1 /* 2 * Page table support for the Hexagon architecture 3 * 4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 and 8 * only version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 18 * 02110-1301, USA. 19 */ 20 21 #ifndef _ASM_PGTABLE_H 22 #define _ASM_PGTABLE_H 23 24 /* 25 * Page table definitions for Qualcomm Hexagon processor. 26 */ 27 #include <linux/swap.h> 28 #include <asm/page.h> 29 #include <asm-generic/pgtable-nopmd.h> 30 31 /* A handy thing to have if one has the RAM. Declared in head.S */ 32 extern unsigned long empty_zero_page; 33 extern unsigned long zero_page_mask; 34 35 /* 36 * The PTE model described here is that of the Hexagon Virtual Machine, 37 * which autonomously walks 2-level page tables. At a lower level, we 38 * also describe the RISCish software-loaded TLB entry structure of 39 * the underlying Hexagon processor. A kernel built to run on the 40 * virtual machine has no need to know about the underlying hardware. 41 */ 42 #include <asm/vm_mmu.h> 43 44 /* 45 * To maximize the comfort level for the PTE manipulation macros, 46 * define the "well known" architecture-specific bits. 47 */ 48 #define _PAGE_READ __HVM_PTE_R 49 #define _PAGE_WRITE __HVM_PTE_W 50 #define _PAGE_EXECUTE __HVM_PTE_X 51 #define _PAGE_USER __HVM_PTE_U 52 53 /* 54 * We have a total of 4 "soft" bits available in the abstract PTE. 55 * The two mandatory software bits are Dirty and Accessed. 56 * To make nonlinear swap work according to the more recent 57 * model, we want a low order "Present" bit to indicate whether 58 * the PTE describes MMU programming or swap space. 59 */ 60 #define _PAGE_PRESENT (1<<0) 61 #define _PAGE_DIRTY (1<<1) 62 #define _PAGE_ACCESSED (1<<2) 63 64 /* 65 * For now, let's say that Valid and Present are the same thing. 66 * Alternatively, we could say that it's the "or" of R, W, and X 67 * permissions. 68 */ 69 #define _PAGE_VALID _PAGE_PRESENT 70 71 /* 72 * We're not defining _PAGE_GLOBAL here, since there's no concept 73 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 74 * and we want to use the same page table structures and macros in 75 * the native kernel as we do in the virtual machine kernel. 76 * So we'll put up with a bit of inefficiency for now... 77 */ 78 79 /* 80 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 81 * only the second from the bottom, pgd and pud both being collapsed. 82 * Each entry represents 4MB of virtual address space, 4K of table 83 * thus maps the full 4GB. 84 */ 85 #define PGDIR_SHIFT 22 86 #define PTRS_PER_PGD 1024 87 88 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 89 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 90 91 #ifdef CONFIG_PAGE_SIZE_4KB 92 #define PTRS_PER_PTE 1024 93 #endif 94 95 #ifdef CONFIG_PAGE_SIZE_16KB 96 #define PTRS_PER_PTE 256 97 #endif 98 99 #ifdef CONFIG_PAGE_SIZE_64KB 100 #define PTRS_PER_PTE 64 101 #endif 102 103 #ifdef CONFIG_PAGE_SIZE_256KB 104 #define PTRS_PER_PTE 16 105 #endif 106 107 #ifdef CONFIG_PAGE_SIZE_1MB 108 #define PTRS_PER_PTE 4 109 #endif 110 111 /* Any bigger and the PTE disappears. */ 112 #define pgd_ERROR(e) \ 113 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 114 pgd_val(e)) 115 116 /* 117 * Page Protection Constants. Includes (in this variant) cache attributes. 118 */ 119 extern unsigned long _dflt_cache_att; 120 121 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 122 _dflt_cache_att) 123 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 124 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 125 #define PAGE_COPY PAGE_READONLY 126 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 127 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 128 #define PAGE_COPY_EXEC PAGE_EXEC 129 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 130 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 131 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 132 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 133 134 135 /* 136 * Aliases for mapping mmap() protection bits to page protections. 137 * These get used for static initialization, so using the _dflt_cache_att 138 * variable for the default cache attribute isn't workable. If the 139 * default gets changed at boot time, the boot option code has to 140 * update data structures like the protaction_map[] array. 