xref: /openbmc/linux/arch/arm64/net/bpf_jit_comp.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /*
2  * BPF JIT compiler for ARM64
3  *
4  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "bpf_jit: " fmt
20 
21 #include <linux/bpf.h>
22 #include <linux/filter.h>
23 #include <linux/printk.h>
24 #include <linux/slab.h>
25 
26 #include <asm/byteorder.h>
27 #include <asm/cacheflush.h>
28 #include <asm/debug-monitors.h>
29 #include <asm/set_memory.h>
30 
31 #include "bpf_jit.h"
32 
33 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
34 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
35 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
36 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
37 
38 /* Map BPF registers to A64 registers */
39 static const int bpf2a64[] = {
40 	/* return value from in-kernel function, and exit value from eBPF */
41 	[BPF_REG_0] = A64_R(7),
42 	/* arguments from eBPF program to in-kernel function */
43 	[BPF_REG_1] = A64_R(0),
44 	[BPF_REG_2] = A64_R(1),
45 	[BPF_REG_3] = A64_R(2),
46 	[BPF_REG_4] = A64_R(3),
47 	[BPF_REG_5] = A64_R(4),
48 	/* callee saved registers that in-kernel function will preserve */
49 	[BPF_REG_6] = A64_R(19),
50 	[BPF_REG_7] = A64_R(20),
51 	[BPF_REG_8] = A64_R(21),
52 	[BPF_REG_9] = A64_R(22),
53 	/* read-only frame pointer to access stack */
54 	[BPF_REG_FP] = A64_R(25),
55 	/* temporary registers for internal BPF JIT */
56 	[TMP_REG_1] = A64_R(10),
57 	[TMP_REG_2] = A64_R(11),
58 	[TMP_REG_3] = A64_R(12),
59 	/* tail_call_cnt */
60 	[TCALL_CNT] = A64_R(26),
61 	/* temporary register for blinding constants */
62 	[BPF_REG_AX] = A64_R(9),
63 };
64 
65 struct jit_ctx {
66 	const struct bpf_prog *prog;
67 	int idx;
68 	int epilogue_offset;
69 	int *offset;
70 	__le32 *image;
71 	u32 stack_size;
72 };
73 
74 static inline void emit(const u32 insn, struct jit_ctx *ctx)
75 {
76 	if (ctx->image != NULL)
77 		ctx->image[ctx->idx] = cpu_to_le32(insn);
78 
79 	ctx->idx++;
80 }
81 
82 static inline void emit_a64_mov_i(const int is64, const int reg,
83 				  const s32 val, struct jit_ctx *ctx)
84 {
85 	u16 hi = val >> 16;
86 	u16 lo = val & 0xffff;
87 
88 	if (hi & 0x8000) {
89 		if (hi == 0xffff) {
90 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
91 		} else {
92 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
93 			if (lo != 0xffff)
94 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
95 		}
96 	} else {
97 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
98 		if (hi)
99 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
100 	}
101 }
102 
103 static int i64_i16_blocks(const u64 val, bool inverse)
104 {
105 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
106 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
107 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
108 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
109 }
110 
111 static inline void emit_a64_mov_i64(const int reg, const u64 val,
112 				    struct jit_ctx *ctx)
113 {
114 	u64 nrm_tmp = val, rev_tmp = ~val;
115 	bool inverse;
116 	int shift;
117 
118 	if (!(nrm_tmp >> 32))
119 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
120 
121 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
122 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
123 					  (fls64(nrm_tmp) - 1)), 16), 0);
124 	if (inverse)
125 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
126 	else
127 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
128 	shift -= 16;
129 	while (shift >= 0) {
130 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
131 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
132 		shift -= 16;
133 	}
134 }
135 
136 /*
137  * This is an unoptimized 64 immediate emission used for BPF to BPF call
138  * addresses. It will always do a full 64 bit decomposition as otherwise
139  * more complexity in the last extra pass is required since we previously
140  * reserved 4 instructions for the address.
