xref: /openbmc/linux/arch/csky/include/asm/asid.h (revision 0b1f557a)
1a231b883SGuo Ren /* SPDX-License-Identifier: GPL-2.0 */
2a231b883SGuo Ren #ifndef __ASM_ASM_ASID_H
3a231b883SGuo Ren #define __ASM_ASM_ASID_H
4a231b883SGuo Ren 
5a231b883SGuo Ren #include <linux/atomic.h>
6a231b883SGuo Ren #include <linux/compiler.h>
7a231b883SGuo Ren #include <linux/cpumask.h>
8a231b883SGuo Ren #include <linux/percpu.h>
9a231b883SGuo Ren #include <linux/spinlock.h>
10a231b883SGuo Ren 
11a231b883SGuo Ren struct asid_info
12a231b883SGuo Ren {
13a231b883SGuo Ren 	atomic64_t	generation;
14a231b883SGuo Ren 	unsigned long	*map;
15a231b883SGuo Ren 	atomic64_t __percpu	*active;
16a231b883SGuo Ren 	u64 __percpu		*reserved;
17a231b883SGuo Ren 	u32			bits;
18a231b883SGuo Ren 	/* Lock protecting the structure */
19a231b883SGuo Ren 	raw_spinlock_t		lock;
20a231b883SGuo Ren 	/* Which CPU requires context flush on next call */
21a231b883SGuo Ren 	cpumask_t		flush_pending;
22a231b883SGuo Ren 	/* Number of ASID allocated by context (shift value) */
23a231b883SGuo Ren 	unsigned int		ctxt_shift;
24a231b883SGuo Ren 	/* Callback to locally flush the context. */
25a231b883SGuo Ren 	void			(*flush_cpu_ctxt_cb)(void);
26a231b883SGuo Ren };
27a231b883SGuo Ren 
28a231b883SGuo Ren #define NUM_ASIDS(info)			(1UL << ((info)->bits))
29a231b883SGuo Ren #define NUM_CTXT_ASIDS(info)		(NUM_ASIDS(info) >> (info)->ctxt_shift)
30a231b883SGuo Ren 
31a231b883SGuo Ren #define active_asid(info, cpu)	*per_cpu_ptr((info)->active, cpu)
32a231b883SGuo Ren 
33a231b883SGuo Ren void asid_new_context(struct asid_info *info, atomic64_t *pasid,
34a231b883SGuo Ren 		      unsigned int cpu, struct mm_struct *mm);
35a231b883SGuo Ren 
36a231b883SGuo Ren /*
37a231b883SGuo Ren  * Check the ASID is still valid for the context. If not generate a new ASID.
38a231b883SGuo Ren  *
39a231b883SGuo Ren  * @pasid: Pointer to the current ASID batch
40*0b1f557aSJunlin Yang  * @cpu: current CPU ID. Must have been acquired through get_cpu()
41a231b883SGuo Ren  */
asid_check_context(struct asid_info * info,atomic64_t * pasid,unsigned int cpu,struct mm_struct * mm)42a231b883SGuo Ren static inline void asid_check_context(struct asid_info *info,
43a231b883SGuo Ren 				      atomic64_t *pasid, unsigned int cpu,
44a231b883SGuo Ren 				      struct mm_struct *mm)
45a231b883SGuo Ren {
46a231b883SGuo Ren 	u64 asid, old_active_asid;
47a231b883SGuo Ren 
48a231b883SGuo Ren 	asid = atomic64_read(pasid);
49a231b883SGuo Ren 
50a231b883SGuo Ren 	/*
51a231b883SGuo Ren 	 * The memory ordering here is subtle.
52a231b883SGuo Ren 	 * If our active_asid is non-zero and the ASID matches the current
53a231b883SGuo Ren 	 * generation, then we update the active_asid entry with a relaxed
54a231b883SGuo Ren 	 * cmpxchg. Racing with a concurrent rollover means that either:
55a231b883SGuo Ren 	 *
56a231b883SGuo Ren 	 * - We get a zero back from the cmpxchg and end up waiting on the
57a231b883SGuo Ren 	 *   lock. Taking the lock synchronises with the rollover and so
58a231b883SGuo Ren 	 *   we are forced to see the updated generation.
59a231b883SGuo Ren 	 *
60a231b883SGuo Ren 	 * - We get a valid ASID back from the cmpxchg, which means the
61a231b883SGuo Ren 	 *   relaxed xchg in flush_context will treat us as reserved
62a231b883SGuo Ren 	 *   because atomic RmWs are totally ordered for a given location.
63a231b883SGuo Ren 	 */
64a231b883SGuo Ren 	old_active_asid = atomic64_read(&active_asid(info, cpu));
65a231b883SGuo Ren 	if (old_active_asid &&
66a231b883SGuo Ren 	    !((asid ^ atomic64_read(&info->generation)) >> info->bits) &&
67a231b883SGuo Ren 	    atomic64_cmpxchg_relaxed(&active_asid(info, cpu),
68a231b883SGuo Ren 				     old_active_asid, asid))
69a231b883SGuo Ren 		return;
70a231b883SGuo Ren 
71a231b883SGuo Ren 	asid_new_context(info, pasid, cpu, mm);
72a231b883SGuo Ren }
73a231b883SGuo Ren 
74a231b883SGuo Ren int asid_allocator_init(struct asid_info *info,
75a231b883SGuo Ren 			u32 bits, unsigned int asid_per_ctxt,
76a231b883SGuo Ren 			void (*flush_cpu_ctxt_cb)(void));
77a231b883SGuo Ren 
78a231b883SGuo Ren #endif
79