141 */ 142 #define CACHEDEF (CACHE_DEFAULT << 6) 143 144 /* Private (copy-on-write) page protections. */ 145 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 146 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 147 #define __P010 __P000 /* Write-only copy-on-write */ 148 #define __P011 __P001 /* Read/Write copy-on-write */ 149 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 150 _PAGE_EXECUTE | CACHEDEF) 151 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 152 _PAGE_READ | CACHEDEF) 153 #define __P110 __P100 /* Write/execute copy-on-write */ 154 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 155 156 /* Shared page protections. */ 157 #define __S000 __P000 158 #define __S001 __P001 159 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 160 _PAGE_WRITE | CACHEDEF) 161 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 162 _PAGE_WRITE | CACHEDEF) 163 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 164 _PAGE_EXECUTE | CACHEDEF) 165 #define __S101 __P101 166 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 167 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 168 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 169 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 170 171 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 172 173 /* Seems to be zero even in architectures where the zero page is firewalled? */ 174 #define FIRST_USER_ADDRESS 0UL 175 #define pte_special(pte) 0 176 #define pte_mkspecial(pte) (pte) 177 178 /* HUGETLB not working currently */ 179 #ifdef CONFIG_HUGETLB_PAGE 180 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 181 #endif 182 183 /* 184 * For now, assume that higher-level code will do TLB/MMU invalidations 185 * and don't insert that overhead into this low-level function. 186 */ 187 extern void sync_icache_dcache(pte_t pte); 188 189 #define pte_present_exec_user(pte) \ 190 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 191 (_PAGE_EXECUTE | _PAGE_USER)) 192 193 static inline void set_pte(pte_t *ptep, pte_t pteval) 194 { 195 /* should really be using pte_exec, if it weren't declared later. */ 196 if (pte_present_exec_user(pteval)) 197 sync_icache_dcache(pteval); 198 199 *ptep = pteval; 200 } 201 202 /* 203 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 204 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 205 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 206 * as a universal null entry, but some of those least significant bits 207 * are interpreted by software. 208 */ 209 #define _NULL_PMD 0x7 210 #define _NULL_PTE 0x0 211 212 static inline void pmd_clear(pmd_t *pmd_entry_ptr) 213 { 214 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 215 } 216 217 /* 218 * Conveniently, a null PTE value is invalid. 219 */ 220 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 221 pte_t *ptep) 222 { 223 pte_val(*ptep) = _NULL_PTE; 224 } 225 226 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL 227 /** 228 * pmd_index - returns the index of the entry in the PMD page 229 * which would control the given virtual address 230 */ 231 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 232 233 #endif 234 235 /** 236 * pgd_index - returns the index of the entry in the PGD page 237 * which would control the given virtual address 238 * 239 * This returns the *index* for the address in the pgd_t 240 */ 241 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 242 243 /* 244 * pgd_offset - find an offset in a page-table-directory 245 */ 246 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) 247 248 /* 249 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr 250 */ 251 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 252 253 /** 254 * pmd_none - check if pmd_entry is mapped 255 * @pmd_entry: pmd entry 256 * 257 * MIPS checks it against that "invalid pte table" thing. 258 */ 259 static inline int pmd_none(pmd_t pmd) 260 { 261 return pmd_val(pmd) == _NULL_PMD; 262 } 263 264 /** 265 * pmd_present - is there a page table behind this? 266 * Essentially the inverse of pmd_none. We maybe 267 * save an inline instruction by defining it this 268 * way, instead of simply "!pmd_none". 269 */ 270 static inline int pmd_present(pmd_t pmd) 271 { 272 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 273 } 274 275 /** 276 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 277 * As we have no known cause of badness, it's null, as it is for many 278 * architectures. 279 */ 280 static inline int pmd_bad(pmd_t pmd) 281 { 282 return 0; 283 } 284 285 /* 286 * pmd_page - converts a PMD entry to a page pointer 287 */ 288 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 289 #define pmd_pgtable(pmd) pmd_page(pmd) 290 291 /** 292 * pte_none - check if pte is mapped 293 * @pte: pte_t entry 294 */ 295 static inline int pte_none(pte_t pte) 296 { 297 return pte_val(pte) == _NULL_PTE; 298 }; 299 300 /* 301 * pte_present - check if page is present 302 */ 303 static inline int pte_present(pte_t pte) 304 { 305 return pte_val(pte) & _PAGE_PRESENT; 306 } 307 308 /* mk_pte - make a PTE out of a page pointer and protection bits */ 309 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 310 311 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 312 #define pte_page(x) pfn_to_page(pte_pfn(x)) 313 314 /* pte_mkold - mark PTE as not recently accessed */ 315 static inline pte_t pte_mkold(pte_t pte) 316 { 317 pte_val(pte) &= ~_PAGE_ACCESSED; 318 return pte; 319 } 320 321 /* pte_mkyoung - mark PTE as recently accessed */ 322 static inline pte_t pte_mkyoung(pte_t pte) 323 { 324 pte_val(pte) |= _PAGE_ACCESSED; 325 return pte; 326 } 327 328 /* pte_mkclean - mark page as in