xref: /openbmc/linux/arch/csky/kernel/ptrace.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd.
3 
4 #include <linux/audit.h>
5 #include <linux/elf.h>
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/mm.h>
9 #include <linux/ptrace.h>
10 #include <linux/regset.h>
11 #include <linux/sched.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/signal.h>
14 #include <linux/smp.h>
15 #include <linux/tracehook.h>
16 #include <linux/uaccess.h>
17 #include <linux/user.h>
18 
19 #include <asm/thread_info.h>
20 #include <asm/page.h>
21 #include <asm/processor.h>
22 #include <asm/asm-offsets.h>
23 
24 #include <abi/regdef.h>
25 #include <abi/ckmmu.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/syscalls.h>
29 
30 /* sets the trace bits. */
31 #define TRACE_MODE_SI      (1 << 14)
32 #define TRACE_MODE_RUN     0
33 #define TRACE_MODE_MASK    ~(0x3 << 14)
34 
35 /*
36  * Make sure the single step bit is not set.
37  */
38 static void singlestep_disable(struct task_struct *tsk)
39 {
40 	struct pt_regs *regs;
41 
42 	regs = task_pt_regs(tsk);
43 	regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
44 
45 	/* Enable irq */
46 	regs->sr |= BIT(6);
47 }
48 
49 static void singlestep_enable(struct task_struct *tsk)
50 {
51 	struct pt_regs *regs;
52 
53 	regs = task_pt_regs(tsk);
54 	regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
55 
56 	/* Disable irq */
57 	regs->sr &= ~BIT(6);
58 }
59 
60 /*
61  * Make sure the single step bit is set.
62  */
63 void user_enable_single_step(struct task_struct *child)
64 {
65 	singlestep_enable(child);
66 }
67 
68 void user_disable_single_step(struct task_struct *child)
69 {
70 	singlestep_disable(child);
71 }
72 
73 enum csky_regset {
74 	REGSET_GPR,
75 	REGSET_FPR,
76 };
77 
78 static int gpr_get(struct task_struct *target,
79 		   const struct user_regset *regset,
80 		   struct membuf to)
81 {
82 	struct pt_regs *regs = task_pt_regs(target);
83 
84 	/* Abiv1 regs->tls is fake and we need sync here. */
85 	regs->tls = task_thread_info(target)->tp_value;
86 
87 	return membuf_write(&to, regs, sizeof(*regs));
88 }
89 
90 static int gpr_set(struct task_struct *target,
91 		    const struct user_regset *regset,
92 		    unsigned int pos, unsigned int count,
93 		    const void *kbuf, const void __user *ubuf)
94 {
95 	int ret;
96 	struct pt_regs regs;
97 
98 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &regs, 0, -1);
99 	if (ret)
100 		return ret;
101 
102 	/* BIT(0) of regs.sr is Condition Code/Carry bit */
103 	regs.sr = (regs.sr & BIT(0)) | (task_pt_regs(target)->sr & ~BIT(0));
104 #ifdef CONFIG_CPU_HAS_HILO
105 	regs.dcsr = task_pt_regs(target)->dcsr;
106 #endif
107 	task_thread_info(target)->tp_value = regs.tls;
108 
109 	*task_pt_regs(target) = regs;
110 
111 	return 0;
112 }
113 
114 static int fpr_get(struct task_struct *target,
115 		   const struct user_regset *regset,
116 		   struct membuf to)
117 {
118 	struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
119 
120 #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
121 	int i;
122 	struct user_fp tmp = *regs;
123 
124 	for (i = 0; i < 16; i++) {
125 		tmp.vr[i*4] = regs->vr[i*2];
126 		tmp.vr[i*4 + 1] = regs->vr[i*2 + 1];
127 	}
128 
129 	for (i = 0; i < 32; i++)
130 		tmp.vr[64 + i] = regs->vr[32 + i];
131 
132 	return membuf_write(&to, &tmp, sizeof(tmp));
133 #else
134 	return membuf_write(&to, regs, sizeof(*regs));
135 #endif
136 }
137 
138 static int fpr_set(struct task_struct *target,
139 		   const struct user_regset *regset,
140 		   unsigned int pos, unsigned int count,
141 		   const void *kbuf, const void __user *ubuf)
142 {
143 	int ret;
144 	struct user_fp *regs = (struct user_fp *)&target->thread.user_fp;
