1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Page table support for the Hexagon architecture 4 * 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 6 */ 7 8 #ifndef _ASM_PGTABLE_H 9 #define _ASM_PGTABLE_H 10 11 /* 12 * Page table definitions for Qualcomm Hexagon processor. 13 */ 14 #include <asm/page.h> 15 #include <asm-generic/pgtable-nopmd.h> 16 17 /* A handy thing to have if one has the RAM. Declared in head.S */ 18 extern unsigned long empty_zero_page; 19 20 /* 21 * The PTE model described here is that of the Hexagon Virtual Machine, 22 * which autonomously walks 2-level page tables. At a lower level, we 23 * also describe the RISCish software-loaded TLB entry structure of 24 * the underlying Hexagon processor. A kernel built to run on the 25 * virtual machine has no need to know about the underlying hardware. 26 */ 27 #include <asm/vm_mmu.h> 28 29 /* 30 * To maximize the comfort level for the PTE manipulation macros, 31 * define the "well known" architecture-specific bits. 32 */ 33 #define _PAGE_READ __HVM_PTE_R 34 #define _PAGE_WRITE __HVM_PTE_W 35 #define _PAGE_EXECUTE __HVM_PTE_X 36 #define _PAGE_USER __HVM_PTE_U 37 38 /* 39 * We have a total of 4 "soft" bits available in the abstract PTE. 40 * The two mandatory software bits are Dirty and Accessed. 41 * To make nonlinear swap work according to the more recent 42 * model, we want a low order "Present" bit to indicate whether 43 * the PTE describes MMU programming or swap space. 44 */ 45 #define _PAGE_PRESENT (1<<0) 46 #define _PAGE_DIRTY (1<<1) 47 #define _PAGE_ACCESSED (1<<2) 48 49 /* 50 * For now, let's say that Valid and Present are the same thing. 51 * Alternatively, we could say that it's the "or" of R, W, and X 52 * permissions. 53 */ 54 #define _PAGE_VALID _PAGE_PRESENT 55 56 /* 57 * We're not defining _PAGE_GLOBAL here, since there's no concept 58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 59 * and we want to use the same page table structures and macros in 60 * the native kernel as we do in the virtual machine kernel. 61 * So we'll put up with a bit of inefficiency for now... 62 */ 63 64 /* We borrow bit 6 to store the exclusive marker in swap PTEs. */ 65 #define _PAGE_SWP_EXCLUSIVE (1<<6) 66 67 /* 68 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 69 * only the second from the bottom, pgd and pud both being collapsed. 70 * Each entry represents 4MB of virtual address space, 4K of table 71 * thus maps the full 4GB. 72 */ 73 #define PGDIR_SHIFT 22 74 #define PTRS_PER_PGD 1024 75 76 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 77 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 78 79 #ifdef CONFIG_PAGE_SIZE_4KB 80 #define PTRS_PER_PTE 1024 81 #endif 82 83 #ifdef CONFIG_PAGE_SIZE_16KB 84 #define PTRS_PER_PTE 256 85 #endif 86 87 #ifdef CONFIG_PAGE_SIZE_64KB 88 #define PTRS_PER_PTE 64 89 #endif 90 91 #ifdef CONFIG_PAGE_SIZE_256KB 92 #define PTRS_PER_PTE 16 93 #endif 94 95 #ifdef CONFIG_PAGE_SIZE_1MB 96 #define PTRS_PER_PTE 4 97 #endif 98 99 /* Any bigger and the PTE disappears. */ 100 #define pgd_ERROR(e) \ 101 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 102 pgd_val(e)) 103 104 /* 105 * Page Protection Constants. Includes (in this variant) cache attributes. 106 */ 107 extern unsigned long _dflt_cache_att; 108 109 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 110 _dflt_cache_att) 111 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 113 #define PAGE_COPY PAGE_READONLY 114 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 115 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 116 #define PAGE_COPY_EXEC PAGE_EXEC 117 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 118 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 119 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 120 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 121 122 123 /* 124 * Aliases for mapping mmap() protection bits to page protections. 125 * These get used for static initialization, so using the _dflt_cache_att 126 * variable for the default cache attribute isn't workable. If the 127 * default gets changed at boot time, the boot option code has to 128 * update data structures like the protaction_map[] array. 