1 /* 2 * Page table support for the Hexagon architecture 3 * 4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 and 8 * only version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 18 * 02110-1301, USA. 19 */ 20 21 #ifndef _ASM_PGTABLE_H 22 #define _ASM_PGTABLE_H 23 24 /* 25 * Page table definitions for Qualcomm Hexagon processor. 26 */ 27 #include <asm/page.h> 28 #define __ARCH_USE_5LEVEL_HACK 29 #include <asm-generic/pgtable-nopmd.h> 30 31 /* A handy thing to have if one has the RAM. Declared in head.S */ 32 extern unsigned long empty_zero_page; 33 34 /* 35 * The PTE model described here is that of the Hexagon Virtual Machine, 36 * which autonomously walks 2-level page tables. At a lower level, we 37 * also describe the RISCish software-loaded TLB entry structure of 38 * the underlying Hexagon processor. A kernel built to run on the 39 * virtual machine has no need to know about the underlying hardware. 40 */ 41 #include <asm/vm_mmu.h> 42 43 /* 44 * To maximize the comfort level for the PTE manipulation macros, 45 * define the "well known" architecture-specific bits. 46 */ 47 #define _PAGE_READ __HVM_PTE_R 48 #define _PAGE_WRITE __HVM_PTE_W 49 #define _PAGE_EXECUTE __HVM_PTE_X 50 #define _PAGE_USER __HVM_PTE_U 51 52 /* 53 * We have a total of 4 "soft" bits available in the abstract PTE. 54 * The two mandatory software bits are Dirty and Accessed. 55 * To make nonlinear swap work according to the more recent 56 * model, we want a low order "Present" bit to indicate whether 57 * the PTE describes MMU programming or swap space. 58 */ 59 #define _PAGE_PRESENT (1<<0) 60 #define _PAGE_DIRTY (1<<1) 61 #define _PAGE_ACCESSED (1<<2) 62 63 /* 64 * For now, let's say that Valid and Present are the same thing. 65 * Alternatively, we could say that it's the "or" of R, W, and X 66 * permissions. 67 */ 68 #define _PAGE_VALID _PAGE_PRESENT 69 70 /* 71 * We're not defining _PAGE_GLOBAL here, since there's no concept 72 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 73 * and we want to use the same page table structures and macros in 74 * the native kernel as we do in the virtual machine kernel. 75 * So we'll put up with a bit of inefficiency for now... 76 */ 77 78 /* 79 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 80 * only the second from the bottom, pgd and pud both being collapsed. 81 * Each entry represents 4MB of virtual address space, 4K of table 82 * thus maps the full 4GB. 83 */ 84 #define PGDIR_SHIFT 22 85 #define PTRS_PER_PGD 1024 86 87 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 88 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 89 90 #ifdef CONFIG_PAGE_SIZE_4KB 91 #define PTRS_PER_PTE 1024 92 #endif 93 94 #ifdef CONFIG_PAGE_SIZE_16KB 95 #define PTRS_PER_PTE 256 96 #endif 97 98 #ifdef CONFIG_PAGE_SIZE_64KB 99 #define PTRS_PER_PTE 64 100 #endif 101 102 #ifdef CONFIG_PAGE_SIZE_256KB 103 #define PTRS_PER_PTE 16 104 #endif 105 106 #ifdef CONFIG_PAGE_SIZE_1MB 107 #define PTRS_PER_PTE 4 108 #endif 109 110 /* Any bigger and the PTE disappears. */ 111 #define pgd_ERROR(e) \ 112 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 113 pgd_val(e)) 114 115 /* 116 * Page Protection Constants. Includes (in this variant) cache attributes. 117 */ 118 extern unsigned long _dflt_cache_att; 119 120 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 121 _dflt_cache_att) 122 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 123 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 124 #define PAGE_COPY PAGE_READONLY 125 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 126 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 127 #define PAGE_COPY_EXEC PAGE_EXEC 128 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 129 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 130 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 131 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 132 133 134 /* 135 * Aliases for mapping mmap() protection bits to page protections. 136 * These get used for static initialization, so using the _dflt_cache_att 137 * variable for the default cache attribute isn't workable. If the 138 * default gets changed at boot time, the boot option code has to 139 * update data structures like the protaction_map[] array. 