xref: /openbmc/linux/arch/csky/kernel/probes/kprobes.c (revision 3bf90eca)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #define pr_fmt(fmt) "kprobes: " fmt
4 
5 #include <linux/kprobes.h>
6 #include <linux/extable.h>
7 #include <linux/slab.h>
8 #include <linux/stop_machine.h>
9 #include <asm/ptrace.h>
10 #include <linux/uaccess.h>
11 #include <asm/sections.h>
12 #include <asm/cacheflush.h>
13 
14 #include "decode-insn.h"
15 
16 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
17 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
18 
19 static void __kprobes
20 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
21 
22 struct csky_insn_patch {
23 	kprobe_opcode_t	*addr;
24 	u32		opcode;
25 	atomic_t	cpu_count;
26 };
27 
28 static int __kprobes patch_text_cb(void *priv)
29 {
30 	struct csky_insn_patch *param = priv;
31 	unsigned int addr = (unsigned int)param->addr;
32 
33 	if (atomic_inc_return(&param->cpu_count) == num_online_cpus()) {
34 		*(u16 *) addr = cpu_to_le16(param->opcode);
35 		dcache_wb_range(addr, addr + 2);
36 		atomic_inc(&param->cpu_count);
37 	} else {
38 		while (atomic_read(&param->cpu_count) <= num_online_cpus())
39 			cpu_relax();
40 	}
41 
42 	icache_inv_range(addr, addr + 2);
43 
44 	return 0;
45 }
46 
47 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
48 {
49 	struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
50 
51 	return stop_machine_cpuslocked(patch_text_cb, &param, cpu_online_mask);
52 }
53 
54 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
55 {
56 	unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
57 
58 	p->ainsn.api.restore = (unsigned long)p->addr + offset;
59 
60 	patch_text(p->ainsn.api.insn, p->opcode);
61 }
62 
63 static void __kprobes arch_prepare_simulate(struct kprobe *p)
64 {
65 	p->ainsn.api.restore = 0;
66 }
67 
68 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
69 {
70 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
71 
72 	if (p->ainsn.api.handler)
73 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
74 
75 	post_kprobe_handler(kcb, regs);
76 }
77 
78 int __kprobes arch_prepare_kprobe(struct kprobe *p)
79 {
80 	unsigned long probe_addr = (unsigned long)p->addr;
81 
82 	if (probe_addr & 0x1)
83 		return -EILSEQ;
84 
85 	/* copy instruction */
86 	p->opcode = le32_to_cpu(*p->addr);
87 
88 	/* decode instruction */
89 	switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
90 	case INSN_REJECTED:	/* insn not supported */
91 		return -EINVAL;
92 
93 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
94 		p->ainsn.api.insn = NULL;
95 		break;
96 
97 	case INSN_GOOD:	/* instruction uses slot */
98 		p->ainsn.api.insn = get_insn_slot();
99 		if (!p->ainsn.api.insn)
100 			return -ENOMEM;
101 		break;
102 	}
103 
104 	/* prepare the instruction */
105 	if (p->ainsn.api.insn)
106 		arch_prepare_ss_slot(p);
107 	else
108 		arch_prepare_simulate(p);
109 
110 	return 0;
111 }
112 
113 /* install breakpoint in text */
114 void __kprobes arch_arm_kprobe(struct kprobe *p)
115 {
116 	patch_text(p->addr, USR_BKPT);
117 }
118 
119 /* remove breakpoint from text */
120 void __kprobes arch_disarm_kprobe(struct kprobe *p)
121 {
122 	patch_text(p->addr, p->opcode);
123 }
124 
125 void __kprobes arch_remove_kprobe(struct kprobe *p)
126 {
127 	if (p->ainsn.api.insn) {
128 		free_insn_slot(p->ainsn.api.insn, 0);
129 		p->ainsn.api.insn = NULL;
130 	}
131 }
132 
133 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
134 {
135 	kcb->prev_kprobe.kp = kprobe_running();
136 	kcb->prev_kprobe.status = kcb->kprobe_status;
137 }
138 
139 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
140 {
141 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
142 	kcb->kprobe_status = kcb->prev_kprobe.status;
143 }
144 
145 static void __kprobes set_current_kprobe(struct kprobe *p)
146 {
147 	__this_cpu_write(current_kprobe, p);
148 }
149 
150 /*
151  * Interrupts need to be disabled before single-step mode is set, and not
152  * reenabled until after single-step mode ends.
