xref: /openbmc/linux/arch/hexagon/include/asm/pgtable.h (revision 6c33a6f4)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Page table support for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10 
11 /*
12  * Page table definitions for Qualcomm Hexagon processor.
13  */
14 #include <asm/page.h>
15 #define __ARCH_USE_5LEVEL_HACK
16 #include <asm-generic/pgtable-nopmd.h>
17 
18 /* A handy thing to have if one has the RAM. Declared in head.S */
19 extern unsigned long empty_zero_page;
20 
21 /*
22  * The PTE model described here is that of the Hexagon Virtual Machine,
23  * which autonomously walks 2-level page tables.  At a lower level, we
24  * also describe the RISCish software-loaded TLB entry structure of
25  * the underlying Hexagon processor. A kernel built to run on the
26  * virtual machine has no need to know about the underlying hardware.
27  */
28 #include <asm/vm_mmu.h>
29 
30 /*
31  * To maximize the comfort level for the PTE manipulation macros,
32  * define the "well known" architecture-specific bits.
33  */
34 #define _PAGE_READ	__HVM_PTE_R
35 #define _PAGE_WRITE	__HVM_PTE_W
36 #define _PAGE_EXECUTE	__HVM_PTE_X
37 #define _PAGE_USER	__HVM_PTE_U
38 
39 /*
40  * We have a total of 4 "soft" bits available in the abstract PTE.
41  * The two mandatory software bits are Dirty and Accessed.
42  * To make nonlinear swap work according to the more recent
43  * model, we want a low order "Present" bit to indicate whether
44  * the PTE describes MMU programming or swap space.
45  */
46 #define _PAGE_PRESENT	(1<<0)
47 #define _PAGE_DIRTY	(1<<1)
48 #define _PAGE_ACCESSED	(1<<2)
49 
50 /*
51  * For now, let's say that Valid and Present are the same thing.
52  * Alternatively, we could say that it's the "or" of R, W, and X
53  * permissions.
54  */
55 #define _PAGE_VALID	_PAGE_PRESENT
56 
57 /*
58  * We're not defining _PAGE_GLOBAL here, since there's no concept
59  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
60  * and we want to use the same page table structures and macros in
61  * the native kernel as we do in the virtual machine kernel.
62  * So we'll put up with a bit of inefficiency for now...
63  */
64 
65 /*
66  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
67  * only the second from the bottom, pgd and pud both being collapsed.
68  * Each entry represents 4MB of virtual address space, 4K of table
69  * thus maps the full 4GB.
70  */
71 #define PGDIR_SHIFT 22
72 #define PTRS_PER_PGD 1024
73 
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76 
77 #ifdef CONFIG_PAGE_SIZE_4KB
78 #define PTRS_PER_PTE 1024
79 #endif
80 
81 #ifdef CONFIG_PAGE_SIZE_16KB
82 #define PTRS_PER_PTE 256
83 #endif
84 
85 #ifdef CONFIG_PAGE_SIZE_64KB
86 #define PTRS_PER_PTE 64
87 #endif
88 
89 #ifdef CONFIG_PAGE_SIZE_256KB
90 #define PTRS_PER_PTE 16
91 #endif
92 
93 #ifdef CONFIG_PAGE_SIZE_1MB
94 #define PTRS_PER_PTE 4
95 #endif
96 
97 /*  Any bigger and the PTE disappears.  */
98 #define pgd_ERROR(e) \
99 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
100 		pgd_val(e))
101 
102 /*
103  * Page Protection Constants. Includes (in this variant) cache attributes.
104  */
105 extern unsigned long _dflt_cache_att;
106 
107 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
108 				_dflt_cache_att)
109 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
110 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
111 #define PAGE_COPY	PAGE_READONLY
112 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
113 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
114 #define PAGE_COPY_EXEC	PAGE_EXEC
115 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
116 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
117 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
118 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
119 
120 
121 /*
122  * Aliases for mapping mmap() protection bits to page protections.
123  * These get used for static initialization, so using the _dflt_cache_att
124  * variable for the default cache attribute isn't workable. If the
125  * default gets changed at boot time, the boot option code has to
126  * update data structures like the protaction_map[] array.
