xref: /openbmc/linux/arch/hexagon/include/asm/bitops.h (revision fb8d6c8d)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Bit operations for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_BITOPS_H
9 #define _ASM_BITOPS_H
10 
11 #include <linux/compiler.h>
12 #include <asm/byteorder.h>
13 #include <asm/atomic.h>
14 #include <asm/barrier.h>
15 
16 #ifdef __KERNEL__
17 
18 /*
19  * The offset calculations for these are based on BITS_PER_LONG == 32
20  * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
21  * mask by 0x0000001F)
22  *
23  * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
24  */
25 
26 /**
27  * test_and_clear_bit - clear a bit and return its old value
28  * @nr:  bit number to clear
29  * @addr:  pointer to memory
30  */
31 static inline int test_and_clear_bit(int nr, volatile void *addr)
32 {
33 	int oldval;
34 
35 	__asm__ __volatile__ (
36 	"	{R10 = %1; R11 = asr(%2,#5); }\n"
37 	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
38 	"1:	R12 = memw_locked(R10);\n"
39 	"	{ P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
40 	"	memw_locked(R10,P1) = R12;\n"
41 	"	{if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
42 	: "=&r" (oldval)
43 	: "r" (addr), "r" (nr)
44 	: "r10", "r11", "r12", "p0", "p1", "memory"
45 	);
46 
47 	return oldval;
48 }
49 
50 /**
51  * test_and_set_bit - set a bit and return its old value
52  * @nr:  bit number to set
53  * @addr:  pointer to memory
54  */
55 static inline int test_and_set_bit(int nr, volatile void *addr)
56 {
57 	int oldval;
58 
59 	__asm__ __volatile__ (
60 	"	{R10 = %1; R11 = asr(%2,#5); }\n"
61 	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
62 	"1:	R12 = memw_locked(R10);\n"
63 	"	{ P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
64 	"	memw_locked(R10,P1) = R12;\n"
65 	"	{if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
66 	: "=&r" (oldval)
67 	: "r" (addr), "r" (nr)
68 	: "r10", "r11", "r12", "p0", "p1", "memory"
69 	);
70 
71 
72 	return oldval;
73 
74 }
75 
76 /**
77  * test_and_change_bit - toggle a bit and return its old value
78  * @nr:  bit number to set
79  * @addr:  pointer to memory
80  */
81 static inline int test_and_change_bit(int nr, volatile void *addr)
82 {
83 	int oldval;
84 
85 	__asm__ __volatile__ (
86 	"	{R10 = %1; R11 = asr(%2,#5); }\n"
87 	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
88 	"1:	R12 = memw_locked(R10);\n"
89 	"	{ P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
90 	"	memw_locked(R10,P1) = R12;\n"
91 	"	{if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
92 	: "=&r" (oldval)
93 	: "r" (addr), "r" (nr)
94 	: "r10", "r11", "r12", "p0", "p1", "memory"
95 	);
96 
97 	return oldval;
98 
99 }
100 
101 /*
102  * Atomic, but doesn't care about the return value.
103  * Rewrite later to save a cycle or two.
104  */
105 
106 static inline void clear_bit(int nr, volatile void *addr)
107 {
108 	test_and_clear_bit(nr, addr);
109 }
110 
111 static inline void set_bit(int nr, volatile void *addr)
112 {
113 	test_and_set_bit(nr, addr);
114 }
115 
116 static inline void change_bit(int nr, volatile void *addr)
117 {
118 	test_and_change_bit(nr, addr);
119 }
120 
121 
122 /*
123  * These are allowed to be non-atomic.  In fact the generic flavors are
124  * in non-atomic.h.  Would it be better to use intrinsics for this?
125  *
126  * OK, writes in our architecture do not invalidate LL/SC, so this has to
127  * be atomic, particularly for things like slab_lock and slab_unlock.
