xref: /openbmc/linux/arch/hexagon/include/asm/pgtable.h (revision 6c8c1406)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Page table support for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10 
11 /*
12  * Page table definitions for Qualcomm Hexagon processor.
13  */
14 #include <asm/page.h>
15 #include <asm-generic/pgtable-nopmd.h>
16 
17 /* A handy thing to have if one has the RAM. Declared in head.S */
18 extern unsigned long empty_zero_page;
19 
20 /*
21  * The PTE model described here is that of the Hexagon Virtual Machine,
22  * which autonomously walks 2-level page tables.  At a lower level, we
23  * also describe the RISCish software-loaded TLB entry structure of
24  * the underlying Hexagon processor. A kernel built to run on the
25  * virtual machine has no need to know about the underlying hardware.
26  */
27 #include <asm/vm_mmu.h>
28 
29 /*
30  * To maximize the comfort level for the PTE manipulation macros,
31  * define the "well known" architecture-specific bits.
32  */
33 #define _PAGE_READ	__HVM_PTE_R
34 #define _PAGE_WRITE	__HVM_PTE_W
35 #define _PAGE_EXECUTE	__HVM_PTE_X
36 #define _PAGE_USER	__HVM_PTE_U
37 
38 /*
39  * We have a total of 4 "soft" bits available in the abstract PTE.
40  * The two mandatory software bits are Dirty and Accessed.
41  * To make nonlinear swap work according to the more recent
42  * model, we want a low order "Present" bit to indicate whether
43  * the PTE describes MMU programming or swap space.
44  */
45 #define _PAGE_PRESENT	(1<<0)
46 #define _PAGE_DIRTY	(1<<1)
47 #define _PAGE_ACCESSED	(1<<2)
48 
49 /*
50  * For now, let's say that Valid and Present are the same thing.
51  * Alternatively, we could say that it's the "or" of R, W, and X
52  * permissions.
53  */
54 #define _PAGE_VALID	_PAGE_PRESENT
55 
56 /*
57  * We're not defining _PAGE_GLOBAL here, since there's no concept
58  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
59  * and we want to use the same page table structures and macros in
60  * the native kernel as we do in the virtual machine kernel.
61  * So we'll put up with a bit of inefficiency for now...
62  */
63 
64 /*
65  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
66  * only the second from the bottom, pgd and pud both being collapsed.
67  * Each entry represents 4MB of virtual address space, 4K of table
68  * thus maps the full 4GB.
69  */
70 #define PGDIR_SHIFT 22
71 #define PTRS_PER_PGD 1024
72 
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
75 
76 #ifdef CONFIG_PAGE_SIZE_4KB
77 #define PTRS_PER_PTE 1024
78 #endif
79 
80 #ifdef CONFIG_PAGE_SIZE_16KB
81 #define PTRS_PER_PTE 256
82 #endif
83 
84 #ifdef CONFIG_PAGE_SIZE_64KB
85 #define PTRS_PER_PTE 64
86 #endif
87 
88 #ifdef CONFIG_PAGE_SIZE_256KB
89 #define PTRS_PER_PTE 16
90 #endif
91 
92 #ifdef CONFIG_PAGE_SIZE_1MB
93 #define PTRS_PER_PTE 4
94 #endif
95 
96 /*  Any bigger and the PTE disappears.  */
97 #define pgd_ERROR(e) \
98 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
99 		pgd_val(e))
100 
101 /*
102  * Page Protection Constants. Includes (in this variant) cache attributes.
103  */
104 extern unsigned long _dflt_cache_att;
105 
106 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
107 				_dflt_cache_att)
108 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
109 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
110 #define PAGE_COPY	PAGE_READONLY
111 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
112 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
113 #define PAGE_COPY_EXEC	PAGE_EXEC
114 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
115 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
116 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
117 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
118 
119 
120 /*
121  * Aliases for mapping mmap() protection bits to page protections.