141  */
142 static inline void emit_addr_mov_i64(const int reg, const u64 val,
143 				     struct jit_ctx *ctx)
144 {
145 	u64 tmp = val;
146 	int shift = 0;
147 
148 	emit(A64_MOVZ(1, reg, tmp & 0xffff, shift), ctx);
149 	for (;shift < 48;) {
150 		tmp >>= 16;
151 		shift += 16;
152 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
153 	}
154 }
155 
156 static inline int bpf2a64_offset(int bpf_to, int bpf_from,
157 				 const struct jit_ctx *ctx)
158 {
159 	int to = ctx->offset[bpf_to];
160 	/* -1 to account for the Branch instruction */
161 	int from = ctx->offset[bpf_from] - 1;
162 
163 	return to - from;
164 }
165 
166 static void jit_fill_hole(void *area, unsigned int size)
167 {
168 	__le32 *ptr;
169 	/* We are guaranteed to have aligned memory. */
170 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
171 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
172 }
173 
174 static inline int epilogue_offset(const struct jit_ctx *ctx)
175 {
176 	int to = ctx->epilogue_offset;
177 	int from = ctx->idx;
178 
179 	return to - from;
180 }
181 
182 /* Stack must be multiples of 16B */
183 #define STACK_ALIGN(sz) (((sz) + 15) & ~15)
184 
185 /* Tail call offset to jump into */
186 #define PROLOGUE_OFFSET 7
187 
188 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
189 {
190 	const struct bpf_prog *prog = ctx->prog;
191 	const u8 r6 = bpf2a64[BPF_REG_6];
192 	const u8 r7 = bpf2a64[BPF_REG_7];
193 	const u8 r8 = bpf2a64[BPF_REG_8];
194 	const u8 r9 = bpf2a64[BPF_REG_9];
195 	const u8 fp = bpf2a64[BPF_REG_FP];
196 	const u8 tcc = bpf2a64[TCALL_CNT];
197 	const int idx0 = ctx->idx;
198 	int cur_offset;
199 
200 	/*
201 	 * BPF prog stack layout
202 	 *
203 	 *                         high
204 	 * original A64_SP =>   0:+-----+ BPF prologue
205 	 *                        |FP/LR|
206 	 * current A64_FP =>  -16:+-----+
207 	 *                        | ... | callee saved registers
208 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
209 	 *                        |     |
210 	 *                        | ... | BPF prog stack
211 	 *                        |     |
212 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
213 	 *                        |RSVD | padding
214 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
215 	 *                        |     |
216 	 *                        | ... | Function call stack
217 	 *                        |     |
218 	 *                        +-----+
219 	 *                          low
220 	 *
221 	 */
222 
223 	/* Save FP and LR registers to stay align with ARM64 AAPCS */
224 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
225 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
226 
227 	/* Save callee-saved registers */
228 	emit(A64_PUSH(r6, r7, A64_SP), ctx);
229 	emit(A64_PUSH(r8, r9, A64_SP), ctx);
230 	emit(A64_PUSH(fp, tcc, A64_SP), ctx);
231 
232 	/* Set up BPF prog stack base register */
233 	emit(A64_MOV(1, fp, A64_SP), ctx);
234 
235 	if (!ebpf_from_cbpf) {
236 		/* Initialize tail_call_cnt */
237 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
238 
239 		cur_offset = ctx->idx - idx0;
240 		if (cur_offset != PROLOGUE_OFFSET) {
241 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
242 				    cur_offset, PROLOGUE_OFFSET);
243 			return -1;
244 		}
245 	}
246 
247 	ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth);
248 
249 	/* Set up function call stack */
250 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