128  *
129  */
130 static inline void __clear_bit(int nr, volatile unsigned long *addr)
131 {
132 	test_and_clear_bit(nr, addr);
133 }
134 
135 static inline void __set_bit(int nr, volatile unsigned long *addr)
136 {
137 	test_and_set_bit(nr, addr);
138 }
139 
140 static inline void __change_bit(int nr, volatile unsigned long *addr)
141 {
142 	test_and_change_bit(nr, addr);
143 }
144 
145 /*  Apparently, at least some of these are allowed to be non-atomic  */
146 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
147 {
148 	return test_and_clear_bit(nr, addr);
149 }
150 
151 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
152 {
153 	return test_and_set_bit(nr, addr);
154 }
155 
156 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
157 {
158 	return test_and_change_bit(nr, addr);
159 }
160 
161 static inline int __test_bit(int nr, const volatile unsigned long *addr)
162 {
163 	int retval;
164 
165 	asm volatile(
166 	"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
167 	: "=&r" (retval)
168 	: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
169 	: "p0"
170 	);
171 
172 	return retval;
173 }
174 
175 #define test_bit(nr, addr) __test_bit(nr, addr)
176 
177 /*
178  * ffz - find first zero in word.
179  * @word: The word to search
180  *
181  * Undefined if no zero exists, so code should check against ~0UL first.
182  */
183 static inline long ffz(int x)
184 {
185 	int r;
186 
187 	asm("%0 = ct1(%1);\n"
188 		: "=&r" (r)
189 		: "r" (x));
190 	return r;
191 }
192 
193 /*
194  * fls - find last (most-significant) bit set
195  * @x: the word to search
196  *
197  * This is defined the same way as ffs.
198  * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
199  */
200 static inline int fls(unsigned int x)
201 {
202 	int r;
203 
204 	asm("{ %0 = cl0(%1);}\n"
205 		"%0 = sub(#32,%0);\n"
206 		: "=&r" (r)
207 		: "r" (x)
208 		: "p0");
209 
210 	return r;
211 }
212 
213 /*
214  * ffs - find first bit set
215  * @x: the word to search
216  *
217  * This is defined the same way as
218  * the libc and compiler builtin ffs routines, therefore
219  * differs in spirit from the above ffz (man ffs).
220  */
221 static inline int ffs(int x)
222 {
223 	int r;
224 
225 	asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
226 		"{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
227 		: "=&r" (r)
228 		: "r" (x)
229 		: "p0");
230 
231 	return r;
232 }
233 
234 /*
235  * __ffs - find first bit in word.
236  * @word: The word to search
237  *
238  * Undefined if no bit exists, so code should check against 0 first.
239  *
240  * bits_per_long assumed to be 32
241  * numbering starts at 0 I think (instead of 1 like ffs)
242  */
243 static inline unsigned long __ffs(unsigned long word)
244 {
245 	int num;
246 
247 	asm("%0 = ct0(%1);\n"
248 		: "=&r" (num)
249 		: "r" (word));
250 
251 	return num;
252 }
253 
254 /*
255  * __fls - find last (most-significant) set bit in a long word
256  * @word: the word to search
257  *
258  * Undefined if no set bit exists, so code should check against 0 first.
259  * bits_per_long assumed to be 32
260  */
261 static inline unsigned long __fls(unsigned long word)
262 {
263 	int num;
264 
265 	asm("%0 = cl0(%1);\n"
266 		"%0 = sub(#31,%0);\n"
267 		: "=&r" (num)
268 		: "r" (word));
269 
270 	return num;
271 }
272 
273 #include <asm-generic/bitops/lock.h>
274 #include <asm-generic/bitops/find.h>
275 
276 #include <asm-generic/bitops/fls64.h>
277 #include <asm-generic/bitops/sched.h>
278 #include <asm-generic/bitops/hweight.h>
279 
280 #include <asm-generic/bitops/le.h>
281 #include <asm-generic/bitops/ext2-atomic.h>
282 
283 #endif /* __KERNEL__ */
284 #endif
285