122  * These get used for static initialization, so using the _dflt_cache_att
123  * variable for the default cache attribute isn't workable. If the
124  * default gets changed at boot time, the boot option code has to
125  * update data structures like the protaction_map[] array.
126  */
127 #define CACHEDEF	(CACHE_DEFAULT << 6)
128 
129 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
130 
131 /*  HUGETLB not working currently  */
132 #ifdef CONFIG_HUGETLB_PAGE
133 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
134 #endif
135 
136 /*
137  * For now, assume that higher-level code will do TLB/MMU invalidations
138  * and don't insert that overhead into this low-level function.
139  */
140 extern void sync_icache_dcache(pte_t pte);
141 
142 #define pte_present_exec_user(pte) \
143 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
144 	(_PAGE_EXECUTE | _PAGE_USER))
145 
146 static inline void set_pte(pte_t *ptep, pte_t pteval)
147 {
148 	/*  should really be using pte_exec, if it weren't declared later. */
149 	if (pte_present_exec_user(pteval))
150 		sync_icache_dcache(pteval);
151 
152 	*ptep = pteval;
153 }
154 
155 /*
156  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
157  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
158  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
159  * as a universal null entry, but some of those least significant bits
160  * are interpreted by software.
161  */
162 #define _NULL_PMD	0x7
163 #define _NULL_PTE	0x0
164 
165 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
166 {
167 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
168 }
169 
170 /*
171  * Conveniently, a null PTE value is invalid.
172  */
173 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
174 				pte_t *ptep)
175 {
176 	pte_val(*ptep) = _NULL_PTE;
177 }
178 
179 /**
180  * pmd_none - check if pmd_entry is mapped
181  * @pmd_entry:  pmd entry
182  *
183  * MIPS checks it against that "invalid pte table" thing.
184  */
185 static inline int pmd_none(pmd_t pmd)
186 {
187 	return pmd_val(pmd) == _NULL_PMD;
188 }
189 
190 /**
191  * pmd_present - is there a page table behind this?
192  * Essentially the inverse of pmd_none.  We maybe
193  * save an inline instruction by defining it this
194  * way, instead of simply "!pmd_none".
195  */
196 static inline int pmd_present(pmd_t pmd)
197 {
198 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
199 }
200 
201 /**
202  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
203  * As we have no known cause of badness, it's null, as it is for many
204  * architectures.
205  */
206 static inline int pmd_bad(pmd_t pmd)
207 {
208 	return 0;
209 }
210 
211 /*
212  * pmd_pfn - converts a PMD entry to a page frame number
213  */
214 #define pmd_pfn(pmd)  (pmd_val(pmd) >> PAGE_SHIFT)
215 
216 /*
217  * pmd_page - converts a PMD entry to a page pointer
218  */
219 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
220 
221 /**
222  * pte_none - check if pte is mapped
223  * @pte: pte_t entry
224  */
225 static inline int pte_none(pte_t pte)
226 {
227 	return pte_val(pte) == _NULL_PTE;
228 };
229 
230 /*
231  * pte_present - check if page is present
232  */
233 static inline int pte_present(pte_t pte)
234 {
235 	return pte_val(pte) & _PAGE_PRESENT;
236 }
237 
238 /* mk_pte - make a PTE out of a page pointer and protection bits */
239 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
240 
241 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
242 #define pte_page(x) pfn_to_page(pte_pfn(x))
243 
244 /* pte_mkold - mark PTE as not recently accessed */
245 static inline pte_t pte_mkold(pte_t pte)
246 {
247 	pte_val(pte) &= ~_PAGE_ACCESSED;
248 	return pte;
249 }
250 
251 /* pte_mkyoung - mark PTE as recently accessed */
252 static inline pte_t pte_mkyoung(pte_t pte)
253 {
254 	pte_val(pte) |= _PAGE_ACCESSED;
255 	return pte;
256 }
257 
258 /* pte_mkclean - mark page as in sync with backing store */
259 static inline pte_t pte_mkclean(pte_t pte)
260 {
261 	pte_val(pte) &= ~_PAGE_DIRTY;
262 	return pte;