251 	return 0;
252 }
253 
254 static int out_offset = -1; /* initialized on the first pass of build_body() */
255 static int emit_bpf_tail_call(struct jit_ctx *ctx)
256 {
257 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
258 	const u8 r2 = bpf2a64[BPF_REG_2];
259 	const u8 r3 = bpf2a64[BPF_REG_3];
260 
261 	const u8 tmp = bpf2a64[TMP_REG_1];
262 	const u8 prg = bpf2a64[TMP_REG_2];
263 	const u8 tcc = bpf2a64[TCALL_CNT];
264 	const int idx0 = ctx->idx;
265 #define cur_offset (ctx->idx - idx0)
266 #define jmp_offset (out_offset - (cur_offset))
267 	size_t off;
268 
269 	/* if (index >= array->map.max_entries)
270 	 *     goto out;
271 	 */
272 	off = offsetof(struct bpf_array, map.max_entries);
273 	emit_a64_mov_i64(tmp, off, ctx);
274 	emit(A64_LDR32(tmp, r2, tmp), ctx);
275 	emit(A64_MOV(0, r3, r3), ctx);
276 	emit(A64_CMP(0, r3, tmp), ctx);
277 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
278 
279 	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
280 	 *     goto out;
281 	 * tail_call_cnt++;
282 	 */
283 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
284 	emit(A64_CMP(1, tcc, tmp), ctx);
285 	emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
286 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
287 
288 	/* prog = array->ptrs[index];
289 	 * if (prog == NULL)
290 	 *     goto out;
291 	 */
292 	off = offsetof(struct bpf_array, ptrs);
293 	emit_a64_mov_i64(tmp, off, ctx);
294 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
295 	emit(A64_LSL(1, prg, r3, 3), ctx);
296 	emit(A64_LDR64(prg, tmp, prg), ctx);
297 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
298 
299 	/* goto *(prog->bpf_func + prologue_offset); */
300 	off = offsetof(struct bpf_prog, bpf_func);
301 	emit_a64_mov_i64(tmp, off, ctx);
302 	emit(A64_LDR64(tmp, prg, tmp), ctx);
303 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
304 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
305 	emit(A64_BR(tmp), ctx);
306 
307 	/* out: */
308 	if (out_offset == -1)
309 		out_offset = cur_offset;
310 	if (cur_offset != out_offset) {
311 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
312 			    cur_offset, out_offset);
313 		return -1;
314 	}
315 	return 0;
316 #undef cur_offset
317 #undef jmp_offset
318 }
319 
320 static void build_epilogue(struct jit_ctx *ctx)
321 {
322 	const u8 r0 = bpf2a64[BPF_REG_0];
323 	const u8 r6 = bpf2a64[BPF_REG_6];
324 	const u8 r7 = bpf2a64[BPF_REG_7];
325 	const u8 r8 = bpf2a64[BPF_REG_8];
326 	const u8 r9 = bpf2a64[BPF_REG_9];
327 	const u8 fp = bpf2a64[BPF_REG_FP];
328 
329 	/* We're done with BPF stack */
330 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
331 
332 	/* Restore fs (x25) and x26 */
333 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
334 
335 	/* Restore callee-saved register */
336 	emit(A64_POP(r8, r9, A64_SP), ctx);
337 	emit(A64_POP(r6, r7, A64_SP), ctx);
338 
339 	/* Restore FP/LR registers */
340 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
341 
342 	/* Set return value */
343 	emit(A64_MOV(1, A64_R(0), r0), ctx);
344 
345 	emit(A64_RET(A64_LR), ctx);
346 }
347 
348 /* JITs an eBPF instruction.
349  * Returns:
350  * 0  - successfully JITed an 8-byte eBPF instruction.
351  * >0 - successfully JITed a 16-byte eBPF instruction.
352  * <0 - failed to JIT.
353  */
354 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
355 {
356 	const u8 code = insn->code;