145 
146 #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP)
147 	int i;
148 	struct user_fp tmp;
149 
150 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tmp, 0, -1);
151 
152 	*regs = tmp;
153 
154 	for (i = 0; i < 16; i++) {
155 		regs->vr[i*2] = tmp.vr[i*4];
156 		regs->vr[i*2 + 1] = tmp.vr[i*4 + 1];
157 	}
158 
159 	for (i = 0; i < 32; i++)
160 		regs->vr[32 + i] = tmp.vr[64 + i];
161 #else
162 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1);
163 #endif
164 
165 	return ret;
166 }
167 
168 static const struct user_regset csky_regsets[] = {
169 	[REGSET_GPR] = {
170 		.core_note_type = NT_PRSTATUS,
171 		.n = sizeof(struct pt_regs) / sizeof(u32),
172 		.size = sizeof(u32),
173 		.align = sizeof(u32),
174 		.regset_get = gpr_get,
175 		.set = gpr_set,
176 	},
177 	[REGSET_FPR] = {
178 		.core_note_type = NT_PRFPREG,
179 		.n = sizeof(struct user_fp) / sizeof(u32),
180 		.size = sizeof(u32),
181 		.align = sizeof(u32),
182 		.regset_get = fpr_get,
183 		.set = fpr_set,
184 	},
185 };
186 
187 static const struct user_regset_view user_csky_view = {
188 	.name = "csky",
189 	.e_machine = ELF_ARCH,
190 	.regsets = csky_regsets,
191 	.n = ARRAY_SIZE(csky_regsets),
192 };
193 
194 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
195 {
196 	return &user_csky_view;
197 }
198 
199 struct pt_regs_offset {
200 	const char *name;
201 	int offset;
202 };
203 
204 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
205 #define REG_OFFSET_END {.name = NULL, .offset = 0}
206 
207 static const struct pt_regs_offset regoffset_table[] = {
208 	REG_OFFSET_NAME(tls),
209 	REG_OFFSET_NAME(lr),
210 	REG_OFFSET_NAME(pc),
211 	REG_OFFSET_NAME(sr),
212 	REG_OFFSET_NAME(usp),
213 	REG_OFFSET_NAME(orig_a0),
214 	REG_OFFSET_NAME(a0),
215 	REG_OFFSET_NAME(a1),
216 	REG_OFFSET_NAME(a2),
217 	REG_OFFSET_NAME(a3),
218 	REG_OFFSET_NAME(regs[0]),
219 	REG_OFFSET_NAME(regs[1]),
220 	REG_OFFSET_NAME(regs[2]),
221 	REG_OFFSET_NAME(regs[3]),
222 	REG_OFFSET_NAME(regs[4]),
223 	REG_OFFSET_NAME(regs[5]),
224 	REG_OFFSET_NAME(regs[6]),
225 	REG_OFFSET_NAME(regs[7]),
226 	REG_OFFSET_NAME(regs[8]),
227 	REG_OFFSET_NAME(regs[9]),
228 #if defined(__CSKYABIV2__)
229 	REG_OFFSET_NAME(exregs[0]),
230 	REG_OFFSET_NAME(exregs[1]),
231 	REG_OFFSET_NAME(exregs[2]),
232 	REG_OFFSET_NAME(exregs[3]),
233 	REG_OFFSET_NAME(exregs[4]),
234 	REG_OFFSET_NAME(exregs[5]),
235 	REG_OFFSET_NAME(exregs[6]),
236 	REG_OFFSET_NAME(exregs[7]),
237 	REG_OFFSET_NAME(exregs[8]),
238 	REG_OFFSET_NAME(exregs[9]),
239 	REG_OFFSET_NAME(exregs[10]),
240 	REG_OFFSET_NAME(exregs[11]),
241 	REG_OFFSET_NAME(exregs[12]),
242 	REG_OFFSET_NAME(exregs[13]),
243 	REG_OFFSET_NAME(exregs[14]),
244 	REG_OFFSET_NAME(rhi),
245 	REG_OFFSET_NAME(rlo),
246 	REG_OFFSET_NAME(dcsr),
247 #endif
248 	REG_OFFSET_END,
249 };
250 
251 /**
252  * regs_query_register_offset() - query register offset from its name
253  * @name:	the name of a register
254  *
255  * regs_query_register_offset() returns the offset of a register in struct
256  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
257  */
258 int regs_query_register_offset(const char *name)
259 {
260 	const struct pt_regs_offset *roff;
261 
262 	for (roff = regoffset_table; roff->name != NULL; roff++)
263 		if (!strcmp(roff->name, name))
264 			return roff->offset;
265 	return -EINVAL;
266 }
267 
268 /**
269  * regs_within_kernel_stack() - check the address in the stack
270  * @regs:      pt_regs which contains kernel stack pointer.
271  * @addr:      address which is checked.
272  *
273  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
274  * If @addr is within the kernel stack, it returns true. If not, returns false.
