1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd. 3 4 #include <linux/audit.h> 5 #include <linux/elf.h> 6 #include <linux/errno.h> 7 #include <linux/kernel.h> 8 #include <linux/mm.h> 9 #include <linux/ptrace.h> 10 #include <linux/regset.h> 11 #include <linux/sched.h> 12 #include <linux/sched/task_stack.h> 13 #include <linux/signal.h> 14 #include <linux/smp.h> 15 #include <linux/tracehook.h> 16 #include <linux/uaccess.h> 17 #include <linux/user.h> 18 19 #include <asm/thread_info.h> 20 #include <asm/page.h> 21 #include <asm/processor.h> 22 #include <asm/asm-offsets.h> 23 24 #include <abi/regdef.h> 25 #include <abi/ckmmu.h> 26 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/syscalls.h> 29 30 /* sets the trace bits. */ 31 #define TRACE_MODE_SI (1 << 14) 32 #define TRACE_MODE_RUN 0 33 #define TRACE_MODE_MASK ~(0x3 << 14) 34 35 /* 36 * Make sure the single step bit is not set. 37 */ 38 static void singlestep_disable(struct task_struct *tsk) 39 { 40 struct pt_regs *regs; 41 42 regs = task_pt_regs(tsk); 43 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN; 44 45 /* Enable irq */ 46 regs->sr |= BIT(6); 47 } 48 49 static void singlestep_enable(struct task_struct *tsk) 50 { 51 struct pt_regs *regs; 52 53 regs = task_pt_regs(tsk); 54 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI; 55 56 /* Disable irq */ 57 regs->sr &= ~BIT(6); 58 } 59 60 /* 61 * Make sure the single step bit is set. 62 */ 63 void user_enable_single_step(struct task_struct *child) 64 { 65 singlestep_enable(child); 66 } 67 68 void user_disable_single_step(struct task_struct *child) 69 { 70 singlestep_disable(child); 71 } 72 73 enum csky_regset { 74 REGSET_GPR, 75 REGSET_FPR, 76 }; 77 78 static int gpr_get(struct task_struct *target, 79 const struct user_regset *regset, 80 struct membuf to) 81 { 82 struct pt_regs *regs = task_pt_regs(target); 83 84 /* Abiv1 regs->tls is fake and we need sync here. */ 85 regs->tls = task_thread_info(target)->tp_value; 86 87 return membuf_write(&to, regs, sizeof(*regs)); 88 } 89 90 static int gpr_set(struct task_struct *target, 91 const struct user_regset *regset, 92 unsigned int pos, unsigned int count, 93 const void *kbuf, const void __user *ubuf) 94 { 95 int ret; 96 struct pt_regs regs; 97 98 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®s, 0, -1); 99 if (ret) 100 return ret; 101 102 regs.sr = task_pt_regs(target)->sr; 103 #ifdef CONFIG_CPU_HAS_HILO 104 regs.dcsr = task_pt_regs(target)->dcsr; 105 #endif 106 task_thread_info(target)->tp_value = regs.tls; 107 108 *task_pt_regs(target) = regs; 109 110 return 0; 111 } 112 113 static int fpr_get(struct task_struct *target, 114 const struct user_regset *regset, 115 struct membuf to) 116 { 117 struct user_fp *regs = (struct user_fp *)&target->thread.user_fp; 118 119 #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP) 120 int i; 121 struct user_fp tmp = *regs; 122 123 for (i = 0; i < 16; i++) { 124 tmp.vr[i*4] = regs->vr[i*2]; 125 tmp.vr[i*4 + 1] = regs->vr[i*2 + 1]; 126 } 127 128 for (i = 0; i < 32; i++) 129 tmp.vr[64 + i] = regs->vr[32 + i]; 130 131 return membuf_write(&to, &tmp, sizeof(tmp)); 132 #else 133 return membuf_write(&to, regs, sizeof(*regs)); 134 #endif 135 } 136 137 static int fpr_set(struct task_struct *target, 138 const struct user_regset *regset, 139 unsigned int pos, unsigned int count, 140 const void *kbuf, const void __user *ubuf) 141 { 142 int ret; 143 struct user_fp *regs = (struct user_fp *)&target->thread.user_fp; 