129 */ 130 #define CACHEDEF (CACHE_DEFAULT << 6) 131 132 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 133 134 /* HUGETLB not working currently */ 135 #ifdef CONFIG_HUGETLB_PAGE 136 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 137 #endif 138 139 /* 140 * For now, assume that higher-level code will do TLB/MMU invalidations 141 * and don't insert that overhead into this low-level function. 142 */ 143 extern void sync_icache_dcache(pte_t pte); 144 145 #define pte_present_exec_user(pte) \ 146 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 147 (_PAGE_EXECUTE | _PAGE_USER)) 148 149 static inline void set_pte(pte_t *ptep, pte_t pteval) 150 { 151 /* should really be using pte_exec, if it weren't declared later. */ 152 if (pte_present_exec_user(pteval)) 153 sync_icache_dcache(pteval); 154 155 *ptep = pteval; 156 } 157 158 /* 159 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 160 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 161 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 162 * as a universal null entry, but some of those least significant bits 163 * are interpreted by software. 164 */ 165 #define _NULL_PMD 0x7 166 #define _NULL_PTE 0x0 167 168 static inline void pmd_clear(pmd_t *pmd_entry_ptr) 169 { 170 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 171 } 172 173 /* 174 * Conveniently, a null PTE value is invalid. 175 */ 176 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 177 pte_t *ptep) 178 { 179 pte_val(*ptep) = _NULL_PTE; 180 } 181 182 /** 183 * pmd_none - check if pmd_entry is mapped 184 * @pmd_entry: pmd entry 185 * 186 * MIPS checks it against that "invalid pte table" thing. 187 */ 188 static inline int pmd_none(pmd_t pmd) 189 { 190 return pmd_val(pmd) == _NULL_PMD; 191 } 192 193 /** 194 * pmd_present - is there a page table behind this? 195 * Essentially the inverse of pmd_none. We maybe 196 * save an inline instruction by defining it this 197 * way, instead of simply "!pmd_none". 198 */ 199 static inline int pmd_present(pmd_t pmd) 200 { 201 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 202 } 203 204 /** 205 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 206 * As we have no known cause of badness, it's null, as it is for many 207 * architectures. 208 */ 209 static inline int pmd_bad(pmd_t pmd) 210 { 211 return 0; 212 } 213 214 /* 215 * pmd_pfn - converts a PMD entry to a page frame number 216 */ 217 #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 218 219 /* 220 * pmd_page - converts a PMD entry to a page pointer 221 */ 222 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 223 224 /** 225 * pte_none - check if pte is mapped 226 * @pte: pte_t entry 227 */ 228 static inline int pte_none(pte_t pte) 229 { 230 return pte_val(pte) == _NULL_PTE; 231 }; 232 233 /* 234 * pte_present - check if page is present 235 */ 236 static inline int pte_present(pte_t pte) 237 { 238 return pte_val(pte) & _PAGE_PRESENT; 239 } 240 241 /* mk_pte - make a PTE out of a page pointer and protection bits */ 242 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 243 244 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 245 #define pte_page(x) pfn_to_page(pte_pfn(x)) 246 247 /* pte_mkold - mark PTE as not recently accessed */ 248 static inline pte_t pte_mkold(pte_t pte) 249 { 250 pte_val(pte) &= ~_PAGE_ACCESSED; 251 return pte; 252 } 253 254 /* pte_mkyoung - mark PTE as recently accessed */ 255 static inline pte_t pte_mkyoung(pte_t pte) 256 { 257 pte_val(pte) |= _PAGE_ACCESSED; 258 return pte; 259 } 260 261 /* pte_mkclean - mark page as in sync with backing store */ 262 static inline pte_t pte_mkclean(pte_t pte) 263 { 264 pte_val(pte) &= ~_PAGE_DIRTY; 265 return pte; 266 } 267 268 /* pte_mkdirty - mark page as modified */ 269 static inline pte_t pte_mkdirty(pte_t pte) 270 { 271 pte_val(pte) |= _PAGE_DIRTY; 272 return pte; 273 } 274 275 /* pte_young - "is PTE marked as accessed"? */ 276 static inline int pte_young(pte_t