xref: /openbmc/linux/arch/hexagon/include/asm/pgtable.h (revision 15e3ae36)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Page table support for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10 
11 /*
12  * Page table definitions for Qualcomm Hexagon processor.
13  */
14 #include <asm/page.h>
15 #define __ARCH_USE_5LEVEL_HACK
16 #include <asm-generic/pgtable-nopmd.h>
17 
18 /* A handy thing to have if one has the RAM. Declared in head.S */
19 extern unsigned long empty_zero_page;
20 
21 /*
22  * The PTE model described here is that of the Hexagon Virtual Machine,
23  * which autonomously walks 2-level page tables.  At a lower level, we
24  * also describe the RISCish software-loaded TLB entry structure of
25  * the underlying Hexagon processor. A kernel built to run on the
26  * virtual machine has no need to know about the underlying hardware.
27  */
28 #include <asm/vm_mmu.h>
29 
30 /*
31  * To maximize the comfort level for the PTE manipulation macros,
32  * define the "well known" architecture-specific bits.
33  */
34 #define _PAGE_READ	__HVM_PTE_R
35 #define _PAGE_WRITE	__HVM_PTE_W
36 #define _PAGE_EXECUTE	__HVM_PTE_X
37 #define _PAGE_USER	__HVM_PTE_U
38 
39 /*
40  * We have a total of 4 "soft" bits available in the abstract PTE.
41  * The two mandatory software bits are Dirty and Accessed.
42  * To make nonlinear swap work according to the more recent
43  * model, we want a low order "Present" bit to indicate whether
44  * the PTE describes MMU programming or swap space.
45  */
46 #define _PAGE_PRESENT	(1<<0)
47 #define _PAGE_DIRTY	(1<<1)
48 #define _PAGE_ACCESSED	(1<<2)
49 
50 /*
51  * For now, let's say that Valid and Present are the same thing.
52  * Alternatively, we could say that it's the "or" of R, W, and X
53  * permissions.
54  */
55 #define _PAGE_VALID	_PAGE_PRESENT
56 
57 /*
58  * We're not defining _PAGE_GLOBAL here, since there's no concept
59  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
60  * and we want to use the same page table structures and macros in
61  * the native kernel as we do in the virtual machine kernel.
62  * So we'll put up with a bit of inefficiency for now...
63  */
64 
65 /*
66  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
67  * only the second from the bottom, pgd and pud both being collapsed.
68  * Each entry represents 4MB of virtual address space, 4K of table
69  * thus maps the full 4GB.
70  */
71 #define PGDIR_SHIFT 22
72 #define PTRS_PER_PGD 1024
73 
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76 
77 #ifdef CONFIG_PAGE_SIZE_4KB
78 #define PTRS_PER_PTE 1024
79 #endif
80 
81 #ifdef CONFIG_PAGE_SIZE_16KB
82 #define PTRS_PER_PTE 256
83 #endif
84 
85 #ifdef CONFIG_PAGE_SIZE_64KB
86 #define PTRS_PER_PTE 64
87 #endif
88 
89 #ifdef CONFIG_PAGE_SIZE_256KB
90 #define PTRS_PER_PTE 16
91 #endif
92 
93 #ifdef CONFIG_PAGE_SIZE_1MB
94 #define PTRS_PER_PTE 4
95 #endif
96 
97 /*  Any bigger and the PTE disappears.  */
98 #define pgd_ERROR(e) \
99 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
100 		pgd_val(e))
101 
102 /*
103  * Page Protection Constants. Includes (in this variant) cache attributes.
104  */
105 extern unsigned long _dflt_cache_att;
106 
107 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
108 				_dflt_cache_att)
109 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
110 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
111 #define PAGE_COPY	PAGE_READONLY
112 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
113 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
114 #define PAGE_COPY_EXEC	PAGE_EXEC
115 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
116 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
117 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
118 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
119 
120 
121 /*
122  * Aliases for mapping mmap() protection bits to page protections.
123  * These get used for static initialization, so using the _dflt_cache_att
124  * variable for the default cache attribute isn't workable. If the
125  * default gets changed at boot time, the boot option code has to
126  * update data structures like the protaction_map[] array.