357 	const u8 dst = bpf2a64[insn->dst_reg];
358 	const u8 src = bpf2a64[insn->src_reg];
359 	const u8 tmp = bpf2a64[TMP_REG_1];
360 	const u8 tmp2 = bpf2a64[TMP_REG_2];
361 	const u8 tmp3 = bpf2a64[TMP_REG_3];
362 	const s16 off = insn->off;
363 	const s32 imm = insn->imm;
364 	const int i = insn - ctx->prog->insnsi;
365 	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
366 	const bool isdw = BPF_SIZE(code) == BPF_DW;
367 	u8 jmp_cond;
368 	s32 jmp_offset;
369 
370 #define check_imm(bits, imm) do {				\
371 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
372 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
373 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
374 			i, imm, imm);				\
375 		return -EINVAL;					\
376 	}							\
377 } while (0)
378 #define check_imm19(imm) check_imm(19, imm)
379 #define check_imm26(imm) check_imm(26, imm)
380 
381 	switch (code) {
382 	/* dst = src */
383 	case BPF_ALU | BPF_MOV | BPF_X:
384 	case BPF_ALU64 | BPF_MOV | BPF_X:
385 		emit(A64_MOV(is64, dst, src), ctx);
386 		break;
387 	/* dst = dst OP src */
388 	case BPF_ALU | BPF_ADD | BPF_X:
389 	case BPF_ALU64 | BPF_ADD | BPF_X:
390 		emit(A64_ADD(is64, dst, dst, src), ctx);
391 		break;
392 	case BPF_ALU | BPF_SUB | BPF_X:
393 	case BPF_ALU64 | BPF_SUB | BPF_X:
394 		emit(A64_SUB(is64, dst, dst, src), ctx);
395 		break;
396 	case BPF_ALU | BPF_AND | BPF_X:
397 	case BPF_ALU64 | BPF_AND | BPF_X:
398 		emit(A64_AND(is64, dst, dst, src), ctx);
399 		break;
400 	case BPF_ALU | BPF_OR | BPF_X:
401 	case BPF_ALU64 | BPF_OR | BPF_X:
402 		emit(A64_ORR(is64, dst, dst, src), ctx);
403 		break;
404 	case BPF_ALU | BPF_XOR | BPF_X:
405 	case BPF_ALU64 | BPF_XOR | BPF_X:
406 		emit(A64_EOR(is64, dst, dst, src), ctx);
407 		break;
408 	case BPF_ALU | BPF_MUL | BPF_X:
409 	case BPF_ALU64 | BPF_MUL | BPF_X:
410 		emit(A64_MUL(is64, dst, dst, src), ctx);
411 		break;
412 	case BPF_ALU | BPF_DIV | BPF_X:
413 	case BPF_ALU64 | BPF_DIV | BPF_X:
414 	case BPF_ALU | BPF_MOD | BPF_X:
415 	case BPF_ALU64 | BPF_MOD | BPF_X:
416 		switch (BPF_OP(code)) {
417 		case BPF_DIV:
418 			emit(A64_UDIV(is64, dst, dst, src), ctx);
419 			break;
420 		case BPF_MOD:
421 			emit(A64_UDIV(is64, tmp, dst, src), ctx);
422 			emit(A64_MUL(is64, tmp, tmp, src), ctx);
423 			emit(A64_SUB(is64, dst, dst, tmp), ctx);
424 			break;
425 		}
426 		break;
427 	case BPF_ALU | BPF_LSH | BPF_X:
428 	case BPF_ALU64 | BPF_LSH | BPF_X:
429 		emit(A64_LSLV(is64, dst, dst, src), ctx);
430 		break;
431 	case BPF_ALU | BPF_RSH | BPF_X:
432 	case BPF_ALU64 | BPF_RSH | BPF_X:
433 		emit(A64_LSRV(is64, dst, dst, src), ctx);
434 		break;
435 	case BPF_ALU | BPF_ARSH | BPF_X:
436 	case BPF_ALU64 | BPF_ARSH | BPF_X:
437 		emit(A64_ASRV(is64, dst, dst, src), ctx);
438 		break;
439 	/* dst = -dst */
440 	case BPF_ALU | BPF_NEG:
441 	case BPF_ALU64 | BPF_NEG:
442 		emit(A64_NEG(is64, dst, dst), ctx);
443 		break;
444 	/* dst = BSWAP##imm(dst) */
445 	case BPF_ALU | BPF_END | BPF_FROM_LE:
446 	case BPF_ALU | BPF_END | BPF_FROM_BE:
447 #ifdef CONFIG_CPU_BIG_ENDIAN
448 		if (BPF_SRC(code) == BPF_FROM_BE)
449 			goto emit_bswap_uxt;
450 #else /* !CONFIG_CPU_BIG_ENDIAN */
451 		if (BPF_SRC(code) == BPF_FROM_LE)
452 			goto emit_bswap_uxt;
453 #endif
454 		switch (imm) {
455 		case 16:
456 			emit(A64_REV16(is64, dst, dst), ctx);
457 			/* zero-extend 16 bits into 64 bits */
458 			emit(A64_UXTH(is64, dst, dst), ctx);
459 			break;
460 		case 32:
461 			emit(A64_REV32(is64, dst, dst), ctx);