pte) 277 { 278 return pte_val(pte) & _PAGE_ACCESSED; 279 } 280 281 /* pte_dirty - "is PTE dirty?" */ 282 static inline int pte_dirty(pte_t pte) 283 { 284 return pte_val(pte) & _PAGE_DIRTY; 285 } 286 287 /* pte_modify - set protection bits on PTE */ 288 static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 289 { 290 pte_val(pte) &= PAGE_MASK; 291 pte_val(pte) |= pgprot_val(prot); 292 return pte; 293 } 294 295 /* pte_wrprotect - mark page as not writable */ 296 static inline pte_t pte_wrprotect(pte_t pte) 297 { 298 pte_val(pte) &= ~_PAGE_WRITE; 299 return pte; 300 } 301 302 /* pte_mkwrite - mark page as writable */ 303 static inline pte_t pte_mkwrite_novma(pte_t pte) 304 { 305 pte_val(pte) |= _PAGE_WRITE; 306 return pte; 307 } 308 309 /* pte_mkexec - mark PTE as executable */ 310 static inline pte_t pte_mkexec(pte_t pte) 311 { 312 pte_val(pte) |= _PAGE_EXECUTE; 313 return pte; 314 } 315 316 /* pte_read - "is PTE marked as readable?" */ 317 static inline int pte_read(pte_t pte) 318 { 319 return pte_val(pte) & _PAGE_READ; 320 } 321 322 /* pte_write - "is PTE marked as writable?" */ 323 static inline int pte_write(pte_t pte) 324 { 325 return pte_val(pte) & _PAGE_WRITE; 326 } 327 328 329 /* pte_exec - "is PTE marked as executable?" */ 330 static inline int pte_exec(pte_t pte) 331 { 332 return pte_val(pte) & _PAGE_EXECUTE; 333 } 334 335 /* __pte_to_swp_entry - extract swap entry from PTE */ 336 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 337 338 /* __swp_entry_to_pte - extract PTE from swap entry */ 339 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 340 341 #define PFN_PTE_SHIFT PAGE_SHIFT 342 /* pfn_pte - convert page number and protection value to page table entry */ 343 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 344 345 /* pte_pfn - convert pte to page frame number */ 346 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 347 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 348 349 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 350 { 351 return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK); 352 } 353 354 /* ZERO_PAGE - returns the globally shared zero page */ 355 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 356 357 /* 358 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 359 * are !pte_none() && !pte_present(). 360 * 361 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 362 * interpreted as swap information. The remaining free bits are interpreted as 363 * listed below. Rather than have the TLB fill handler test 364 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 365 * all zeros for swap entries, which speeds up the miss handler at the cost of 366 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 367 * processor architecture and target applications suggest a lot of TLB misses 368 * and not much swap space. 369 * 370 * Format of swap PTE: 371 * bit 0: Present (zero) 372 * bits 1-5: swap type (arch independent layer uses 5 bits max) 373 * bit 6: exclusive marker 374 * bits 7-9: bits 2:0 of offset 375 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 376 * bits 13-31: bits 21:3 of swap offset 377 * 378 * The split offset makes some of the following macros a little gnarly, 379 * but there's plenty of precedent for this sort of thing. 380 */ 381 382 /* Used for swap PTEs */ 383 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 384 385 #define __swp_offset(swp_pte) \ 386 ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x3ffff8)) 387 388 #define __swp_entry(type, offset) \ 389 ((swp_entry_t) { \ 390 (((type & 0x1f) << 1) | \ 391 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) }) 392 393 static inline int pte_swp_exclusive(pte_t pte) 394 { 395 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 396 } 397 398 static inline pte_t pte_swp_mkexclusive(pte_t pte) 399 { 400 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 401 return pte; 402 } 403 404 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 405 { 406 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 407 return pte; 408 } 409 410 #endif 411