xref: /openbmc/linux/arch/hexagon/include/asm/bitops.h (revision baf2c002)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Bit operations for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_BITOPS_H
9 #define _ASM_BITOPS_H
10 
11 #include <linux/compiler.h>
12 #include <asm/byteorder.h>
13 #include <asm/atomic.h>
14 #include <asm/barrier.h>
15 
16 #ifdef __KERNEL__
17 
18 /*
19  * The offset calculations for these are based on BITS_PER_LONG == 32
20  * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
21  * mask by 0x0000001F)
22  *
23  * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
24  */
25 
26 /**
27  * test_and_clear_bit - clear a bit and return its old value
28  * @nr:  bit number to clear
29  * @addr:  pointer to memory
30  */
31 static inline int test_and_clear_bit(int nr, volatile void *addr)
32 {
33 	int oldval;
34 
35 	__asm__ __volatile__ (
36 	"	{R10 = %1; R11 = asr(%2,#5); }\n"
37 	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
38 	"1:	R12 = memw_locked(R10);\n"
39 	"	{ P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
40 	"	memw_locked(R10,P1) = R12;\n"
41 	"	{if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
42 	: "=&r" (oldval)
43 	: "r" (addr), "r" (nr)
44 	: "r10", "r11", "r12", "p0", "p1", "memory"
45 	);
46 
47 	return oldval;
48 }
49 
50 /**
51  * test_and_set_bit - set a bit and return its old value
52  * @nr:  bit number to set
53  * @addr:  pointer to memory
54  */
55 static inline int test_and_set_bit(int nr, volatile void *addr)
56 {
57 	int oldval;
58 
59 	__asm__ __volatile__ (
60 	"	{R10 = %1; R11 = asr(%2,#5); }\n"
61 	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
62 	"1:	R12 = memw_locked(R10);\n"
63 	"	{ P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
64 	"	memw_locked(R10,P1) = R12;\n"
65 	"	{if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
66 	: "=&r" (oldval)
67 	: "r" (addr), "r" (nr)
68 	: "r10", "r11", "r12", "p0", "p1", "memory"
69 	);
70 
71 
72 	return oldval;
73 
74 }
75 
76 /**
77  * test_and_change_bit - toggle a bit and return its old value
78  * @nr:  bit number to set
79  * @addr:  pointer to memory
80  */
81 static inline int test_and_change_bit(int nr, volatile void *addr)
82 {
83 	int oldval;
84 
85 	__asm__ __volatile__ (
86 	"	{R10 = %1; R11 = asr(%2,#5); }\n"
87 	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
88 	"1:	R12 = memw_locked(R10);\n"
89 	"	{ P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
90 	"	memw_locked(R10,P1) = R12;\n"
91 	"	{if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
92 	: "=&r" (oldval)
93 	: "r" (addr), "r" (nr)
94 	: "r10", "r11", "r12", "p0", "p1", "memory"
95 	);
96 
97 	return oldval;
98 
99 }
100 
101 /*
102  * Atomic, but doesn't care about the return value.
103  * Rewrite later to save a cycle or two.
104  */
105 
106 static inline void clear_bit(int nr, volatile void *addr)
107 {
108 	test_and_clear_bit(nr, addr);
109 }
110 
111 static inline void set_bit(int nr, volatile void *addr)
112 {
113 	test_and_set_bit(nr, addr);
114 }
115 
116 static inline void change_bit(int nr, volatile void *addr)
117 {
118 	test_and_change_bit(nr, addr);
119 }
120 
121 
122 /*
123  * These are allowed to be non-atomic.  In fact the generic flavors are
124  * in non-atomic.h.  Would it be better to use intrinsics for this?
125  *
126  * OK, writes in our architecture do not invalidate LL/SC, so this has to
127  * be atomic, particularly for things like slab_lock and slab_unlock.