275  */
276 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
277 {
278 	return (addr & ~(THREAD_SIZE - 1))  ==
279 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1));
280 }
281 
282 /**
283  * regs_get_kernel_stack_nth() - get Nth entry of the stack
284  * @regs:	pt_regs which contains kernel stack pointer.
285  * @n:		stack entry number.
286  *
287  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
288  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
289  * this returns 0.
290  */
291 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
292 {
293 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
294 
295 	addr += n;
296 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
297 		return *addr;
298 	else
299 		return 0;
300 }
301 
302 void ptrace_disable(struct task_struct *child)
303 {
304 	singlestep_disable(child);
305 }
306 
307 long arch_ptrace(struct task_struct *child, long request,
308 		 unsigned long addr, unsigned long data)
309 {
310 	long ret = -EIO;
311 
312 	switch (request) {
313 	default:
314 		ret = ptrace_request(child, request, addr, data);
315 		break;
316 	}
317 
318 	return ret;
319 }
320 
321 asmlinkage int syscall_trace_enter(struct pt_regs *regs)
322 {
323 	if (test_thread_flag(TIF_SYSCALL_TRACE))
324 		if (tracehook_report_syscall_entry(regs))
325 			return -1;
326 
327 	if (secure_computing() == -1)
328 		return -1;
329 
330 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
331 		trace_sys_enter(regs, syscall_get_nr(current, regs));
332 
333 	audit_syscall_entry(regs_syscallid(regs), regs->a0, regs->a1, regs->a2, regs->a3);
334 	return 0;
335 }
336 
337 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
338 {
339 	audit_syscall_exit(regs);
340 
341 	if (test_thread_flag(TIF_SYSCALL_TRACE))
342 		tracehook_report_syscall_exit(regs, 0);
343 
344 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
345 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
346 }
347 
348 #ifdef CONFIG_CPU_CK860
349 static void show_iutlb(void)
350 {
351 	int entry, i;
352 	unsigned long flags;
353 	unsigned long oldpid;
354 	unsigned long entryhi[16], entrylo0[16], entrylo1[16];
355 
356 	oldpid = read_mmu_entryhi();
357 
358 	entry = 0x8000;
359 
360 	local_irq_save(flags);
361 
362 	for (i = 0; i < 16; i++) {
363 		write_mmu_index(entry);
364 		tlb_read();
365 		entryhi[i]  = read_mmu_entryhi();
366 		entrylo0[i] = read_mmu_entrylo0();
367 		entrylo1[i] = read_mmu_entrylo1();
368 
369 		entry++;
370 	}
371 
372 	local_irq_restore(flags);
373 
374 	write_mmu_entryhi(oldpid);
375 
376 	printk("\n\n\n");
377 	for (i = 0; i < 16; i++)
378 		printk("iutlb[%d]:	entryhi - 0x%lx;	entrylo0 - 0x%lx;"
379 		       "	entrylo1 - 0x%lx\n",
380 			 i, entryhi[i], entrylo0[i], entrylo1[i]);
381 	printk("\n\n\n");
382 }
383 
384 static void show_dutlb(void)
385 {
386 	int entry, i;
387 	unsigned long flags;
388 	unsigned long oldpid;
389 	unsigned long entryhi[16], entrylo0[16], entrylo1[16];
390 
391 	oldpid = read_mmu_entryhi();
392 
393 	entry = 0x4000;
394 
395 	local_irq_save(flags);
396 
397 	for (i = 0; i < 16; i++) {
398 		write_mmu_index(entry);
399 		tlb_read();
400 		entryhi[i]  = read_mmu_entryhi();
401 		entrylo0[i] = read_mmu_entrylo0();
402 		entrylo1[i] = read_mmu_entrylo1();
403 
404 		entry++;
405 	}
406 
407 	local_irq_restore(flags);
408 
409 	write_mmu_entryhi(oldpid);
410 
411 	printk("\n\n\n");
412 	for (i = 0; i < 16; i++)
413 		printk("dutlb[%d]:	entryhi - 0x%lx;	entrylo0 - 0x%lx;"
414 		       "	entrylo1 - 0x%lx\n",
415 			 i, entryhi[i], entrylo0[i], entrylo1[i]);
416 	printk("\n\n\n");