sync with backing store */ 329 static inline pte_t pte_mkclean(pte_t pte) 330 { 331 pte_val(pte) &= ~_PAGE_DIRTY; 332 return pte; 333 } 334 335 /* pte_mkdirty - mark page as modified */ 336 static inline pte_t pte_mkdirty(pte_t pte) 337 { 338 pte_val(pte) |= _PAGE_DIRTY; 339 return pte; 340 } 341 342 /* pte_young - "is PTE marked as accessed"? */ 343 static inline int pte_young(pte_t pte) 344 { 345 return pte_val(pte) & _PAGE_ACCESSED; 346 } 347 348 /* pte_dirty - "is PTE dirty?" */ 349 static inline int pte_dirty(pte_t pte) 350 { 351 return pte_val(pte) & _PAGE_DIRTY; 352 } 353 354 /* pte_modify - set protection bits on PTE */ 355 static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 356 { 357 pte_val(pte) &= PAGE_MASK; 358 pte_val(pte) |= pgprot_val(prot); 359 return pte; 360 } 361 362 /* pte_wrprotect - mark page as not writable */ 363 static inline pte_t pte_wrprotect(pte_t pte) 364 { 365 pte_val(pte) &= ~_PAGE_WRITE; 366 return pte; 367 } 368 369 /* pte_mkwrite - mark page as writable */ 370 static inline pte_t pte_mkwrite(pte_t pte) 371 { 372 pte_val(pte) |= _PAGE_WRITE; 373 return pte; 374 } 375 376 /* pte_mkexec - mark PTE as executable */ 377 static inline pte_t pte_mkexec(pte_t pte) 378 { 379 pte_val(pte) |= _PAGE_EXECUTE; 380 return pte; 381 } 382 383 /* pte_read - "is PTE marked as readable?" */ 384 static inline int pte_read(pte_t pte) 385 { 386 return pte_val(pte) & _PAGE_READ; 387 } 388 389 /* pte_write - "is PTE marked as writable?" */ 390 static inline int pte_write(pte_t pte) 391 { 392 return pte_val(pte) & _PAGE_WRITE; 393 } 394 395 396 /* pte_exec - "is PTE marked as executable?" */ 397 static inline int pte_exec(pte_t pte) 398 { 399 return pte_val(pte) & _PAGE_EXECUTE; 400 } 401 402 /* __pte_to_swp_entry - extract swap entry from PTE */ 403 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 404 405 /* __swp_entry_to_pte - extract PTE from swap entry */ 406 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 407 408 /* pfn_pte - convert page number and protection value to page table entry */ 409 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 410 411 /* pte_pfn - convert pte to page frame number */ 412 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 413 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 414 415 /* 416 * set_pte_at - update page table and do whatever magic may be 417 * necessary to make the underlying hardware/firmware take note. 418 * 419 * VM may require a virtual instruction to alert the MMU. 420 */ 421 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 422 423 /* 424 * May need to invoke the virtual machine as well... 425 */ 426 #define pte_unmap(pte) do { } while (0) 427 #define pte_unmap_nested(pte) do { } while (0) 428 429 /* 430 * pte_offset_map - returns the linear address of the page table entry 431 * corresponding to an address 432 */ 433 #define pte_offset_map(dir, address) \ 434 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 435 436 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr) 437 438 /* pte_offset_kernel - kernel version of pte_offset */ 439 #define pte_offset_kernel(dir, address) \ 440 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \ 441 + __pte_offset(address)) 442 443 /* ZERO_PAGE - returns the globally shared zero page */ 444 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 445 446 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 447 448 /* I think this is in case we have page table caches; needed by init/main.c */ 449 #define pgtable_cache_init() do { } while (0) 450 451 /* 452 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 453 * interpreted as swap information. The remaining free bits are interpreted as 454 * swap type/offset tuple. Rather than have the TLB fill handler test 455 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 456 * all zeros for swap entries, which speeds up the miss handler at the cost of 457 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 458 * processor architecture and target applications suggest a lot of TLB misses 459 * and not much swap space. 460 * 461 * Format of swap PTE: 462 * bit 0: Present (zero) 463 * bits 1-5: swap type (arch independent layer uses 5 bits max) 464 * bits 6-9: bits 3:0 of offset 465 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 466 * bits 13-31: bits 22:4 of swap offset 467 * 468 * The split offset makes some of the following macros a little gnarly, 469 * but there's plenty of precedent for this sort of thing. 470 */ 471 472 /* Used for swap PTEs */ 473 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 474 475 #define __swp_offset(swp_pte) \ 476 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 477 478 #define __swp_entry(type, offset) \ 479 ((swp_entry_t) { \ 480 ((type << 1) | \ 481 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 482 483 /* Oh boy. There are a lot of possible arch overrides found in this file. */ 484 #include <asm-generic/pgtable.h> 485 486 #endif 487