pte_read(pte_t pte)
384 {
385 	return pte_val(pte) & _PAGE_READ;
386 }
387 
388 /* pte_write - "is PTE marked as writable?" */
389 static inline int pte_write(pte_t pte)
390 {
391 	return pte_val(pte) & _PAGE_WRITE;
392 }
393 
394 
395 /* pte_exec - "is PTE marked as executable?" */
396 static inline int pte_exec(pte_t pte)
397 {
398 	return pte_val(pte) & _PAGE_EXECUTE;
399 }
400 
401 /* __pte_to_swp_entry - extract swap entry from PTE */
402 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
403 
404 /* __swp_entry_to_pte - extract PTE from swap entry */
405 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
406 
407 /* pfn_pte - convert page number and protection value to page table entry */
408 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
409 
410 /* pte_pfn - convert pte to page frame number */
411 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
412 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
413 
414 /*
415  * set_pte_at - update page table and do whatever magic may be
416  * necessary to make the underlying hardware/firmware take note.
417  *
418  * VM may require a virtual instruction to alert the MMU.
419  */
420 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
421 
422 /*
423  * May need to invoke the virtual machine as well...
424  */
425 #define pte_unmap(pte)		do { } while (0)
426 #define pte_unmap_nested(pte)	do { } while (0)
427 
428 /*
429  * pte_offset_map - returns the linear address of the page table entry
430  * corresponding to an address
431  */
432 #define pte_offset_map(dir, address)                                    \
433 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
434 
435 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
436 
437 /* pte_offset_kernel - kernel version of pte_offset */
438 #define pte_offset_kernel(dir, address) \
439 	((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
440 				+  __pte_offset(address))
441 
442 /* ZERO_PAGE - returns the globally shared zero page */
443 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
444 
445 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
446 
447 /*  I think this is in case we have page table caches; needed by init/main.c  */
448 #define pgtable_cache_init()    do { } while (0)
449 
450 /*
451  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
452  * interpreted as swap information.  The remaining free bits are interpreted as
453  * swap type/offset tuple.  Rather than have the TLB fill handler test
454  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
455  * all zeros for swap entries, which speeds up the miss handler at the cost of
456  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
457  * processor architecture and target applications suggest a lot of TLB misses
458  * and not much swap space.
459  *
460  * Format of swap PTE:
461  *	bit	0:	Present (zero)
462  *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
463  *	bits	6-9:	bits 3:0 of offset
464  *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
465  *	bits	13-31:  bits 22:4 of swap offset
466  *
467  * The split offset makes some of the following macros a little gnarly,
468  * but there's plenty of precedent for this sort of thing.
469  */
470 
471 /* Used for swap PTEs */
472 #define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
473 
474 #define __swp_offset(swp_pte) \
475 	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
476 
477 #define __swp_entry(type, offset) \
478 	((swp_entry_t)	{ \
479 		((type << 1) | \
480 		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
481 
482 /*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
483 #include <asm-generic/pgtable.h>
484 
485 #endif
486