127  */
128 #define CACHEDEF	(CACHE_DEFAULT << 6)
129 
130 /* Private (copy-on-write) page protections. */
131 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
132 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
133 #define __P010 __P000	/* Write-only copy-on-write */
134 #define __P011 __P001	/* Read/Write copy-on-write */
135 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
136 			_PAGE_EXECUTE | CACHEDEF)
137 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
138 			_PAGE_READ | CACHEDEF)
139 #define __P110 __P100	/* Write/execute copy-on-write */
140 #define __P111 __P101	/* Read/Write/Execute, copy-on-write */
141 
142 /* Shared page protections. */
143 #define __S000 __P000
144 #define __S001 __P001
145 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
146 			_PAGE_WRITE | CACHEDEF)
147 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
148 			_PAGE_WRITE | CACHEDEF)
149 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
150 			_PAGE_EXECUTE | CACHEDEF)
151 #define __S101 __P101
152 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
153 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
154 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
155 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
156 
157 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
158 
159 /* Seems to be zero even in architectures where the zero page is firewalled? */
160 #define FIRST_USER_ADDRESS 0UL
161 #define pte_special(pte)	0
162 #define pte_mkspecial(pte)	(pte)
163 
164 /*  HUGETLB not working currently  */
165 #ifdef CONFIG_HUGETLB_PAGE
166 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
167 #endif
168 
169 /*
170  * For now, assume that higher-level code will do TLB/MMU invalidations
171  * and don't insert that overhead into this low-level function.
172  */
173 extern void sync_icache_dcache(pte_t pte);
174 
175 #define pte_present_exec_user(pte) \
176 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
177 	(_PAGE_EXECUTE | _PAGE_USER))
178 
179 static inline void set_pte(pte_t *ptep, pte_t pteval)
180 {
181 	/*  should really be using pte_exec, if it weren't declared later. */
182 	if (pte_present_exec_user(pteval))
183 		sync_icache_dcache(pteval);
184 
185 	*ptep = pteval;
186 }
187 
188 /*
189  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
190  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
191  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
192  * as a universal null entry, but some of those least significant bits
193  * are interpreted by software.
194  */
195 #define _NULL_PMD	0x7
196 #define _NULL_PTE	0x0
197 
198 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
199 {
200 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
201 }
202 
203 /*
204  * Conveniently, a null PTE value is invalid.
205  */
206 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
207 				pte_t *ptep)
208 {
209 	pte_val(*ptep) = _NULL_PTE;
210 }
211 
212 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
213 /**
214  * pmd_index - returns the index of the entry in the PMD page
215  * which would control the given virtual address
216  */
217 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
218 
219 #endif
220 
221 /**
222  * pgd_index - returns the index of the entry in the PGD page
223  * which would control the given virtual address
224  *
225  * This returns the *index* for the address in the pgd_t
226  */
227 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
228 
229 /*
230  * pgd_offset - find an offset in a page-table-directory
231  */
232 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
233 
234 /*
235  * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
236  */
237 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
238 
239 /**
240  * pmd_none - check if pmd_entry is mapped
241  * @pmd_entry:  pmd entry
242  *
243  * MIPS checks it against that "invalid pte table" thing.
244  */
245 static inline int pmd_none(pmd_t pmd)
246 {
247 	return pmd_val(pmd) == _NULL_PMD;
248 }
249 
250 /**
251  * pmd_present - is there a page table behind this?
252  * Essentially the inverse of pmd_none.  We maybe
253  * save an inline instruction by defining it this
254  * way, instead of simply "!pmd_none".
255  */
256 static inline int pmd_present(pmd_t pmd)
257 {
258 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
259 }
260 
261 /**
262  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
263  * As we have no known cause of badness, it's null, as it is for many
264  * architectures.
265  */
266 static inline int pmd_bad(pmd_t pmd)
267 {
268 	return 0;
269 }
270 
271 /*
272  * pmd_page - converts a PMD entry to a page pointer
273  */
274 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
275 #define pmd_pgtable(pmd) pmd_page(pmd)
276 
277 /**
278  * pte_none - check if pte is mapped
279  * @pte: pte_t entry
280  */
281 static inline int pte_none(pte_t pte)
282 {
283 	return pte_val(pte) == _NULL_PTE;
284 };
285 
286 /*
287  * pte_present - check if page is present
288  */
289 static inline int pte_present(pte_t pte)
290 {
291 	return pte_val(pte) & _PAGE_PRESENT;
292 }
293 
294 /* mk_pte - make a PTE out of a page pointer and protection bits */
295 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
296 
297 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