144 145 #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP) 146 int i; 147 struct user_fp tmp; 148 149 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tmp, 0, -1); 150 151 *regs = tmp; 152 153 for (i = 0; i < 16; i++) { 154 regs->vr[i*2] = tmp.vr[i*4]; 155 regs->vr[i*2 + 1] = tmp.vr[i*4 + 1]; 156 } 157 158 for (i = 0; i < 32; i++) 159 regs->vr[32 + i] = tmp.vr[64 + i]; 160 #else 161 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1); 162 #endif 163 164 return ret; 165 } 166 167 static const struct user_regset csky_regsets[] = { 168 [REGSET_GPR] = { 169 .core_note_type = NT_PRSTATUS, 170 .n = sizeof(struct pt_regs) / sizeof(u32), 171 .size = sizeof(u32), 172 .align = sizeof(u32), 173 .regset_get = gpr_get, 174 .set = gpr_set, 175 }, 176 [REGSET_FPR] = { 177 .core_note_type = NT_PRFPREG, 178 .n = sizeof(struct user_fp) / sizeof(u32), 179 .size = sizeof(u32), 180 .align = sizeof(u32), 181 .regset_get = fpr_get, 182 .set = fpr_set, 183 }, 184 }; 185 186 static const struct user_regset_view user_csky_view = { 187 .name = "csky", 188 .e_machine = ELF_ARCH, 189 .regsets = csky_regsets, 190 .n = ARRAY_SIZE(csky_regsets), 191 }; 192 193 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 194 { 195 return &user_csky_view; 196 } 197 198 struct pt_regs_offset { 199 const char *name; 200 int offset; 201 }; 202 203 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} 204 #define REG_OFFSET_END {.name = NULL, .offset = 0} 205 206 static const struct pt_regs_offset regoffset_table[] = { 207 REG_OFFSET_NAME(tls), 208 REG_OFFSET_NAME(lr), 209 REG_OFFSET_NAME(pc), 210 REG_OFFSET_NAME(sr), 211 REG_OFFSET_NAME(usp), 212 REG_OFFSET_NAME(orig_a0), 213 REG_OFFSET_NAME(a0), 214 REG_OFFSET_NAME(a1), 215 REG_OFFSET_NAME(a2), 216 REG_OFFSET_NAME(a3), 217 REG_OFFSET_NAME(regs[0]), 218 REG_OFFSET_NAME(regs[1]), 219 REG_OFFSET_NAME(regs[2]), 220 REG_OFFSET_NAME(regs[3]), 221 REG_OFFSET_NAME(regs[4]), 222 REG_OFFSET_NAME(regs[5]), 223 REG_OFFSET_NAME(regs[6]), 224 REG_OFFSET_NAME(regs[7]), 225 REG_OFFSET_NAME(regs[8]), 226 REG_OFFSET_NAME(regs[9]), 227 #if defined(__CSKYABIV2__) 228 REG_OFFSET_NAME(exregs[0]), 229 REG_OFFSET_NAME(exregs[1]), 230 REG_OFFSET_NAME(exregs[2]), 231 REG_OFFSET_NAME(exregs[3]), 232 REG_OFFSET_NAME(exregs[4]), 233 REG_OFFSET_NAME(exregs[5]), 234 REG_OFFSET_NAME(exregs[6]), 235 REG_OFFSET_NAME(exregs[7]), 236 REG_OFFSET_NAME(exregs[8]), 237 REG_OFFSET_NAME(exregs[9]), 238 REG_OFFSET_NAME(exregs[10]), 239 REG_OFFSET_NAME(exregs[11]), 240 REG_OFFSET_NAME(exregs[12]), 241 REG_OFFSET_NAME(exregs[13]), 242 REG_OFFSET_NAME(exregs[14]), 243 REG_OFFSET_NAME(rhi), 244 REG_OFFSET_NAME(rlo), 245 REG_OFFSET_NAME(dcsr), 246 #endif 247 REG_OFFSET_END, 248 }; 249 250 /** 251 * regs_query_register_offset() - query register offset from its name 252 * @name: the name of a register 253 * 254 * regs_query_register_offset() returns the offset of a register in struct 255 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 256 */ 257 int regs_query_register_offset(const char *name) 258 { 259 const struct pt_regs_offset *roff; 260 261 for (roff = regoffset_table; roff->name != NULL; roff++) 262 if (!strcmp(roff->name, name)) 263 return roff->offset; 264 return -EINVAL; 265 } 266 267 /** 268 * regs_within_kernel_stack() - check the address in the stack 269 * @regs: pt_regs which contains kernel stack pointer. 270 * @addr: address which is checked. 