140 */ 141 #define CACHEDEF (CACHE_DEFAULT << 6) 142 143 /* Private (copy-on-write) page protections. */ 144 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 145 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 146 #define __P010 __P000 /* Write-only copy-on-write */ 147 #define __P011 __P001 /* Read/Write copy-on-write */ 148 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 149 _PAGE_EXECUTE | CACHEDEF) 150 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 151 _PAGE_READ | CACHEDEF) 152 #define __P110 __P100 /* Write/execute copy-on-write */ 153 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 154 155 /* Shared page protections. */ 156 #define __S000 __P000 157 #define __S001 __P001 158 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 159 _PAGE_WRITE | CACHEDEF) 160 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 161 _PAGE_WRITE | CACHEDEF) 162 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 163 _PAGE_EXECUTE | CACHEDEF) 164 #define __S101 __P101 165 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 166 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 167 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 168 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 169 170 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 171 172 /* Seems to be zero even in architectures where the zero page is firewalled? */ 173 #define FIRST_USER_ADDRESS 0UL 174 #define pte_special(pte) 0 175 #define pte_mkspecial(pte) (pte) 176 177 /* HUGETLB not working currently */ 178 #ifdef CONFIG_HUGETLB_PAGE 179 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 180 #endif 181 182 /* 183 * For now, assume that higher-level code will do TLB/MMU invalidations 184 * and don't insert that overhead into this low-level function. 185 */ 186 extern void sync_icache_dcache(pte_t pte); 187 188 #define pte_present_exec_user(pte) \ 189 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 190 (_PAGE_EXECUTE | _PAGE_USER)) 191 192 static inline void set_pte(pte_t *ptep, pte_t pteval) 193 { 194 /* should really be using pte_exec, if it weren't declared later. */ 195 if (pte_present_exec_user(pteval)) 196 sync_icache_dcache(pteval); 197 198 *ptep = pteval; 199 } 200 201 /* 202 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 203 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 204 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 205 * as a universal null entry, but some of those least significant bits 206 * are interpreted by software. 207 */ 208 #define _NULL_PMD 0x7 209 #define _NULL_PTE 0x0 210 211 static inline void pmd_clear(pmd_t *pmd_entry_ptr) 212 { 213 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 214 } 215 216 /* 217 * Conveniently, a null PTE value is invalid. 218 */ 219 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 220 pte_t *ptep) 221 { 222 pte_val(*ptep) = _NULL_PTE; 223 } 224 225 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL 226 /** 227 * pmd_index - returns the index of the entry in the PMD page 228 * which would control the given virtual address 229 */ 230 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 231 232 #endif 233 234 /** 235 * pgd_index - returns the index of the entry in the PGD page 236 * which would control the given virtual address 237 * 238 * This returns the *index* for the address in the pgd_t 239 */ 240 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 241 242 /* 243 * pgd_offset - find an offset in a page-table-directory 244 */ 245 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) 246 247 /* 248 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr 249 */ 250 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 251 252 /** 253 * pmd_none - check if pmd_entry is mapped 254 * @pmd_entry: pmd entry 255 * 256 * MIPS checks it against that "invalid pte table" thing. 257 */ 258 static inline int pmd_none(pmd_t pmd) 259 { 260 return pmd_val(pmd) == _NULL_PMD; 261 } 262 263 /** 264 * pmd_present - is there a page table behind this? 265 * Essentially the inverse of pmd_none. We maybe 266 * save an inline instruction by defining it this 267 * way, instead of simply "!pmd_none". 268 */ 269 static inline int pmd_present(pmd_t pmd) 270 { 271 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 272 } 273 274 /** 275 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 276 * As we have no known cause of badness, it's null, as it is for many 277 * architectures. 278 */ 279 static inline int pmd_bad(pmd_t pmd) 280 { 281 return 0; 282 } 283 284 /* 285 * pmd_page - converts a PMD entry to a page pointer 286 */ 287 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 288 #define pmd_pgtable(pmd) pmd_page(pmd) 289 290 /** 291 * pte_none - check if pte is mapped 292 * @pte: pte_t entry 293 */ 294 static inline int pte_none(pte_t pte) 295 { 296 return pte_val(pte) == _NULL_PTE; 297 }; 298 299 /* 300 * pte_present - check if page is present 301 */ 302 static inline int pte_present(pte_t pte) 303 { 304 return pte_val(pte) & _PAGE_PRESENT; 305 } 306 307 /* mk_pte - make a PTE out of a page pointer and protection bits */ 308 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 309 310 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 311 #define pte_page(x) pfn_to_page(pte_pfn(x)) 312 313 /* pte_mkold - mark PTE as not recently accessed */ 314 static inline pte_t pte_mkold(pte_t pte) 315 { 316 pte_val(pte) &= ~_PAGE_ACCESSED; 317 return pte; 318 } 319 320 /* pte_mkyoung - mark PTE as recently accessed */ 321 static inline pte_t pte_mkyoung(pte_t pte) 322 { 323 pte_val(pte) |= _PAGE_ACCESSED; 324 return pte; 325 } 326 327 /* pte_mkclean - mark page as in sync with