128  *
129  */
130 static __always_inline void
131 arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
132 {
133 	test_and_clear_bit(nr, addr);
134 }
135 
136 static __always_inline void
137 arch___set_bit(unsigned long nr, volatile unsigned long *addr)
138 {
139 	test_and_set_bit(nr, addr);
140 }
141 
142 static __always_inline void
143 arch___change_bit(unsigned long nr, volatile unsigned long *addr)
144 {
145 	test_and_change_bit(nr, addr);
146 }
147 
148 /*  Apparently, at least some of these are allowed to be non-atomic  */
149 static __always_inline bool
150 arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
151 {
152 	return test_and_clear_bit(nr, addr);
153 }
154 
155 static __always_inline bool
156 arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
157 {
158 	return test_and_set_bit(nr, addr);
159 }
160 
161 static __always_inline bool
162 arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
163 {
164 	return test_and_change_bit(nr, addr);
165 }
166 
167 static __always_inline bool
168 arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
169 {
170 	int retval;
171 
172 	asm volatile(
173 	"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
174 	: "=&r" (retval)
175 	: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
176 	: "p0"
177 	);
178 
179 	return retval;
180 }
181 
182 static __always_inline bool
183 arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
184 {
185 	int retval;
186 
187 	asm volatile(
188 	"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
189 	: "=&r" (retval)
190 	: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
191 	: "p0", "memory"
192 	);
193 
194 	return retval;
195 }
196 
197 /*
198  * ffz - find first zero in word.
199  * @word: The word to search
200  *
201  * Undefined if no zero exists, so code should check against ~0UL first.
202  */
203 static inline long ffz(int x)
204 {
205 	int r;
206 
207 	asm("%0 = ct1(%1);\n"
208 		: "=&r" (r)
209 		: "r" (x));
210 	return r;
211 }
212 
213 /*
214  * fls - find last (most-significant) bit set
215  * @x: the word to search
216  *
217  * This is defined the same way as ffs.
218  * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
219  */
220 static inline int fls(unsigned int x)
221 {
222 	int r;
223 
224 	asm("{ %0 = cl0(%1);}\n"
225 		"%0 = sub(#32,%0);\n"
226 		: "=&r" (r)
227 		: "r" (x)
228 		: "p0");
229 
230 	return r;
231 }
232 
233 /*
234  * ffs - find first bit set
235  * @x: the word to search
236  *
237  * This is defined the same way as
238  * the libc and compiler builtin ffs routines, therefore
239  * differs in spirit from the above ffz (man ffs).
240  */
241 static inline int ffs(int x)
242 {
243 	int r;
244 
245 	asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
246 		"{ if (P0) %0 = #0; if (!P0) %0 = add(%0,#1);}\n"
247 		: "=&r" (r)
248 		: "r" (x)
249 		: "p0");
250 
251 	return r;
252 }
253 
254 /*
255  * __ffs - find first bit in word.
256  * @word: The word to search
257  *
258  * Undefined if no bit exists, so code should check against 0 first.
259  *
260  * bits_per_long assumed to be 32
261  * numbering starts at 0 I think (instead of 1 like ffs)
262  */
263 static inline unsigned long __ffs(unsigned long word)
264 {
265 	int num;
266 
267 	asm("%0 = ct0(%1);\n"
268 		: "=&r" (num)
269 		: "r" (word));
270 
271 	return num;
272 }
273 
274 /*
275  * __fls - find last (most-significant) set bit in a long word
276  * @word: the word to search
277  *
278  * Undefined if no set bit exists, so code should check against 0 first.
279  * bits_per_long assumed to be 32
280  */
281 static inline unsigned long __fls(unsigned long word)
282 {
283 	int num;
284 
285 	asm("%0 = cl0(%1);\n"
286 		"%0 = sub(#31,%0);\n"
287 		: "=&r" (num)
288 		: "r" (word));
289 
290 	return num;
291 }
292 
293 #include <asm-generic/bitops/lock.h>
294 #include <asm-generic/bitops/non-instrumented-non-atomic.h>
295 
296 #include <asm-generic/bitops/fls64.h>
297 #include <asm-generic/bitops/sched.h>
298 #include <asm-generic/bitops/hweight.h>
299 
300 #include <asm-generic/bitops/le.h>
301 #include <asm-generic/bitops/ext2-atomic.h>
302 
303 #endif /* __KERNEL__ */
304 #endif
305