1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Page table support for the Hexagon architecture 4 * 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 6 */ 7 8 #ifndef _ASM_PGTABLE_H 9 #define _ASM_PGTABLE_H 10 11 /* 12 * Page table definitions for Qualcomm Hexagon processor. 13 */ 14 #include <asm/page.h> 15 #include <asm-generic/pgtable-nopmd.h> 16 17 /* A handy thing to have if one has the RAM. Declared in head.S */ 18 extern unsigned long empty_zero_page; 19 20 /* 21 * The PTE model described here is that of the Hexagon Virtual Machine, 22 * which autonomously walks 2-level page tables. At a lower level, we 23 * also describe the RISCish software-loaded TLB entry structure of 24 * the underlying Hexagon processor. A kernel built to run on the 25 * virtual machine has no need to know about the underlying hardware. 26 */ 27 #include <asm/vm_mmu.h> 28 29 /* 30 * To maximize the comfort level for the PTE manipulation macros, 31 * define the "well known" architecture-specific bits. 32 */ 33 #define _PAGE_READ __HVM_PTE_R 34 #define _PAGE_WRITE __HVM_PTE_W 35 #define _PAGE_EXECUTE __HVM_PTE_X 36 #define _PAGE_USER __HVM_PTE_U 37 38 /* 39 * We have a total of 4 "soft" bits available in the abstract PTE. 40 * The two mandatory software bits are Dirty and Accessed. 41 * To make nonlinear swap work according to the more recent 42 * model, we want a low order "Present" bit to indicate whether 43 * the PTE describes MMU programming or swap space. 44 */ 45 #define _PAGE_PRESENT (1<<0) 46 #define _PAGE_DIRTY (1<<1) 47 #define _PAGE_ACCESSED (1<<2) 48 49 /* 50 * For now, let's say that Valid and Present are the same thing. 51 * Alternatively, we could say that it's the "or" of R, W, and X 52 * permissions. 53 */ 54 #define _PAGE_VALID _PAGE_PRESENT 55 56 /* 57 * We're not defining _PAGE_GLOBAL here, since there's no concept 58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 59 * and we want to use the same page table structures and macros in 60 * the native kernel as we do in the virtual machine kernel. 61 * So we'll put up with a bit of inefficiency for now... 62 */ 63 64 /* 65 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 66 * only the second from the bottom, pgd and pud both being collapsed. 67 * Each entry represents 4MB of virtual address space, 4K of table 68 * thus maps the full 4GB. 69 */ 70 #define PGDIR_SHIFT 22 71 #define PTRS_PER_PGD 1024 72 73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76 #ifdef CONFIG_PAGE_SIZE_4KB 77 #define PTRS_PER_PTE 1024 78 #endif 79 80 #ifdef CONFIG_PAGE_SIZE_16KB 81 #define PTRS_PER_PTE 256 82 #endif 83 84 #ifdef CONFIG_PAGE_SIZE_64KB 85 #define PTRS_PER_PTE 64 86 #endif 87 88 #ifdef CONFIG_PAGE_SIZE_256KB 89 #define PTRS_PER_PTE 16 90 #endif 91 92 #ifdef CONFIG_PAGE_SIZE_1MB 93 #define PTRS_PER_PTE 4 94 #endif 95 96 /* Any bigger and the PTE disappears. */ 97 #define pgd_ERROR(e) \ 98 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 99 pgd_val(e)) 100 101 /* 102 * Page Protection Constants. Includes (in this variant) cache attributes. 103 */ 104 extern unsigned long _dflt_cache_att; 105 106 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 107 _dflt_cache_att) 108 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 109 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 110 #define PAGE_COPY PAGE_READONLY 111 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 113 #define PAGE_COPY_EXEC PAGE_EXEC 114 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 115 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 116 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 117 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 118 119 120 /* 121 * Aliases for mapping mmap() protection bits to page protections. 122 * These get used for static initialization, so using the _dflt_cache_att 123 * variable for the default cache attribute isn't workable. If the 124 * default gets changed at boot time, the boot option code has to 125 * update data structures like the protaction_map[] array. 