backing store */ 328 static inline pte_t pte_mkclean(pte_t pte) 329 { 330 pte_val(pte) &= ~_PAGE_DIRTY; 331 return pte; 332 } 333 334 /* pte_mkdirty - mark page as modified */ 335 static inline pte_t pte_mkdirty(pte_t pte) 336 { 337 pte_val(pte) |= _PAGE_DIRTY; 338 return pte; 339 } 340 341 /* pte_young - "is PTE marked as accessed"? */ 342 static inline int pte_young(pte_t pte) 343 { 344 return pte_val(pte) & _PAGE_ACCESSED; 345 } 346 347 /* pte_dirty - "is PTE dirty?" */ 348 static inline int pte_dirty(pte_t pte) 349 { 350 return pte_val(pte) & _PAGE_DIRTY; 351 } 352 353 /* pte_modify - set protection bits on PTE */ 354 static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 355 { 356 pte_val(pte) &= PAGE_MASK; 357 pte_val(pte) |= pgprot_val(prot); 358 return pte; 359 } 360 361 /* pte_wrprotect - mark page as not writable */ 362 static inline pte_t pte_wrprotect(pte_t pte) 363 { 364 pte_val(pte) &= ~_PAGE_WRITE; 365 return pte; 366 } 367 368 /* pte_mkwrite - mark page as writable */ 369 static inline pte_t pte_mkwrite(pte_t pte) 370 { 371 pte_val(pte) |= _PAGE_WRITE; 372 return pte; 373 } 374 375 /* pte_mkexec - mark PTE as executable */ 376 static inline pte_t pte_mkexec(pte_t pte) 377 { 378 pte_val(pte) |= _PAGE_EXECUTE; 379 return pte; 380 } 381 382 /* pte_read - "is PTE marked as readable?" */ 383 static inline int pte_read(pte_t pte) 384 { 385 return pte_val(pte) & _PAGE_READ; 386 } 387 388 /* pte_write - "is PTE marked as writable?" */ 389 static inline int pte_write(pte_t pte) 390 { 391 return pte_val(pte) & _PAGE_WRITE; 392 } 393 394 395 /* pte_exec - "is PTE marked as executable?" */ 396 static inline int pte_exec(pte_t pte) 397 { 398 return pte_val(pte) & _PAGE_EXECUTE; 399 } 400 401 /* __pte_to_swp_entry - extract swap entry from PTE */ 402 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 403 404 /* __swp_entry_to_pte - extract PTE from swap entry */ 405 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 406 407 /* pfn_pte - convert page number and protection value to page table entry */ 408 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 409 410 /* pte_pfn - convert pte to page frame number */ 411 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 412 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 413 414 /* 415 * set_pte_at - update page table and do whatever magic may be 416 * necessary to make the underlying hardware/firmware take note. 417 * 418 * VM may require a virtual instruction to alert the MMU. 419 */ 420 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 421 422 /* 423 * May need to invoke the virtual machine as well... 424 */ 425 #define pte_unmap(pte) do { } while (0) 426 #define pte_unmap_nested(pte) do { } while (0) 427 428 /* 429 * pte_offset_map - returns the linear address of the page table entry 430 * corresponding to an address 431 */ 432 #define pte_offset_map(dir, address) \ 433 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 434 435 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr) 436 437 /* pte_offset_kernel - kernel version of pte_offset */ 438 #define pte_offset_kernel(dir, address) \ 439 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \ 440 + __pte_offset(address)) 441 442 /* ZERO_PAGE - returns the globally shared zero page */ 443 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 444 445 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 446 447 /* I think this is in case we have page table caches; needed by init/main.c */ 448 #define pgtable_cache_init() do { } while (0) 449 450 /* 451 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 452 * interpreted as swap information. The remaining free bits are interpreted as 453 * swap type/offset tuple. Rather than have the TLB fill handler test 454 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 455 * all zeros for swap entries, which speeds up the miss handler at the cost of 456 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 457 * processor architecture and target applications suggest a lot of TLB misses 458 * and not much swap space. 459 * 460 * Format of swap PTE: 461 * bit 0: Present (zero) 462 * bits 1-5: swap type (arch independent layer uses 5 bits max) 463 * bits 6-9: bits 3:0 of offset 464 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 465 * bits 13-31: bits 22:4 of swap offset 466 * 467 * The split offset makes some of the following macros a little gnarly, 468 * but there's plenty of precedent for this sort of thing. 469 */ 470 471 /* Used for swap PTEs */ 472 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 473 474 #define __swp_offset(swp_pte) \ 475 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 476 477 #define __swp_entry(type, offset) \ 478 ((swp_entry_t) { \ 479 ((type << 1) | \ 480 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 481 482 /* Oh boy. There are a lot of possible arch overrides found in this file. */ 483 #include <asm-generic/pgtable.h> 484 485 #endif 486