127  */
128 #define CACHEDEF	(CACHE_DEFAULT << 6)
129 
130 /* Private (copy-on-write) page protections. */
131 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
132 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
133 #define __P010 __P000	/* Write-only copy-on-write */
134 #define __P011 __P001	/* Read/Write copy-on-write */
135 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
136 			_PAGE_EXECUTE | CACHEDEF)
137 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
138 			_PAGE_READ | CACHEDEF)
139 #define __P110 __P100	/* Write/execute copy-on-write */
140 #define __P111 __P101	/* Read/Write/Execute, copy-on-write */
141 
142 /* Shared page protections. */
143 #define __S000 __P000
144 #define __S001 __P001
145 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
146 			_PAGE_WRITE | CACHEDEF)
147 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
148 			_PAGE_WRITE | CACHEDEF)
149 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
150 			_PAGE_EXECUTE | CACHEDEF)
151 #define __S101 __P101
152 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
153 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
154 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
155 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
156 
157 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
158 
159 /* Seems to be zero even in architectures where the zero page is firewalled? */
160 #define FIRST_USER_ADDRESS 0UL
161 
162 /*  HUGETLB not working currently  */
163 #ifdef CONFIG_HUGETLB_PAGE
164 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
165 #endif
166 
167 /*
168  * For now, assume that higher-level code will do TLB/MMU invalidations
169  * and don't insert that overhead into this low-level function.
170  */
171 extern void sync_icache_dcache(pte_t pte);
172 
173 #define pte_present_exec_user(pte) \
174 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
175 	(_PAGE_EXECUTE | _PAGE_USER))
176 
177 static inline void set_pte(pte_t *ptep, pte_t pteval)
178 {
179 	/*  should really be using pte_exec, if it weren't declared later. */
180 	if (pte_present_exec_user(pteval))
181 		sync_icache_dcache(pteval);
182 
183 	*ptep = pteval;
184 }
185 
186 /*
187  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
188  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
189  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
190  * as a universal null entry, but some of those least significant bits
191  * are interpreted by software.
192  */
193 #define _NULL_PMD	0x7
194 #define _NULL_PTE	0x0
195 
196 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
197 {
198 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
199 }
200 
201 /*
202  * Conveniently, a null PTE value is invalid.
203  */
204 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
205 				pte_t *ptep)
206 {
207 	pte_val(*ptep) = _NULL_PTE;
208 }
209 
210 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
211 /**
212  * pmd_index - returns the index of the entry in the PMD page
213  * which would control the given virtual address
214  */
215 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
216 
217 #endif
218 
219 /**
220  * pgd_index - returns the index of the entry in the PGD page
221  * which would control the given virtual address
222  *
223  * This returns the *index* for the address in the pgd_t
224  */
225 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
226 
227 /*
228  * pgd_offset - find an offset in a page-table-directory
229  */
230 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
231 
232 /*
233  * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
234  */
235 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
236 
237 /**
238  * pmd_none - check if pmd_entry is mapped
239  * @pmd_entry:  pmd entry
240  *
241  * MIPS checks it against that "invalid pte table" thing.
242  */
243 static inline int pmd_none(pmd_t pmd)
244 {
245 	return pmd_val(pmd) == _NULL_PMD;
246 }
247 
248 /**
249  * pmd_present - is there a page table behind this?
250  * Essentially the inverse of pmd_none.  We maybe
251  * save an inline instruction by defining it this
252  * way, instead of simply "!pmd_none".
253  */
254 static inline int pmd_present(pmd_t pmd)
255 {
256 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
257 }
258 
259 /**
260  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
261  * As we have no known cause of badness, it's null, as it is for many
262  * architectures.
263  */
264 static inline int pmd_bad(pmd_t pmd)
265 {
266 	return 0;
267 }
268 
269 /*
270  * pmd_page - converts a PMD entry to a page pointer
271  */
272 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
273 #define pmd_pgtable(pmd) pmd_page(pmd)
274 
275 /**
276  * pte_none - check if pte is mapped
277  * @pte: pte_t entry
278  */
279 static inline int pte_none(pte_t pte)
280 {
281 	return pte_val(pte) == _NULL_PTE;
282 };
283 
284 /*
285  * pte_present - check if page is present
286  */
287 static inline int pte_present(pte_t pte)
288 {
289 	return pte_val(pte) & _PAGE_PRESENT;
290 }
291 
292 /* mk_pte - make a PTE out of a page pointer and protection bits */
293 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
294 
295 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
296 #define pte_page(x) pfn_to_page(pte_pfn(x))