417 }
418 
419 static unsigned long entryhi[1024], entrylo0[1024], entrylo1[1024];
420 static void show_jtlb(void)
421 {
422 	int entry;
423 	unsigned long flags;
424 	unsigned long oldpid;
425 
426 	oldpid = read_mmu_entryhi();
427 
428 	entry = 0;
429 
430 	local_irq_save(flags);
431 	while (entry < 1024) {
432 		write_mmu_index(entry);
433 		tlb_read();
434 		entryhi[entry]  = read_mmu_entryhi();
435 		entrylo0[entry] = read_mmu_entrylo0();
436 		entrylo1[entry] = read_mmu_entrylo1();
437 
438 		entry++;
439 	}
440 	local_irq_restore(flags);
441 
442 	write_mmu_entryhi(oldpid);
443 
444 	printk("\n\n\n");
445 
446 	for (entry = 0; entry < 1024; entry++)
447 		printk("jtlb[%x]:	entryhi - 0x%lx;	entrylo0 - 0x%lx;"
448 		       "	entrylo1 - 0x%lx\n",
449 			 entry, entryhi[entry], entrylo0[entry], entrylo1[entry]);
450 	printk("\n\n\n");
451 }
452 
453 static void show_tlb(void)
454 {
455 	show_iutlb();
456 	show_dutlb();
457 	show_jtlb();
458 }
459 #else
460 static void show_tlb(void)
461 {
462 	return;
463 }
464 #endif
465 
466 void show_regs(struct pt_regs *fp)
467 {
468 	pr_info("\nCURRENT PROCESS:\n\n");
469 	pr_info("COMM=%s PID=%d\n", current->comm, current->pid);
470 
471 	if (current->mm) {
472 		pr_info("TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n",
473 		       (int) current->mm->start_code,
474 		       (int) current->mm->end_code,
475 		       (int) current->mm->start_data,
476 		       (int) current->mm->end_data,
477 		       (int) current->mm->end_data,
478 		       (int) current->mm->brk);
479 		pr_info("USER-STACK=%08x  KERNEL-STACK=%08x\n\n",
480 		       (int) current->mm->start_stack,
481 		       (int) (((unsigned long) current) + 2 * PAGE_SIZE));
482 	}
483 
484 	pr_info("PC: 0x%08lx (%pS)\n", (long)fp->pc, (void *)fp->pc);
485 	pr_info("LR: 0x%08lx (%pS)\n", (long)fp->lr, (void *)fp->lr);
486 	pr_info("SP: 0x%08lx\n", (long)fp->usp);
487 	pr_info("PSR: 0x%08lx\n", (long)fp->sr);
488 	pr_info("orig_a0: 0x%08lx\n", fp->orig_a0);
489 	pr_info("PT_REGS: 0x%08lx\n", (long)fp);
490 
491 	pr_info(" a0: 0x%08lx   a1: 0x%08lx   a2: 0x%08lx   a3: 0x%08lx\n",
492 		fp->a0, fp->a1, fp->a2, fp->a3);
493 #if defined(__CSKYABIV2__)
494 	pr_info(" r4: 0x%08lx   r5: 0x%08lx   r6: 0x%08lx   r7: 0x%08lx\n",
495 		fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
496 	pr_info(" r8: 0x%08lx   r9: 0x%08lx  r10: 0x%08lx  r11: 0x%08lx\n",
497 		fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
498 	pr_info("r12: 0x%08lx  r13: 0x%08lx  r15: 0x%08lx\n",
499 		fp->regs[8], fp->regs[9], fp->lr);
500 	pr_info("r16: 0x%08lx  r17: 0x%08lx  r18: 0x%08lx  r19: 0x%08lx\n",
501 		fp->exregs[0], fp->exregs[1], fp->exregs[2], fp->exregs[3]);
502 	pr_info("r20: 0x%08lx  r21: 0x%08lx  r22: 0x%08lx  r23: 0x%08lx\n",
503 		fp->exregs[4], fp->exregs[5], fp->exregs[6], fp->exregs[7]);
504 	pr_info("r24: 0x%08lx  r25: 0x%08lx  r26: 0x%08lx  r27: 0x%08lx\n",
505 		fp->exregs[8], fp->exregs[9], fp->exregs[10], fp->exregs[11]);
506 	pr_info("r28: 0x%08lx  r29: 0x%08lx  r30: 0x%08lx  tls: 0x%08lx\n",
507 		fp->exregs[12], fp->exregs[13], fp->exregs[14], fp->tls);
508 	pr_info(" hi: 0x%08lx   lo: 0x%08lx\n",
509 		fp->rhi, fp->rlo);
510 #else
511 	pr_info(" r6: 0x%08lx   r7: 0x%08lx   r8: 0x%08lx   r9: 0x%08lx\n",
512 		fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]);
513 	pr_info("r10: 0x%08lx  r11: 0x%08lx  r12: 0x%08lx  r13: 0x%08lx\n",
514 		fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]);
515 	pr_info("r14: 0x%08lx   r1: 0x%08lx\n",
516 		fp->regs[8], fp->regs[9]);
517 #endif
518 
519 	show_tlb();
520 
521 	return;
522 }
523