263 }
264 
265 /* pte_mkdirty - mark page as modified */
266 static inline pte_t pte_mkdirty(pte_t pte)
267 {
268 	pte_val(pte) |= _PAGE_DIRTY;
269 	return pte;
270 }
271 
272 /* pte_young - "is PTE marked as accessed"? */
273 static inline int pte_young(pte_t pte)
274 {
275 	return pte_val(pte) & _PAGE_ACCESSED;
276 }
277 
278 /* pte_dirty - "is PTE dirty?" */
279 static inline int pte_dirty(pte_t pte)
280 {
281 	return pte_val(pte) & _PAGE_DIRTY;
282 }
283 
284 /* pte_modify - set protection bits on PTE */
285 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
286 {
287 	pte_val(pte) &= PAGE_MASK;
288 	pte_val(pte) |= pgprot_val(prot);
289 	return pte;
290 }
291 
292 /* pte_wrprotect - mark page as not writable */
293 static inline pte_t pte_wrprotect(pte_t pte)
294 {
295 	pte_val(pte) &= ~_PAGE_WRITE;
296 	return pte;
297 }
298 
299 /* pte_mkwrite - mark page as writable */
300 static inline pte_t pte_mkwrite(pte_t pte)
301 {
302 	pte_val(pte) |= _PAGE_WRITE;
303 	return pte;
304 }
305 
306 /* pte_mkexec - mark PTE as executable */
307 static inline pte_t pte_mkexec(pte_t pte)
308 {
309 	pte_val(pte) |= _PAGE_EXECUTE;
310 	return pte;
311 }
312 
313 /* pte_read - "is PTE marked as readable?" */
314 static inline int pte_read(pte_t pte)
315 {
316 	return pte_val(pte) & _PAGE_READ;
317 }
318 
319 /* pte_write - "is PTE marked as writable?" */
320 static inline int pte_write(pte_t pte)
321 {
322 	return pte_val(pte) & _PAGE_WRITE;
323 }
324 
325 
326 /* pte_exec - "is PTE marked as executable?" */
327 static inline int pte_exec(pte_t pte)
328 {
329 	return pte_val(pte) & _PAGE_EXECUTE;
330 }
331 
332 /* __pte_to_swp_entry - extract swap entry from PTE */
333 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
334 
335 /* __swp_entry_to_pte - extract PTE from swap entry */
336 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
337 
338 /* pfn_pte - convert page number and protection value to page table entry */
339 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
340 
341 /* pte_pfn - convert pte to page frame number */
342 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
343 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
344 
345 /*
346  * set_pte_at - update page table and do whatever magic may be
347  * necessary to make the underlying hardware/firmware take note.
348  *
349  * VM may require a virtual instruction to alert the MMU.
350  */
351 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
352 
353 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
354 {
355 	return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
356 }
357 
358 /* ZERO_PAGE - returns the globally shared zero page */
359 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
360 
361 /*
362  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
363  * interpreted as swap information.  The remaining free bits are interpreted as
364  * swap type/offset tuple.  Rather than have the TLB fill handler test
365  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
366  * all zeros for swap entries, which speeds up the miss handler at the cost of
367  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
368  * processor architecture and target applications suggest a lot of TLB misses
369  * and not much swap space.
370  *
371  * Format of swap PTE:
372  *	bit	0:	Present (zero)
373  *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
374  *	bits	6-9:	bits 3:0 of offset
375  *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
376  *	bits	13-31:  bits 22:4 of swap offset
377  *
378  * The split offset makes some of the following macros a little gnarly,
379  * but there's plenty of precedent for this sort of thing.
380  */
381 
382 /* Used for swap PTEs */
383 #define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
384 
385 #define __swp_offset(swp_pte) \
386 	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
387 
388 #define __swp_entry(type, offset) \
389 	((swp_entry_t)	{ \
390 		((type << 1) | \
391 		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
392 
393 #endif
394