297 
298 /* pte_mkold - mark PTE as not recently accessed */
299 static inline pte_t pte_mkold(pte_t pte)
300 {
301 	pte_val(pte) &= ~_PAGE_ACCESSED;
302 	return pte;
303 }
304 
305 /* pte_mkyoung - mark PTE as recently accessed */
306 static inline pte_t pte_mkyoung(pte_t pte)
307 {
308 	pte_val(pte) |= _PAGE_ACCESSED;
309 	return pte;
310 }
311 
312 /* pte_mkclean - mark page as in sync with backing store */
313 static inline pte_t pte_mkclean(pte_t pte)
314 {
315 	pte_val(pte) &= ~_PAGE_DIRTY;
316 	return pte;
317 }
318 
319 /* pte_mkdirty - mark page as modified */
320 static inline pte_t pte_mkdirty(pte_t pte)
321 {
322 	pte_val(pte) |= _PAGE_DIRTY;
323 	return pte;
324 }
325 
326 /* pte_young - "is PTE marked as accessed"? */
327 static inline int pte_young(pte_t pte)
328 {
329 	return pte_val(pte) & _PAGE_ACCESSED;
330 }
331 
332 /* pte_dirty - "is PTE dirty?" */
333 static inline int pte_dirty(pte_t pte)
334 {
335 	return pte_val(pte) & _PAGE_DIRTY;
336 }
337 
338 /* pte_modify - set protection bits on PTE */
339 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
340 {
341 	pte_val(pte) &= PAGE_MASK;
342 	pte_val(pte) |= pgprot_val(prot);
343 	return pte;
344 }
345 
346 /* pte_wrprotect - mark page as not writable */
347 static inline pte_t pte_wrprotect(pte_t pte)
348 {
349 	pte_val(pte) &= ~_PAGE_WRITE;
350 	return pte;
351 }
352 
353 /* pte_mkwrite - mark page as writable */
354 static inline pte_t pte_mkwrite(pte_t pte)
355 {
356 	pte_val(pte) |= _PAGE_WRITE;
357 	return pte;
358 }
359 
360 /* pte_mkexec - mark PTE as executable */
361 static inline pte_t pte_mkexec(pte_t pte)
362 {
363 	pte_val(pte) |= _PAGE_EXECUTE;
364 	return pte;
365 }
366 
367 /* pte_read - "is PTE marked as readable?" */
368 static inline int pte_read(pte_t pte)
369 {
370 	return pte_val(pte) & _PAGE_READ;
371 }
372 
373 /* pte_write - "is PTE marked as writable?" */
374 static inline int pte_write(pte_t pte)
375 {
376 	return pte_val(pte) & _PAGE_WRITE;
377 }
378 
379 
380 /* pte_exec - "is PTE marked as executable?" */
381 static inline int pte_exec(pte_t pte)
382 {
383 	return pte_val(pte) & _PAGE_EXECUTE;
384 }
385 
386 /* __pte_to_swp_entry - extract swap entry from PTE */
387 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
388 
389 /* __swp_entry_to_pte - extract PTE from swap entry */
390 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
391 
392 /* pfn_pte - convert page number and protection value to page table entry */
393 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
394 
395 /* pte_pfn - convert pte to page frame number */
396 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
397 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
398 
399 /*
400  * set_pte_at - update page table and do whatever magic may be
401  * necessary to make the underlying hardware/firmware take note.
402  *
403  * VM may require a virtual instruction to alert the MMU.
404  */
405 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
406 
407 /*
408  * May need to invoke the virtual machine as well...
409  */
410 #define pte_unmap(pte)		do { } while (0)
411 #define pte_unmap_nested(pte)	do { } while (0)
412 
413 /*
414  * pte_offset_map - returns the linear address of the page table entry
415  * corresponding to an address
416  */
417 #define pte_offset_map(dir, address)                                    \
418 	((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
419 
420 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
421 
422 /* pte_offset_kernel - kernel version of pte_offset */
423 #define pte_offset_kernel(dir, address) \
424 	((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
425 				+  __pte_offset(address))
426 
427 /* ZERO_PAGE - returns the globally shared zero page */
428 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
429 
430 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
431 
432 /*
433  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
434  * interpreted as swap information.  The remaining free bits are interpreted as
435  * swap type/offset tuple.  Rather than have the TLB fill handler test
436  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
437  * all zeros for swap entries, which speeds up the miss handler at the cost of
438  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
439  * processor architecture and target applications suggest a lot of TLB misses
440  * and not much swap space.
441  *
442  * Format of swap PTE:
443  *	bit	0:	Present (zero)
444  *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
445  *	bits	6-9:	bits 3:0 of offset
446  *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
447  *	bits	13-31:  bits 22:4 of swap offset
448  *
449  * The split offset makes some of the following macros a little gnarly,
450  * but there's plenty of precedent for this sort of thing.
451  */
452 
453 /* Used for swap PTEs */
454 #define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
455 
456 #define __swp_offset(swp_pte) \
457 	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
458 
459 #define __swp_entry(type, offset) \
460 	((swp_entry_t)	{ \
461 		((type << 1) | \
462 		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
463 
464 /*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
465 #include <asm-generic/pgtable.h>
466 
467 #endif
468