271 * 272 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 273 * If @addr is within the kernel stack, it returns true. If not, returns false. 274 */ 275 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 276 { 277 return (addr & ~(THREAD_SIZE - 1)) == 278 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)); 279 } 280 281 /** 282 * regs_get_kernel_stack_nth() - get Nth entry of the stack 283 * @regs: pt_regs which contains kernel stack pointer. 284 * @n: stack entry number. 285 * 286 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 287 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 288 * this returns 0. 289 */ 290 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 291 { 292 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 293 294 addr += n; 295 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 296 return *addr; 297 else 298 return 0; 299 } 300 301 void ptrace_disable(struct task_struct *child) 302 { 303 singlestep_disable(child); 304 } 305 306 long arch_ptrace(struct task_struct *child, long request, 307 unsigned long addr, unsigned long data) 308 { 309 long ret = -EIO; 310 311 switch (request) { 312 default: 313 ret = ptrace_request(child, request, addr, data); 314 break; 315 } 316 317 return ret; 318 } 319 320 asmlinkage int syscall_trace_enter(struct pt_regs *regs) 321 { 322 if (test_thread_flag(TIF_SYSCALL_TRACE)) 323 if (tracehook_report_syscall_entry(regs)) 324 return -1; 325 326 if (secure_computing() == -1) 327 return -1; 328 329 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 330 trace_sys_enter(regs, syscall_get_nr(current, regs)); 331 332 audit_syscall_entry(regs_syscallid(regs), regs->a0, regs->a1, regs->a2, regs->a3); 333 return 0; 334 } 335 336 asmlinkage void syscall_trace_exit(struct pt_regs *regs) 337 { 338 audit_syscall_exit(regs); 339 340 if (test_thread_flag(TIF_SYSCALL_TRACE)) 341 tracehook_report_syscall_exit(regs, 0); 342 343 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 344 trace_sys_exit(regs, syscall_get_return_value(current, regs)); 345 } 346 347 #ifdef CONFIG_CPU_CK860 348 static void show_iutlb(void) 349 { 350 int entry, i; 351 unsigned long flags; 352 unsigned long oldpid; 353 unsigned long entryhi[16], entrylo0[16], entrylo1[16]; 354 355 oldpid = read_mmu_entryhi(); 356 357 entry = 0x8000; 358 359 local_irq_save(flags); 360 361 for (i = 0; i < 16; i++) { 362 write_mmu_index(entry); 363 tlb_read(); 364 entryhi[i] = read_mmu_entryhi(); 365 entrylo0[i] = read_mmu_entrylo0(); 366 entrylo1[i] = read_mmu_entrylo1(); 367 368 entry++; 369 } 370 371 local_irq_restore(flags); 372 373 write_mmu_entryhi(oldpid); 374 375 printk("\n\n\n"); 376 for (i = 0; i < 16; i++) 377 printk("iutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;" 378 " entrylo1 - 0x%lx\n", 379 i, entryhi[i], entrylo0[i], entrylo1[i]); 380 printk("\n\n\n"); 381 } 382 383 static void show_dutlb(void) 384 { 385 int entry, i; 386 unsigned long flags; 387 unsigned long oldpid; 388 unsigned long entryhi[16], entrylo0[16], entrylo1[16]; 389 390 oldpid = read_mmu_entryhi(); 391 392 entry = 0x4000; 393 394 local_irq_save(flags); 395 396 for (i = 0; i < 16; i++) { 397 write_mmu_index(entry); 398 tlb_read(); 399 entryhi[i] = read_mmu_entryhi(); 400 entrylo0[i] = read_mmu_entrylo0(); 401 entrylo1[i] = read_mmu_entrylo1(); 402 403 entry++; 404 } 405 406 local_irq_restore(flags); 407 408 write_mmu_entryhi(oldpid); 409 410 printk("\n\n\n"); 411 for (i = 0; i < 16; i++) 412 printk("dutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;" 413 " entrylo1 - 0x%lx\n", 414 i, entryhi[i], entrylo0[i], entrylo1[i]); 415 printk("\n\n\n"); 416 } 417 418 static unsigned long entryhi[1024], entrylo0[1024], entrylo1[1024]; 419 static void show_jtlb(void) 420 { 421 int entry; 422 unsigned long flags; 423 unsigned long oldpid; 424 425 oldpid = read_mmu_entryhi(); 426 427 entry = 0; 428 429 local_irq_save(flags); 430 while (entry < 1024) { 431 write_mmu_index(entry); 432 tlb_read(); 433 entryhi[entry] = read_mmu_entryhi(); 434 entrylo0[entry] = read_mmu_entrylo0(); 435 entrylo1[entry] = read_mmu_entrylo1(); 436 437 entry++; 438 } 439 local_irq_restore(flags); 440 441 write_mmu_entryhi(oldpid); 442 443 printk("\n\n\n"); 444 445 for (entry = 0; entry < 1024; entry++) 446 printk("jtlb[%x]: entryhi - 0x%lx; entrylo0 - 0x%lx;" 447 " entrylo1 - 0x%lx\n", 448 entry, entryhi[entry], entrylo0[entry], entrylo1[entry]); 449 printk("\n\n\n"); 450 } 451 452 static void show_tlb(void) 453 { 454 show_iutlb(); 455 show_dutlb(); 456 show_jtlb(); 457 } 458 #else 459 static void show_tlb(void) 460 { 461 return; 462 } 463 #endif 464 465 void show_regs(struct pt_regs *fp) 466 { 467 pr_info("\nCURRENT PROCESS:\n\n"); 468 pr_info("COMM=%s PID=%d\n", current->comm, current->pid); 469 470 if (current->mm) { 471 pr_info("TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n", 472 (int) current->mm->start_code, 473 (int) current->mm->end_code, 474 (int) current->mm->start_data, 475 (int) current->mm->end_data, 476 (int) current->mm->end_data, 477 (int) current->mm->brk); 478 pr_info("USER-STACK=%08x KERNEL-STACK=%08x\n\n", 479 (int) current->mm->start_stack, 480 (int) (((unsigned long) current) + 2 * PAGE_SIZE)); 481 } 482 483 pr_info("PC: 0x%08lx (%pS)\n", (long)fp->pc, (void *)fp->pc); 484 pr_info("LR: 0x%08lx (%pS)\n", (long)fp->lr, (void *)fp->lr); 485 pr_info("SP: 0x%08lx\n", (long)fp->usp); 486 pr_info("PSR: 0x%08lx\n", (long)fp->sr); 487 pr_info("orig_a0: 0x%08lx\n", fp->orig_a0); 488 pr_info("PT_REGS: 0x%08lx\n", (long)fp); 489 490 pr_info(" a0: 0x%08lx a1: 0x%08lx a2: 0x%08lx a3: 0x%08lx\n", 491 fp->a0, fp->a1, fp->a2, fp->a3); 492 #if defined(__CSKYABIV2__) 493 pr_info(" r4: 0x%08lx r5: 0x%08lx r6: 0x%08lx r7: 0x%08lx\n", 494 fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]); 495 pr_info(" r8: 0x%08lx r9: 0x%08lx r10: 0x%08lx r11: 0x%08lx\n", 496 fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]); 497 pr_info("r12: 0x%08lx r13: 0x%08lx r15: 0x%08lx\n", 498 fp->regs[8], fp->regs[9], fp->lr); 499 pr_info("r16: 0x%08lx r17: 0x%08lx r18: 0x%08lx r19: 0x%08lx\n", 500 fp->exregs[0], fp->exregs[1], fp->exregs[2], fp->exregs[3]); 501 pr_info("r20: 0x%08lx r21: 0x%08lx r22: 0x%08lx r23: 0x%08lx\n", 502 fp->exregs[4], fp->exregs[5], fp->exregs[6], fp->exregs[7]); 503 pr_info("r24: 0x%08lx r25: 0x%08lx r26: 0x%08lx r27: 0x%08lx\n", 504 fp->exregs[8], fp->exregs[9], fp->exregs[10], fp->exregs[11]); 505 pr_info("r28: 0x%08lx r29: 0x%08lx r30: 0x%08lx tls: 0x%08lx\n", 506 fp->exregs[12], fp->exregs[13], fp->exregs[14], fp->tls); 507 pr_info(" hi: 0x%08lx lo: 0x%08lx\n", 508 fp->rhi, fp->rlo); 509 #else 510 pr_info(" r6: 0x%08lx r7: 0x%08lx r8: 0x%08lx r9: 0x%08lx\n", 511 fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]); 512 pr_info("r10: 0x%08lx r11: 0x%08lx r12: 0x%08lx r13: 0x%08lx\n", 513 fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]); 514 pr_info("r14: 0x%08lx r1: 0x%08lx\n", 515 fp->regs[8], fp->regs[9]); 516 #endif 517 518 show_tlb(); 519 520 return; 521 } 522