462 			/* upper 32 bits already cleared */
463 			break;
464 		case 64:
465 			emit(A64_REV64(dst, dst), ctx);
466 			break;
467 		}
468 		break;
469 emit_bswap_uxt:
470 		switch (imm) {
471 		case 16:
472 			/* zero-extend 16 bits into 64 bits */
473 			emit(A64_UXTH(is64, dst, dst), ctx);
474 			break;
475 		case 32:
476 			/* zero-extend 32 bits into 64 bits */
477 			emit(A64_UXTW(is64, dst, dst), ctx);
478 			break;
479 		case 64:
480 			/* nop */
481 			break;
482 		}
483 		break;
484 	/* dst = imm */
485 	case BPF_ALU | BPF_MOV | BPF_K:
486 	case BPF_ALU64 | BPF_MOV | BPF_K:
487 		emit_a64_mov_i(is64, dst, imm, ctx);
488 		break;
489 	/* dst = dst OP imm */
490 	case BPF_ALU | BPF_ADD | BPF_K:
491 	case BPF_ALU64 | BPF_ADD | BPF_K:
492 		emit_a64_mov_i(is64, tmp, imm, ctx);
493 		emit(A64_ADD(is64, dst, dst, tmp), ctx);
494 		break;
495 	case BPF_ALU | BPF_SUB | BPF_K:
496 	case BPF_ALU64 | BPF_SUB | BPF_K:
497 		emit_a64_mov_i(is64, tmp, imm, ctx);
498 		emit(A64_SUB(is64, dst, dst, tmp), ctx);
499 		break;
500 	case BPF_ALU | BPF_AND | BPF_K:
501 	case BPF_ALU64 | BPF_AND | BPF_K:
502 		emit_a64_mov_i(is64, tmp, imm, ctx);
503 		emit(A64_AND(is64, dst, dst, tmp), ctx);
504 		break;
505 	case BPF_ALU | BPF_OR | BPF_K:
506 	case BPF_ALU64 | BPF_OR | BPF_K:
507 		emit_a64_mov_i(is64, tmp, imm, ctx);
508 		emit(A64_ORR(is64, dst, dst, tmp), ctx);
509 		break;
510 	case BPF_ALU | BPF_XOR | BPF_K:
511 	case BPF_ALU64 | BPF_XOR | BPF_K:
512 		emit_a64_mov_i(is64, tmp, imm, ctx);
513 		emit(A64_EOR(is64, dst, dst, tmp), ctx);
514 		break;
515 	case BPF_ALU | BPF_MUL | BPF_K:
516 	case BPF_ALU64 | BPF_MUL | BPF_K:
517 		emit_a64_mov_i(is64, tmp, imm, ctx);
518 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
519 		break;
520 	case BPF_ALU | BPF_DIV | BPF_K:
521 	case BPF_ALU64 | BPF_DIV | BPF_K:
522 		emit_a64_mov_i(is64, tmp, imm, ctx);
523 		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
524 		break;
525 	case BPF_ALU | BPF_MOD | BPF_K:
526 	case BPF_ALU64 | BPF_MOD | BPF_K:
527 		emit_a64_mov_i(is64, tmp2, imm, ctx);
528 		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
529 		emit(A64_MUL(is64, tmp, tmp, tmp2), ctx);
530 		emit(A64_SUB(is64, dst, dst, tmp), ctx);
531 		break;
532 	case BPF_ALU | BPF_LSH | BPF_K:
533 	case BPF_ALU64 | BPF_LSH | BPF_K:
534 		emit(A64_LSL(is64, dst, dst, imm), ctx);
535 		break;
536 	case BPF_ALU | BPF_RSH | BPF_K:
537 	case BPF_ALU64 | BPF_RSH | BPF_K:
538 		emit(A64_LSR(is64, dst, dst, imm), ctx);
539 		break;
540 	case BPF_ALU | BPF_ARSH | BPF_K:
541 	case BPF_ALU64 | BPF_ARSH | BPF_K:
542 		emit(A64_ASR(is64, dst, dst, imm), ctx);
543 		break;
544 
545 	/* JUMP off */
546 	case BPF_JMP | BPF_JA:
547 		jmp_offset = bpf2a64_offset(i + off, i, ctx);
548 		check_imm26(jmp_offset);
549 		emit(A64_B(jmp_offset), ctx);
550 		break;
551 	/* IF (dst COND src) JUMP off */
552 	case BPF_JMP | BPF_JEQ | BPF_X:
553 	case BPF_JMP | BPF_JGT | BPF_X:
554 	case BPF_JMP | BPF_JLT | BPF_X:
555 	case BPF_JMP | BPF_JGE | BPF_X:
556 	case BPF_JMP | BPF_JLE | BPF_X:
557 	case BPF_JMP | BPF_JNE | BPF_X:
558 	case BPF_JMP | BPF_JSGT | BPF_X:
559 	case BPF_JMP | BPF_JSLT | BPF_X:
560 	case BPF_JMP | BPF_JSGE | BPF_X:
561 	case BPF_JMP | BPF_JSLE | BPF_X:
562 		emit(A64_CMP(1, dst, src), ctx);
563 emit_cond_jmp:
564 		jmp_offset = bpf2a64_offset(i + off, i, ctx);
565 		check_imm19(jmp_offset);
566 		switch (BPF_OP(code)) {
567 		case BPF_JEQ:
568 			jmp_cond = A64_COND_EQ;
569 			break;
570 		case BPF_JGT:
571 			jmp_cond = A64_COND_HI;
572 			break;
573 		case BPF_JLT:
574 			jmp_cond = A64_COND_CC;
575 			break;
576 		case BPF_JGE:
577 			jmp_cond = A64_COND_CS;
578 			break;
579 		case BPF_JLE:
580 			jmp_cond = A64_COND_LS;
581 			break;
582 		case BPF_JSET:
583 		case BPF_JNE:
584 			jmp_cond = A64_COND_NE;
585 			break;
586 		case BPF_JSGT:
587 			jmp_cond = A64_COND_GT;
588 			break;
589 		case BPF_JSLT:
590 			jmp_cond = A64_COND_LT;
591 			break;
592 		case BPF_JSGE:
593 			jmp_cond = A64_COND_GE;
594 			break;
595 		case BPF_JSLE:
596 			jmp_cond = A64_COND_LE;
597 			break;
598 		default:
599 			return -EFAULT;
600 		}
601 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
602 		break;
603 	case BPF_JMP | BPF_JSET | BPF_X:
604 		emit(A64_TST(1, dst, src), ctx);
605 		goto emit_cond_jmp;
606 	/* IF (dst COND imm) JUMP off */
607 	case BPF_JMP | BPF_JEQ | BPF_K:
608 	case BPF_JMP | BPF_JGT | BPF_K:
609 	case BPF_JMP | BPF_JLT | BPF_K:
610 	case BPF_JMP | BPF_JGE | BPF_K:
611 	case BPF_JMP | BPF_JLE | BPF_K:
612 	case BPF_JMP | BPF_JNE | BPF_K:
613 	case BPF_JMP | BPF_JSGT | BPF_K:
614 	case BPF_JMP | BPF_JSLT | BPF_K:
615 	case BPF_JMP | BPF_JSGE | BPF_K:
616 	case BPF_JMP | BPF_JSLE | BPF_K:
617 		emit_a64_mov_i(1, tmp, imm, ctx);
618 		emit(A64_CMP(1, dst, tmp), ctx);
619 		goto emit_cond_jmp;
620 	case BPF_JMP | BPF_JSET | BPF_K:
621 		emit_a64_mov_i(1, tmp, imm, ctx);
622 		emit(A64_TST(1, dst, tmp), ctx);
623 		goto emit_cond_jmp;
624 	/* function call */
625 	case BPF_JMP | BPF_CALL:
626 	{
627 		const u8 r0 = bpf2a64[BPF_REG_0];
628 		const u64 func = (u64)__bpf_call_base + imm;
629 
630 		if (ctx->prog->is_func)
631 			emit_addr_mov_i64(tmp, func, ctx);
632 		else
633 			emit_a64_mov_i64(tmp, func, ctx);
634 		emit(A64_BLR(tmp), ctx);
635 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
636 		break;
637 	}
638 	/* tail call */
639 	case BPF_JMP | BPF_TAIL_CALL:
640 		if (emit_bpf_tail_call(ctx))
641 			return -EFAULT;
642 		break;
643 	/* function return */
644 	case BPF_JMP | BPF_EXIT:
645 		/* Optimization: when last instruction is EXIT,
646 		   simply fallthrough to epilogue. */
647 		if (i == ctx->prog->len - 1)
648 			break;
649 		jmp_offset = epilogue_offset(ctx);
650 		check_imm26(jmp_offset);
651 		emit(A64_B(jmp_offset), ctx);
652 		break;
653 
654 	/* dst = imm64 */
655 	case BPF_LD | BPF_IMM | BPF_DW:
656 	{
657 		const struct bpf_insn insn1 = insn[1];
658 		u64 imm64;
659 
660 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
661 		emit_a64_mov_i64(dst, imm64, ctx);
662 
663 		return 1;
664 	}
665 
666 	/* LDX: dst = *(size *)(src + off) */
667 	case BPF_LDX | BPF_MEM | BPF_W:
668 	case BPF_LDX | BPF_MEM | BPF_H:
669 	case BPF_LDX | BPF_MEM | BPF_B:
670 	case BPF_LDX | BPF_MEM | BPF_DW:
671 		emit_a64_mov_i(1, tmp, off, ctx);
672 		switch (BPF_SIZE(code)) {
673 		case BPF_W:
674 			emit(A64_LDR32(dst, src, tmp), ctx);
675 			break;
676 		case BPF_H:
677 			emit(A64_LDRH(dst, src, tmp), ctx);
678 			break;
679 		case BPF_B:
680 			emit(A64_LDRB(dst, src, tmp), ctx);
681 			break;
682 		case BPF_DW:
683 			emit(A64_LDR64(dst, src, tmp), ctx);
684 			break;
685 		}
686 		break;
687 
688 	/* ST: *(size *)(dst + off) = imm */
689 	case BPF_ST | BPF_MEM | BPF_W:
690 	case BPF_ST | BPF_MEM | BPF_H:
691 	case BPF_ST | BPF_MEM | BPF_B:
692 	case BPF_ST | BPF_MEM | BPF_DW:
693 		/* Load imm to a register then store it */
694 		emit_a64_mov_i(1, tmp2, off, ctx);
695 		emit_a64_mov_i(1, tmp, imm, ctx);
696 		switch (BPF_SIZE(code)) {
697 		case BPF_W:
698 			emit(A64_STR32(tmp, dst, tmp2), ctx);
699 			break;
700 		case BPF_H:
701 			emit(A64_STRH(tmp, dst, tmp2), ctx);
702 			break;
703 		case BPF_B:
704 			emit(A64_STRB(tmp, dst, tmp2), ctx);
705 			break;
706 		case BPF_DW:
707 			emit(A64_STR64(tmp, dst, tmp2), ctx);
708 			break;
709 		}
710 		break;
711 
712 	/* STX: *(size *)(dst + off) = src */
713 	case BPF_STX | BPF_MEM | BPF_W:
714 	case BPF_STX | BPF_MEM | BPF_H:
715 	case BPF_STX | BPF_MEM | BPF_B:
716 	case BPF_STX | BPF_MEM | BPF_DW:
717 		emit_a64_mov_i(1, tmp, off, ctx);
718 		switch (BPF_SIZE(code)) {
719 		case BPF_W:
720 			emit(A64_STR32(src, dst, tmp), ctx);
721 			break;
722 		case BPF_H:
723 			emit(A64_STRH(src, dst, tmp), ctx);
724 			break;
725 		case BPF_B:
726 			emit(A64_STRB(src, dst, tmp), ctx);
727 			break;
728 		case BPF_DW:
729 			emit(A64_STR64(src, dst, tmp), ctx);
730 			break;
731 		}
732 		break;
733 	/* STX XADD: lock *(u32 *)(dst + off) += src */
734 	case BPF_STX | BPF_XADD | BPF_W:
735 	/* STX XADD: lock *(u64 *)(dst + off) += src */
736 	case BPF_STX | BPF_XADD | BPF_DW:
737 		emit_a64_mov_i(1, tmp, off, ctx);
738 		emit(A64_ADD(1, tmp, tmp, dst), ctx);
739 		emit(A64_PRFM(tmp, PST, L1, STRM), ctx);
740 		emit(A64_LDXR(isdw, tmp2, tmp), ctx);
741 		emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
742 		emit(A64_STXR(isdw, tmp2, tmp, tmp3), ctx);
743 		jmp_offset = -3;
744 		check_imm19(jmp_offset);
745 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
746 		break;
747 
748 	default:
749 		pr_err_once("unknown opcode %02x\n", code);
750 		return -EINVAL;
751 	}
752 
753 	return 0;
754 }
755 
756 static int build_body(struct jit_ctx *ctx)
757 {
758 	const struct bpf_prog *prog = ctx->prog;
759 	int i;
760 
761 	for (i = 0; i < prog->len; i++) {
762 		const struct bpf_insn *insn = &prog->insnsi[i];
763 		int ret;
764 
765 		ret = build_insn(insn, ctx);
766 		if (ret > 0) {
767 			i++;
768 			if (ctx->image == NULL)
769 				ctx->offset[i] = ctx->idx;
770 			continue;
771 		}
772 		if (ctx->image == NULL)
773 			ctx->offset[i] = ctx->idx;
774 		if (ret)
775 			return ret;
776 	}
777 
778 	return 0;
779 }
780 
781 static int validate_code(struct jit_ctx *ctx)
782 {
783 	int i;
784 
785 	for (i = 0; i < ctx->idx; i++) {
786 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
787 
788 		if (a64_insn == AARCH64_BREAK_FAULT)
789 			return -1;
790 	}
791 
792 	return 0;
793 }
794 
795 static inline void bpf_flush_icache(void *start, void *end)
796 {
797 	flush_icache_range((unsigned long)start, (unsigned long)end);
798 }
799 
800 struct arm64_jit_data {
801 	struct bpf_binary_header *header;
802 	u8 *image;
803 	struct jit_ctx ctx;
804 };
805 
806 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
807 {
808 	struct bpf_prog *tmp, *orig_prog = prog;
809 	struct bpf_binary_header *header;
810 	struct arm64_jit_data *jit_data;
811 	bool was_classic = bpf_prog_was_classic(prog);
812 	bool tmp_blinded = false;
813 	bool extra_pass = false;
814 	struct jit_ctx ctx;
815 	int image_size;
816 	u8 *image_ptr;
817 
818 	if (!prog->jit_requested)
819 		return orig_prog;
820 
821 	tmp = bpf_jit_blind_constants(prog);
822 	/* If blinding was requested and we failed during blinding,
823 	 * we must fall back to the interpreter.