153  * Without disabling interrupt on local CPU, there is a chance of
154  * interrupt occurrence in the period of exception return and  start of
155  * out-of-line single-step, that result in wrongly single stepping
156  * into the interrupt handler.
157  */
158 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
159 						struct pt_regs *regs)
160 {
161 	kcb->saved_sr = regs->sr;
162 	regs->sr &= ~BIT(6);
163 }
164 
165 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
166 						struct pt_regs *regs)
167 {
168 	regs->sr = kcb->saved_sr;
169 }
170 
171 static void __kprobes
172 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
173 {
174 	unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
175 
176 	kcb->ss_ctx.ss_pending = true;
177 	kcb->ss_ctx.match_addr = addr + offset;
178 }
179 
180 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
181 {
182 	kcb->ss_ctx.ss_pending = false;
183 	kcb->ss_ctx.match_addr = 0;
184 }
185 
186 #define TRACE_MODE_SI		BIT(14)
187 #define TRACE_MODE_MASK		~(0x3 << 14)
188 #define TRACE_MODE_RUN		0
189 
190 static void __kprobes setup_singlestep(struct kprobe *p,
191 				       struct pt_regs *regs,
192 				       struct kprobe_ctlblk *kcb, int reenter)
193 {
194 	unsigned long slot;
195 
196 	if (reenter) {
197 		save_previous_kprobe(kcb);
198 		set_current_kprobe(p);
199 		kcb->kprobe_status = KPROBE_REENTER;
200 	} else {
201 		kcb->kprobe_status = KPROBE_HIT_SS;
202 	}
203 
204 	if (p->ainsn.api.insn) {
205 		/* prepare for single stepping */
206 		slot = (unsigned long)p->ainsn.api.insn;
207 
208 		set_ss_context(kcb, slot, p);	/* mark pending ss */
209 
210 		/* IRQs and single stepping do not mix well. */
211 		kprobes_save_local_irqflag(kcb, regs);
212 		regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
213 		instruction_pointer_set(regs, slot);
214 	} else {
215 		/* insn simulation */
216 		arch_simulate_insn(p, regs);
217 	}
218 }
219 
220 static int __kprobes reenter_kprobe(struct kprobe *p,
221 				    struct pt_regs *regs,
222 				    struct kprobe_ctlblk *kcb)
223 {
224 	switch (kcb->kprobe_status) {
225 	case KPROBE_HIT_SSDONE:
226 	case KPROBE_HIT_ACTIVE:
227 		kprobes_inc_nmissed_count(p);
228 		setup_singlestep(p, regs, kcb, 1);
229 		break;
230 	case KPROBE_HIT_SS:
231 	case KPROBE_REENTER:
232 		pr_warn("Failed to recover from reentered kprobes.\n");
233 		dump_kprobe(p);
234 		BUG();
235 		break;
236 	default:
237 		WARN_ON(1);
238 		return 0;
239 	}
240 
241 	return 1;
242 }
243 
244 static void __kprobes
245 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
246 {
247 	struct kprobe *cur = kprobe_running();
248 
249 	if (!cur)
250 		return;
251 
252 	/* return addr restore if non-branching insn */
253 	if (cur->ainsn.api.restore != 0)
254 		regs->pc = cur->ainsn.api.restore;
255 
256 	/* restore back original saved kprobe variables and continue */
257 	if (kcb->kprobe_status == KPROBE_REENTER) {
258 		restore_previous_kprobe(kcb);
259 		return;
260 	}
261 
262 	/* call post handler */
263 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
264 	if (cur->post_handler)	{
265 		/* post_handler can hit breakpoint and single step
266 		 * again, so we enable D-flag for recursive exception.