298 #define pte_page(x) pfn_to_page(pte_pfn(x))
299 
300 /* pte_mkold - mark PTE as not recently accessed */
301 static inline pte_t pte_mkold(pte_t pte)
302 {
303 	pte_val(pte) &= ~_PAGE_ACCESSED;
304 	return pte;
305 }
306 
307 /* pte_mkyoung - mark PTE as recently accessed */
308 static inline pte_t pte_mkyoung(pte_t pte)
309 {
310 	pte_val(pte) |= _PAGE_ACCESSED;
311 	return pte;
312 }
313 
314 /* pte_mkclean - mark page as in sync with backing store */
315 static inline pte_t pte_mkclean(pte_t pte)
316 {
317 	pte_val(pte) &= ~_PAGE_DIRTY;
318 	return pte;
319 }
320 
321 /* pte_mkdirty - mark page as modified */
322 static inline pte_t pte_mkdirty(pte_t pte)
323 {
324 	pte_val(pte) |= _PAGE_DIRTY;
325 	return pte;
326 }
327 
328 /* pte_young - "is PTE marked as accessed"? */
329 static inline int pte_young(pte_t pte)
330 {
331 	return pte_val(pte) & _PAGE_ACCESSED;
332 }
333 
334 /* pte_dirty - "is PTE dirty?" */
335 static inline int pte_dirty(pte_t pte)
336 {
337 	return pte_val(pte) & _PAGE_DIRTY;
338 }
339 
340 /* pte_modify - set protection bits on PTE */
341 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
342 {
343 	pte_val(pte) &= PAGE_MASK;
344 	pte_val(pte) |= pgprot_val(prot);
345 	return pte;
346 }
347 
348 /* pte_wrprotect - mark page as not writable */
349 static inline pte_t pte_wrprotect(pte_t pte)
350 {
351 	pte_val(pte) &= ~_PAGE_WRITE;
352 	return pte;
353 }
354 
355 /* pte_mkwrite - mark page as writable */
356 static inline pte_t pte_mkwrite(pte_t pte)
357 {
358 	pte_val(pte) |= _PAGE_WRITE;
359 	return pte;
360 }
361 
362 /* pte_mkexec - mark PTE as executable */
363 static inline pte_t pte_mkexec(pte_t pte)
364 {
365 	pte_val(pte) |= _PAGE_EXECUTE;
366 	return pte;
367 }
368 
369 /* pte_read - "is PTE marked as readable?" */
370 static inline int pte_read(pte_t pte)
371 {
372 	return pte_val(pte) & _PAGE_READ;
373 }
374 
375 /* pte_write - "is PTE marked as writable?" */
376 static inline int pte_write(pte_t pte)
377 {
378 	return pte_val(pte) & _PAGE_WRITE;
379 }
380 
381 
382 /* pte_exec - "is PTE marked as executable?" */
383 static inline int pte_exec(pte_t pte)
384 {
385 	return pte_val(pte) & _PAGE_EXECUTE;
386 }
387 
388 /* __pte_to_swp_entry - extract swap entry from PTE */
389 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
390 
391 /* __swp_entry_to_pte - extract PTE from swap entry */
392 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
393 
394 /* pfn_pte - convert page number and protection value to page table entry */
395 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
396 
397 /* pte_pfn - convert pte to page frame number */
398 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
399 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
400 
401 /*
402  * set_pte_at - update page table and do whatever magic may be
403  * necessary to make the underlying hardware/firmware take note.
404  *
405  * VM may require a virtual instruction to alert the MMU.
406  */
407 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
408 
409 /*
410  * May need to invoke the virtual machine as well...
411  */
412 #define pte_unmap(pte)		do { } while (0)
413 #define pte_unmap_nested(pte)	do { } while (0)
414 
415 /*
416  * pte_offset_map - returns the linear address of the page table entry
417  * corresponding to an address
418  */
419 #define pte_offset_map(dir, address)                                    \
420 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
421 
422 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
423 
424 /* pte_offset_kernel - kernel version of pte_offset */
425 #define pte_offset_kernel(dir, address) \
426 	((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
427 				+  __pte_offset(address))
428 
429 /* ZERO_PAGE - returns the globally shared zero page */
430 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
431 
432 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
433 
434 /*
435  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
436  * interpreted as swap information.  The remaining free bits are interpreted as
437  * swap type/offset tuple.  Rather than have the TLB fill handler test
438  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
439  * all zeros for swap entries, which speeds up the miss handler at the cost of
440  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
441  * processor architecture and target applications suggest a lot of TLB misses
442  * and not much swap space.
443  *
444  * Format of swap PTE:
445  *	bit	0:	Present (zero)
446  *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
447  *	bits	6-9:	bits 3:0 of offset
448  *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
449  *	bits	13-31:  bits 22:4 of swap offset
450  *
451  * The split offset makes some of the following macros a little gnarly,
452  * but there's plenty of precedent for this sort of thing.
453  */
454 
455 /* Used for swap PTEs */
456 #define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
457 
458 #define __swp_offset(swp_pte) \
459 	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
460 
461 #define __swp_entry(type, offset) \
462 	((swp_entry_t)	{ \
463 		((type << 1) | \
464 		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
465 
466 /*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
467 #include <asm-generic/pgtable.h>
468 
469 #endif
470