824 	 */
825 	if (IS_ERR(tmp))
826 		return orig_prog;
827 	if (tmp != prog) {
828 		tmp_blinded = true;
829 		prog = tmp;
830 	}
831 
832 	jit_data = prog->aux->jit_data;
833 	if (!jit_data) {
834 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
835 		if (!jit_data) {
836 			prog = orig_prog;
837 			goto out;
838 		}
839 		prog->aux->jit_data = jit_data;
840 	}
841 	if (jit_data->ctx.offset) {
842 		ctx = jit_data->ctx;
843 		image_ptr = jit_data->image;
844 		header = jit_data->header;
845 		extra_pass = true;
846 		image_size = sizeof(u32) * ctx.idx;
847 		goto skip_init_ctx;
848 	}
849 	memset(&ctx, 0, sizeof(ctx));
850 	ctx.prog = prog;
851 
852 	ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
853 	if (ctx.offset == NULL) {
854 		prog = orig_prog;
855 		goto out_off;
856 	}
857 
858 	/* 1. Initial fake pass to compute ctx->idx. */
859 
860 	/* Fake pass to fill in ctx->offset. */
861 	if (build_body(&ctx)) {
862 		prog = orig_prog;
863 		goto out_off;
864 	}
865 
866 	if (build_prologue(&ctx, was_classic)) {
867 		prog = orig_prog;
868 		goto out_off;
869 	}
870 
871 	ctx.epilogue_offset = ctx.idx;
872 	build_epilogue(&ctx);
873 
874 	/* Now we know the actual image size. */
875 	image_size = sizeof(u32) * ctx.idx;
876 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
877 				      sizeof(u32), jit_fill_hole);
878 	if (header == NULL) {
879 		prog = orig_prog;
880 		goto out_off;
881 	}
882 
883 	/* 2. Now, the actual pass. */
884 
885 	ctx.image = (__le32 *)image_ptr;
886 skip_init_ctx:
887 	ctx.idx = 0;
888 
889 	build_prologue(&ctx, was_classic);
890 
891 	if (build_body(&ctx)) {
892 		bpf_jit_binary_free(header);
893 		prog = orig_prog;
894 		goto out_off;
895 	}
896 
897 	build_epilogue(&ctx);
898 
899 	/* 3. Extra pass to validate JITed code. */
900 	if (validate_code(&ctx)) {
901 		bpf_jit_binary_free(header);
902 		prog = orig_prog;
903 		goto out_off;
904 	}
905 
906 	/* And we're done. */
907 	if (bpf_jit_enable > 1)
908 		bpf_jit_dump(prog->len, image_size, 2, ctx.image);
909 
910 	bpf_flush_icache(header, ctx.image + ctx.idx);
911 
912 	if (!prog->is_func || extra_pass) {
913 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
914 			pr_err_once("multi-func JIT bug %d != %d\n",
915 				    ctx.idx, jit_data->ctx.idx);
916 			bpf_jit_binary_free(header);
917 			prog->bpf_func = NULL;
918 			prog->jited = 0;
919 			goto out_off;
920 		}
921 		bpf_jit_binary_lock_ro(header);
922 	} else {
923 		jit_data->ctx = ctx;
924 		jit_data->image = image_ptr;
925 		jit_data->header = header;
926 	}
927 	prog->bpf_func = (void *)ctx.image;
928 	prog->jited = 1;
929 	prog->jited_len = image_size;
930 
931 	if (!prog->is_func || extra_pass) {
932 out_off:
933 		kfree(ctx.offset);
934 		kfree(jit_data);
935 		prog->aux->jit_data = NULL;
936 	}
937 out:
938 	if (tmp_blinded)
939 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
940 					   tmp : orig_prog);
941 	return prog;
942 }
943