126 */ 127 #define CACHEDEF (CACHE_DEFAULT << 6) 128 129 /* Private (copy-on-write) page protections. */ 130 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 131 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 132 #define __P010 __P000 /* Write-only copy-on-write */ 133 #define __P011 __P001 /* Read/Write copy-on-write */ 134 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 135 _PAGE_EXECUTE | CACHEDEF) 136 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 137 _PAGE_READ | CACHEDEF) 138 #define __P110 __P100 /* Write/execute copy-on-write */ 139 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 140 141 /* Shared page protections. */ 142 #define __S000 __P000 143 #define __S001 __P001 144 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 145 _PAGE_WRITE | CACHEDEF) 146 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 147 _PAGE_WRITE | CACHEDEF) 148 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 149 _PAGE_EXECUTE | CACHEDEF) 150 #define __S101 __P101 151 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 152 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 153 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 154 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 155 156 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 157 158 /* Seems to be zero even in architectures where the zero page is firewalled? */ 159 #define FIRST_USER_ADDRESS 0UL 160 161 /* HUGETLB not working currently */ 162 #ifdef CONFIG_HUGETLB_PAGE 163 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 164 #endif 165 166 /* 167 * For now, assume that higher-level code will do TLB/MMU invalidations 168 * and don't insert that overhead into this low-level function. 169 */ 170 extern void sync_icache_dcache(pte_t pte); 171 172 #define pte_present_exec_user(pte) \ 173 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 174 (_PAGE_EXECUTE | _PAGE_USER)) 175 176 static inline void set_pte(pte_t *ptep, pte_t pteval) 177 { 178 /* should really be using pte_exec, if it weren't declared later. */ 179 if (pte_present_exec_user(pteval)) 180 sync_icache_dcache(pteval); 181 182 *ptep = pteval; 183 } 184 185 /* 186 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 187 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 188 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 189 * as a universal null entry, but some of those least significant bits 190 * are interpreted by software. 191 */ 192 #define _NULL_PMD 0x7 193 #define _NULL_PTE 0x0 194 195 static inline void pmd_clear(pmd_t *pmd_entry_ptr) 196 { 197 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 198 } 199 200 /* 201 * Conveniently, a null PTE value is invalid. 202 */ 203 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 204 pte_t *ptep) 205 { 206 pte_val(*ptep) = _NULL_PTE; 207 } 208 209 /** 210 * pmd_none - check if pmd_entry is mapped 211 * @pmd_entry: pmd entry 212 * 213 * MIPS checks it against that "invalid pte table" thing. 214 */ 215 static inline int pmd_none(pmd_t pmd) 216 { 217 return pmd_val(pmd) == _NULL_PMD; 218 } 219 220 /** 221 * pmd_present - is there a page table behind this? 222 * Essentially the inverse of pmd_none. We maybe 223 * save an inline instruction by defining it this 224 * way, instead of simply "!pmd_none". 225 */ 226 static inline int pmd_present(pmd_t pmd) 227 { 228 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 229 } 230 231 /** 232 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 233 * As we have no known cause of badness, it's null, as it is for many 234 * architectures. 235 */ 236 static inline int pmd_bad(pmd_t pmd) 237 { 238 return 0; 239 } 240 241 /* 242 * pmd_page - converts a PMD entry to a page pointer 243 */ 244 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 245 #define pmd_pgtable(pmd) pmd_page(pmd) 246 247 /** 248 * pte_none - check if pte is mapped 249 * @pte: pte_t entry 250 */ 251 static inline int pte_none(pte_t pte) 252 { 253 return pte_val(pte) == _NULL_PTE; 254 }; 255 256 /* 257 * pte_present - check if page is present 258 */ 259 static inline int pte_present(pte_t pte) 260 { 261 return pte_val(pte) & _PAGE_PRESENT; 262 } 263 264 /* mk_pte - make a PTE out of a page pointer and protection bits */ 265 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 266 267 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 268 #define pte_page(x) pfn_to_page(pte_pfn(x)) 269 270 /* pte_mkold - mark PTE as not recently accessed */ 271 static inline pte_t pte_mkold(pte_t pte) 272 { 273 pte_val(pte) &= ~_PAGE_ACCESSED; 274 return pte; 275 } 276 277 /* pte_mkyoung - mark