267 		 */
268 		cur->post_handler(cur, regs, 0);
269 	}
270 
271 	reset_current_kprobe();
272 }
273 
274 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
275 {
276 	struct kprobe *cur = kprobe_running();
277 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
278 
279 	switch (kcb->kprobe_status) {
280 	case KPROBE_HIT_SS:
281 	case KPROBE_REENTER:
282 		/*
283 		 * We are here because the instruction being single
284 		 * stepped caused a page fault. We reset the current
285 		 * kprobe and the ip points back to the probe address
286 		 * and allow the page fault handler to continue as a
287 		 * normal page fault.
288 		 */
289 		regs->pc = (unsigned long) cur->addr;
290 		BUG_ON(!instruction_pointer(regs));
291 
292 		if (kcb->kprobe_status == KPROBE_REENTER)
293 			restore_previous_kprobe(kcb);
294 		else
295 			reset_current_kprobe();
296 
297 		break;
298 	case KPROBE_HIT_ACTIVE:
299 	case KPROBE_HIT_SSDONE:
300 		/*
301 		 * In case the user-specified fault handler returned
302 		 * zero, try to fix up.
303 		 */
304 		if (fixup_exception(regs))
305 			return 1;
306 	}
307 	return 0;
308 }
309 
310 int __kprobes
311 kprobe_breakpoint_handler(struct pt_regs *regs)
312 {
313 	struct kprobe *p, *cur_kprobe;
314 	struct kprobe_ctlblk *kcb;
315 	unsigned long addr = instruction_pointer(regs);
316 
317 	kcb = get_kprobe_ctlblk();
318 	cur_kprobe = kprobe_running();
319 
320 	p = get_kprobe((kprobe_opcode_t *) addr);
321 
322 	if (p) {
323 		if (cur_kprobe) {
324 			if (reenter_kprobe(p, regs, kcb))
325 				return 1;
326 		} else {
327 			/* Probe hit */
328 			set_current_kprobe(p);
329 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330 
331 			/*
332 			 * If we have no pre-handler or it returned 0, we
333 			 * continue with normal processing.  If we have a
334 			 * pre-handler and it returned non-zero, it will
335 			 * modify the execution path and no need to single
336 			 * stepping. Let's just reset current kprobe and exit.
337 			 *
338 			 * pre_handler can hit a breakpoint and can step thru
339 			 * before return.
340 			 */
341 			if (!p->pre_handler || !p->pre_handler(p, regs))
342 				setup_singlestep(p, regs, kcb, 0);
343 			else
344 				reset_current_kprobe();
345 		}
346 		return 1;
347 	}
348 
349 	/*
350 	 * The breakpoint instruction was removed right
351 	 * after we hit it.  Another cpu has removed
352 	 * either a probepoint or a debugger breakpoint
353 	 * at this address.  In either case, no further
354 	 * handling of this interrupt is appropriate.
355 	 * Return back to original instruction, and continue.
356 	 */
357 	return 0;
358 }
359 
360 int __kprobes
361 kprobe_single_step_handler(struct pt_regs *regs)
362 {
363 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
364 
365 	if ((kcb->ss_ctx.ss_pending)
366 	    && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
367 		clear_ss_context(kcb);	/* clear pending ss */
368 
369 		kprobes_restore_local_irqflag(kcb, regs);
370 		regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
371 
372 		post_kprobe_handler(kcb, regs);
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 /*
379  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
380  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
381  */
382 int __init arch_populate_kprobe_blacklist(void)
383 {
384 	int ret;
385 
386 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
387 					(unsigned long)__irqentry_text_end);
388 	return ret;
389 }
390 
391 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
392 {
393 	return (void *)kretprobe_trampoline_handler(regs, NULL);
394 }
395 
396 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
397 				      struct pt_regs *regs)
398 {
399 	ri->ret_addr = (kprobe_opcode_t *)regs->lr;
400 	ri->fp = NULL;
401 	regs->lr = (unsigned long) &__kretprobe_trampoline;
402 }
403 
404 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
405 {
406 	return 0;
407 }
408 
409 int __init arch_init_kprobes(void)
410 {
411 	return 0;
412 }
413