PTE as recently accessed */ 278 static inline pte_t pte_mkyoung(pte_t pte) 279 { 280 pte_val(pte) |= _PAGE_ACCESSED; 281 return pte; 282 } 283 284 /* pte_mkclean - mark page as in sync with backing store */ 285 static inline pte_t pte_mkclean(pte_t pte) 286 { 287 pte_val(pte) &= ~_PAGE_DIRTY; 288 return pte; 289 } 290 291 /* pte_mkdirty - mark page as modified */ 292 static inline pte_t pte_mkdirty(pte_t pte) 293 { 294 pte_val(pte) |= _PAGE_DIRTY; 295 return pte; 296 } 297 298 /* pte_young - "is PTE marked as accessed"? */ 299 static inline int pte_young(pte_t pte) 300 { 301 return pte_val(pte) & _PAGE_ACCESSED; 302 } 303 304 /* pte_dirty - "is PTE dirty?" */ 305 static inline int pte_dirty(pte_t pte) 306 { 307 return pte_val(pte) & _PAGE_DIRTY; 308 } 309 310 /* pte_modify - set protection bits on PTE */ 311 static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 312 { 313 pte_val(pte) &= PAGE_MASK; 314 pte_val(pte) |= pgprot_val(prot); 315 return pte; 316 } 317 318 /* pte_wrprotect - mark page as not writable */ 319 static inline pte_t pte_wrprotect(pte_t pte) 320 { 321 pte_val(pte) &= ~_PAGE_WRITE; 322 return pte; 323 } 324 325 /* pte_mkwrite - mark page as writable */ 326 static inline pte_t pte_mkwrite(pte_t pte) 327 { 328 pte_val(pte) |= _PAGE_WRITE; 329 return pte; 330 } 331 332 /* pte_mkexec - mark PTE as executable */ 333 static inline pte_t pte_mkexec(pte_t pte) 334 { 335 pte_val(pte) |= _PAGE_EXECUTE; 336 return pte; 337 } 338 339 /* pte_read - "is PTE marked as readable?" */ 340 static inline int pte_read(pte_t pte) 341 { 342 return pte_val(pte) & _PAGE_READ; 343 } 344 345 /* pte_write - "is PTE marked as writable?" */ 346 static inline int pte_write(pte_t pte) 347 { 348 return pte_val(pte) & _PAGE_WRITE; 349 } 350 351 352 /* pte_exec - "is PTE marked as executable?" */ 353 static inline int pte_exec(pte_t pte) 354 { 355 return pte_val(pte) & _PAGE_EXECUTE; 356 } 357 358 /* __pte_to_swp_entry - extract swap entry from PTE */ 359 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 360 361 /* __swp_entry_to_pte - extract PTE from swap entry */ 362 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 363 364 /* pfn_pte - convert page number and protection value to page table entry */ 365 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 366 367 /* pte_pfn - convert pte to page frame number */ 368 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 369 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 370 371 /* 372 * set_pte_at - update page table and do whatever magic may be 373 * necessary to make the underlying hardware/firmware take note. 374 * 375 * VM may require a virtual instruction to alert the MMU. 376 */ 377 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 378 379 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 380 { 381 return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK); 382 } 383 384 /* ZERO_PAGE - returns the globally shared zero page */ 385 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 386 387 /* 388 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 389 * interpreted as swap information. The remaining free bits are interpreted as 390 * swap type/offset tuple. Rather than have the TLB fill handler test 391 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 392 * all zeros for swap entries, which speeds up the miss handler at the cost of 393 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 394 * processor architecture and target applications suggest a lot of TLB misses 395 * and not much swap space. 396 * 397 * Format of swap PTE: 398 * bit 0: Present (zero) 399 * bits 1-5: swap type (arch independent layer uses 5 bits max) 400 * bits 6-9: bits 3:0 of offset 401 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 402 * bits 13-31: bits 22:4 of swap offset 403 * 404 * The split offset makes some of the following macros a little gnarly, 405 * but there's plenty of precedent for this sort of thing. 406 */ 407 408 /* Used for swap PTEs */ 409 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 410 411 #define __swp_offset(swp_pte) \ 412 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 413 414 #define __swp_entry(type, offset) \ 415 ((swp_entry_t) { \ 416 ((type << 1) | \ 417 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 418 419 #endif 420